
Parallel and Distributed Computing and Networks, 2014

FAST PARALLEL ALGORITHM

FOR DISCRETE FOURIER TRANSFORM

IN MULTI-MESH NETWORK

Somen De,∗ Amit Datta,∗∗ Asit B. Bhattacharya,∗∗∗ and Mallika De∗∗

Abstract

In this paper we propose a parallel algorithm for computing the

discrete Fourier transform (DFT) coefficients of n2 points on a multi-

mesh (MM) architecture [D. Das, M. De, and B.P. Sinha, A new

network topology with multiple meshes, IEEE Transactions on

Computers, 48(5), 1999, 536–551.] having n4 processing elements.

Each processor in the MM architecture has the same number of

neighbours, that is, four as in the case of two-dimensional (2D)

torus yet, the time complexity of the proposed algorithm on this

MM architecture is O(n) which may be contrasted with O(n2) time

for computing n2 – point DFT coefficients on a 2D torus having the

same nature of processors.

Key Words

2D mesh, multi-mesh, wrap-around connection, DFT, FFT, VLSI

1. Introduction

Fourier transform has a significant role in the computa-
tional developments of twentieth century and is extensively
used in different branches like computer science, communi-
cation, speech transmission, coding theory, image process-
ing and signal processing. It is a worthy accomplishment
if it is possible to devise an algorithm which is an order
of magnitude faster than any previous implementation.
When the improvement is for a process that has many
applications, then that accomplishment has a significant
impact on scientists and practitioners.

The linear transformations, that is, computations of
the form AB, where A is an n×n matrix and B is an
n-vector, can be applied to the computation of discrete
Fourier transform (DFT) [1], where A is a special type
of symmetric matrix (discussed in Section 2) having some
characteristics. The parallel computation of the linear

∗ Department of Physics, Bijoy Krishna Girls’ College, Howrah,
Howrah-1, India; e-mail: de_somen@rediffmail.com

∗∗ Department of Engineering & Technological Studies, University
of Kalyani, West Bengal, India; e-mail: amitdatta_wb@
yahoo.co.in, demallika@yahoo.com

∗∗∗ Department of Physics, University of Kalyani, West Bengal,
India, e-mail: asit1951@yahoo.com

Recommended by Prof. Hamid Sarbazi-Azad
(DOI: 10.2316/Journal.211.2014.4.211-1012)

transformation A×B=C takes O(n) time for implement-
ing in an n×n 2D mesh [2]. The authors Somen De et al.
in the present paper initially propose a parallel implemen-
tation of the same using multi-mesh (MM) architecture [3],
[4] having n4 processors, all having degree 4. The proces-
sors in the MM network having n2 meshes of size n×n are
arranged in rows and columns of meshes of size n×n. The
time complexity of the algorithm is O(n) for n2 points,
thereby reducing the time complexity by an O(n). Finally,
the algorithm is modified for incorporating the generation
of the special n2×n2 matrix of Fourier transformation in
the MM network in O(n) element-by-element multiplica-
tion time. By this the number of I/O ports used and data
input time has been reduced significantly.

The paper is organized as follows. Section 2 describes
the DFT and the properties of the Fourier matrix. Section 3
defines fast Fourier transform (FFT). Section 4.1 describes
the MM topology and its properties. Section 4.2 deals with
mesh-related architectures and the time complexities of the
algorithms of various numeric and non-numeric problems
implemented on those architectures. The technique used
for performing parallel implementation of linear transfor-
mation in MM is explained in Section 5. Section 6 deals
with a flowchart and the algorithm for the parallel im-
plementation of linear transformation, its time complexity
and handling of higher order transformation matrix. In
Section 7, the parallel algorithm for DFT and its time
complexity has been dealt with an example. Section 8
deals with comparison of the time complexities of DFT
computation algorithms in different architectures. Section
9 gives the experimental results of simulation program and
we conclude in Section 10.

2. The Discrete Fourier Transforms

The Fourier transform of a continuous function a(t) is
given by:

A(f) =
∞
∫
∞
a(t)e2πftdt (1)

where i=
√−1. The variable t is used to represent time,

and f is used to represent frequency. The Fourier transform

1

is used to convert a function of time into a function of
frequency.

The above Fourier transform could be represented as
the DFT which handles sample points of a(t), namely a0,
a1, . . ., aN−1. The DFT is expressed as:

Aj =
N−1∑
0

ake
2πijk/N , 0 ≤ j ≤ N − 1 (2)

Equation (2) can be rewritten as:

Aj =
N−1∑
0

ak ωjk, 0 ≤ j ≤ N − 1 (3)

where ω= e2πi/N is the primitive Nth root of unity in the
complex plane or written more compactly as:

A = FN × a (4)

where entries of Fourier matrix FN are given by:

{FN}jk = ωjk (5)

and A= [A0A1 . . . AN−1]
T , a = [a0a1 . . . aN−1]

T .
So, the problem of finding Fourier transform reduces

to multiplying the matrix FN of order N by a vector “a”
of order N , which normally requires O(N2) operations.

A hint that the Fourier transform can be computed
faster comes from observing that the evaluation points
are not arbitrary but are in fact very special. They
are N powers (sometimes called twiddle factors) ωj , for
0≤ j≤N − 1. The two simple properties of these Nth
roots of unity are if N =2n, then (i) −ωj =ωj+n and
(ii) ω2 is primitive nth root of unity.

3. Fast Fourier Transform

DFT of a vector of length N can be computed either
directly from the definition or via a dense matrix–vector
multiplication in quadratic time. But DFT [5], [6] can also
be computed in O(N logN) time using FFT [7]–[9] which
exploits the symmetry of the Fourier matrix F . The basic
idea is to use properties of the nth roots of unity to relate
the Fourier transform of a vector of size n to two Fourier
transforms on vectors of size n/2.

Fnx =

⎡
⎣In/2 Dn/2

In/2 Dn/2

⎤
⎦
⎡
⎣Fn/2 xeven

Fn/2 xodd

⎤
⎦ (6)

where xeven denotes the vector of size n/2 consisting of
x0, x2, . . ., xn−2 and xodd denotes the vector consisting of
x1, x3, . . ., xn−1, the matrix In/2 is the n/2×n/2 identity
matrix and the matrix Dn/2 is n/2×n/2 diagonal matrix

whose kth diagonal entry is ωk. The radix 2 Cooley-
Tukey FFT [10] uses a divide-and-conquer methodology to
compute the DFT. It has been assumed that N is a power
of 2.

4. Multi- esh and Mesh- elated Architectures

The k-ary n-cube has been the most popular multicom-
puter interconnection network due to its desirable proper-
ties such as each of implementation has recursive structure
and ability to explain communication locality found in
many parallel applications to reduce message latency.

A k-ary n-cube network has an n-dimensional grid
structure with k-nodes (processors) in each dimension,
such that every node is connected to two other nodes in
each dimension by direct communication links.

A (k, n)-torus has n dimensions and N = kn nodes.
Each node is uniquely identified by an n-tuple in radix k.
A (k, n)-mesh is (k, n) torus with wraparound connection
missing. The well-known binary hypercube is the 2-n
mesh.

A linear array has k elements in one dimension. One
extreme is a linear array; the other extreme is hypercube
topology of dimension n which has two nodes along each
dimension.

The n-dimensional cube is generalization of 2D mesh
to n dimensions. Each node in the n-D mesh, with the
exception of those in the periphery, is connected to 2n
other nodes, two along each of the dimensions.

Mesh of tree and pyramid are two interconnection
networks which use a combination of 2D meshes and tree
structures. In 2D MM topology, n2 2D meshes of size n×n
are arranged in rows and columns and are interconnected
with other meshes in row and column directions. Section
4.1 describes the MM network topology, to be used by
the proposed algorithm. This section also refers different
applications of MM topology. In Section 4.2 mesh and
related architectures are discussed. Two important aspects
of topological properties of these architectures such as
diameter and bisection width, and time complexities of a
few important numeric and non-numeric applications have
been presented in a tabular form in Section 4.2.

4.1 The MM Network

In a MM network [3], [4], [11], [12] shown in Fig. 1, there
are n2 meshes of size n×n each, which themselves are
again arranged in n rows and n columns so that there will
be n4 processors in the network. Each n×n mesh in this
network is termed as a block. A processor on the MM can
be identified by a four tuple, that is, P (α, β, x, y) where
(α, β) is used for block address as the αth row and βth
column, and (x, y) denotes the processor address as xth
row and yth column within that block. Each processor
P (α, β, x, y) is connected to P (α, β, x± 1, y± 1), if
they exist, using bidirectional links referred as intra-
block links. There exist, however, some additional bi-
directional connections termed as inter-block links among
the corners and boundary processors given by the following
rule:
(i) Horizontal inter-block links:

P (α, β, x, 0) are connected to P (α, x, β, n− 1) for
0≤x, α, β≤n− 1.
As a special case, when β=x, the link interconnects
two processors within the same block.

2

m r

Figure 1. A simple n×n multi-mesh network with n=4 (all links are not shown).

(ii) Vertical inter-block links:

P (α, β, 0, y) are connected to P (y, β, n− 1, α) for
0≤ y, α, β≤n− 1.

As a special case, when α= y, the link interconnects
two processors within the same block.

Rule (i) interconnects two blocks in the horizontal di-
rection, whereas rule (ii) defines the vertical inter-block
connections.

In a simple n×nmesh only (n− 2)2 internal processors
have degree 4, the four corner processors are of degree 2 and
4(n− 2) boundary processors have degree 3, as opposed
to degree 4 for all processors on the MM. Moreover, the
diameter of the network is 2n as opposed to 2(n2− 1) for
an n2×n2 mesh. For this reason, any real-life applications
can be solved on the proposed network more efficiently
than on the corresponding mesh with the same number
of processors. When time complexity is governed by
the diameter of the network, the MM network is more
advantageous than mesh.

As examples of real-life applications, simple problems
like those of calculating the sum, average, minimum and
maximum of n4 data values have been implemented inO(n)
time on the MM network having n4 processors [3]. Numeric
problems like matrix multiplication and Lagrange’s inter-
polation have been implemented in MM having n4 pro-
cessors in O(n) and O(p0.6) time for n2 point Lagrange’s
interpolation and p× p matrix multiplication, respectively,
where p=n5/3. Non-trivial problem like sorting of n4 data

values has also been implemented in O(n) time [13]. In case
of simple n2×n2 mesh, each of these problems takes O(n2)
time. The reduced time complexity has been achieved due
to the inter-block links among the boundary processors of
the meshes as defined by the above two rules. Optical
technology has been used in implementing MM network in
[14], [15]. The inter-block communication is done in MM
network through optical technology using wavelength divi-
sion multiplexing in [15]. Sen et al. [16] introduced a new
metric, flow number, for a generalized multi-mesh (GM)
that can be used to evaluate topologies for optical net-
works. The design and evaluation of a highly scalable, de-
centralized and self-organizing peer-to-peer network based
on MM topology has been presented in [17].

4.2 Related Architectures and Results

The difference between MM (having N = k4 elements) and
n-dimensional mesh is that MM is 2D where k2 meshes of
size k× k are themselves arranged in rows and columns,
whereas in n-dimensional mesh, meshes of size k× k are
arranged in n dimensions (having kn elements), which
gives an n-dimensional structure. Two important aspects
of network topology, like diameter and bisection width are
different for them. Diameters and bisection width of MM
are 2k, k3/2 whereas for n-dimensional meshes those are
n(k− 1) and kn−1, respectively. The node degree is also
different for the two architectures. For MM it is regular 4
degree, whereas for n-dimensional mesh it is 2n for internal

3

Table 1
Different Architectures with Time Complexities for Parallel Algorithms

Diameter Bisection Prefix Sorting Max/Min/ Matrix Lagrange’s

Width Sum Average Operations Interpolation

Mesh 2(
√
N − 1)

√
N O(

√
N) 3

√
N +O(

√
N)
√
N Matrix–vector 10(

√
N − 1)+O(1)

N =n×n [18] product θ (
√
N) No. of terms in the

Matrix–matrix series

product O(
√
N) N +1

[19] [20]

Hypercube logN N/2 logN O(n logn/p)+ Matrix–matrix logN

(N =2n) O(n) using p product [23]

processors O(p) using p2

[21] processors

O(log p) using

p3 processors

p3 <N

[22]

2D Mesh 4 log
√
N 2

√
N 4 log

√
N + Ω(N

1/2) O (log
√
N) Matrix-vector log

√
N using N

of tree [25] O(1) product O(
√
N) processors in base

N =n×n using n2 Matrix–matrix
√
N is the no.

Total processors product O (
√
N) of input data [26]

number of

processors=

3n2− 2n

[24]

Pyramid of 2 log4 N 2
√
N − 2 Ω(logN) Ω(N

1/2) O(logN)

base

N=n×n

[27], [28]

Total

number of

processors=

4n2/3− 1/3

Multi- d(N1/d− 1) N1−1/d θ(N1/d) θ(N1/d) θ(N1/d) Matrix–matrix

dimensional product

mesh [28] O(logN)

N =nd using N

processors [29]

MM 2N1/4 N1/4/2 O(N1/4) O(N1/4) O(N1/4) (
√
N ×√N) O(N1/4)

N =n4 [13] Matrix–vector

[3] product O(N1/4)

(proposed)

(p× p) Matrix-by-

matrix product

O(p0.6), where

p=n5/3

nodes, n for corner nodes, n+1 or n+2 for boundary
nodes other than corners.

As further comparison with other architectures such
as hypercube, mesh-of-tree and pyramid, the diameter,
bisection width and time complexities of different

algorithms which have already been implemented in MM
topology have been mentioned in Table 1. It is evident from
table that most of the implementations in MM have
better time complexities than other architectures. In some
implementations logN order complexities have been

4

Figure 2. Data inputs along rows and columns of block M(0, 0) and M(0, 3) for n=4.

achieved for hypercube and pyramid as they have higher
total number of processors and have a tree structure above
their base.

5. Linear Transformation by Matrix–Vector
Multiplication

Linear transformation of a matrix A of size p× p by a
vector B of size p is given by C =A×B, where C is the
transformed vector of length p.

5.1 Parallel Implementation using MM Network

Let us partition the matrix A as n×n sub-matrices Aα,β ,
0≤α, β≤n− 1, when n=

√
p. These n2 sub-matrices are

initially placed in the blocks M(α, β), 0≤α, β≤n− 1 of
the MM network having n4 processors, where each block
contains the processors P (α, β, *,*). Here “*” indicate all
possible values from 0 to n− 1. The sub-vectors Aα,β ’s are
placed in the blocks M(α, β)’s, 0≤α, β≤n− 1, through
the left boundaries.

Similarly, the vector B is partitioned into n column
sub-vectors Bβ , 0≤β≤n− 1. The sub-vectors Bβ ’s are
placed in the processor blocks M(*, β)’s, 0≤β≤n− 1.
The inputs of sub-vectors Bβ ’s are through the first rows
of each block and are propagated down to the other rows
of the same block as shown in Fig. 2.

Now each M(α, β) will compute Aα,β ×Bβ , 0≤α,
β≤n− 1. An example showing the contents of M(1, 2) is
shown in Fig. 3.

To get Ci =
∑n2−1

j=0 pij for each i, where pij = aij × bj ,
all pij ’s are to be brought in a single block M(i/n, i%n),

Figure 3. Partial products in the block M(1, 2).

as they are now scattered in ith rows of n different blocks.
This can be done using n shifts along the horizontal inter-
block links of the MM network [as explained in Fig. 4(a)
and (b)]. These n2 components of each mesh are summed
together to give an element of vector C [Fig. 4(c)] and
are placed in the upper right corner of block M(i/n, i%n)
[Fig. 4(d)]. One more single step of data movement along
horizontal inter-block links bring them to the left boundary
of all the blocks M(α, 0), 0≤α≤n− 1.

6. Parallel Implementation of Linear Transforma-
tion

In Section 6.1 a flowchart showing the detailed steps for
parallel implementation of linear transformation is given.
Section 6.2 deals with the parallel implementation of linear
transformation algorithm (PLT) and Section 6.3 gives the
time complexity of the parallel algorithm.

6.1 Flowchart of the Algorithm PLT

Figure 5 shows a flowchart indicating different steps of the
parallel algorithm for linear transformation. The algorithm
PLT of Section 6.2 is written following this flowchart.

6.2 Algorithm PLT

6.2.1 Initialization Step

The step is subdivided into two parts. Register H1s contain
the initial values of matrix A, whereas registers H2s contain
the initial values of vector B.

Step 1: ∀ α, β and x, 0≤α, β, x≤n− 1 do in parallel
1.1 H1(α, β, x, 0)← aαn+x,βn+(n−1)

1.2 for i=1 to n− 1 do
begin
for j=1 to i do in parallel

H1 (α, β, x, i− j+1)←H1(α, β, x, i− j);
if (j= i)
H1(α, β, x, 0)← aαn+x,βn+(n−1)−i;

endfor
end

Step 2: ∀ α, β and y, 0≤α, β, y≤n− 1 do in parallel
1.1 H2(α, β, 0, y)← bβn+y;
1.2 for i=1 to n− 1 do

H2 (α, β, i, y)←H2 (α, β, i− 1, y);

5

Figure 4. In the above series of images, (a) blocks M(0, *)’s contain the partial products in MM for n=4; (b) contents of
blocks M(0, *)’s after n steps of data movements along the horizontal inter-block links in MM for n=4; (c) column sum and
then 0th row sum in each block in MM for n=4; and (d) single step data movement along horizontal inter-block links (solid
lines with arrowhead indicate the direction of data movements).

6.2.2 Multiplication Step

∀ α, β, x and y, 0≤α, β, x, y≤n− 1 do in parallel
H1(α, β, x, y)←H1(α, β, x, y)×H2(α, β, x, y);

6.2.3 Data Movement Step

In the MM network, horizontal inter-block link forms a
cycle of length 2n between the kth row of the block M(i, j)

and the jth row of the blockM(i, k) for j �= k, 0≤ i≤n− 1.
For a given α, if we shift the data elements in M(α, *)
through n positions along the horizontal cycles, then the
ith row elements of M(α, j) will move to the jth row of
B(α, i), 0≤α≤n− 1.

/* Here, ‘*’ indicates all possible values from 0 to n− 1,
but the same value for it must be used on both sides of
the assignment operator */

6

Figure 5. Flow chart for algorithm PLT.

∀ α and β, 0≤α, β≤n− 1 do in parallel
begin
H1(α, β,*, n− 1)←H1(α,*, β, 0);
for j=1 downto n− 1

if (j=n− 1)
H1(α, β,*, j− 1)←H1(α, β, *, n− 1);

else
H1(α, β,*, j− 1)←H1(α, β, *, j);

endfor
end

6.2.4 Addition Step

∀ α, β and y, 0≤ α, β, y≤n− 1 do in parallel

begin

for i=n− 1 downto 1 do

H1 (α, β, i− 1, y)←H1 (α, β, i− 1, y)+H1 (α, β, i, y);

/* P(α, β, 0, y) contain the column sums */

for j=0 to n− 2 do

H1 (α, β, 0, j+1)←H1 (α, β, 0, j+1)+H1 (α, β, 0, j);

/* Summing along the 0th row in each block, the sum of
the n2 data values of the block is finally brought to the
processor P (α, β, 0, n− 1) */

end

7

6.2.5 Data Arrangement Step

In this step the output data vector C is moved to the 0th
column of all the blocks B(α, 0), 0≤α≤n− 1.

∀ α and β, 0≤α, β≤n− 1 do in parallel

H1 (α, 0, β, 0)←H1 (α, β, 0, n− 1);

/* single step horizontal data movement along inter-block
links */

6.3 Time Complexity of Algorithm PLT

Steps 1 and 2 of initialization require n steps each. Mul-
tiplication step requires single step of element by element
multiplication time. Data movement along horizontal
inter-block links takes n steps. 2(n− 1) data movement
and addition steps are required for step D to add n2 data
elements of each mesh. Step E for output data arrangement
requires single step. So, 5n− 1 data movement steps, 1
multiplication step and 2(n− 1) addition steps are required
for parallel implementation in a MM of n4 processors re-
sulting in an O(n) algorithm for matrix–vector product.
The AT 2 value is O(n6).

6.4 Multiplication of Higher Order Matrices

A square matrix A of size kp × kp can also be multiplied
by a column vector B of size kp × 1 using an MM network
with only n4 processors. Matrix A can be broken down into
k2
√
p ×√p components (n=

√
p) as A00, A01, A02, . . .,

A0,k
√
p−1, A10, A11, A12, . . ., A1,k

√
p−1, . . ., Ak

√
p−1,0,

Ak
√
p−1,1, . . ., Ak

√
p−1,k

√
p−1. Similarly, B can be broken

down into k components as B0, B1, . . ., Bk
√
p−1. Output

vector also comes as components C0, C1, . . ., Ck
√
p−1.

Each block M(i, j), 0≤ i, j≤n− 1, will now compute k2

matrix–vector multiplication of sizes n×n and n× 1. In
general, we can say that the block M(i, j) of the MM will
compute the matrix–vector products A(i+sn),(j+tn)B(j+tn),
for s=0, 1, . . ., k− 1 and t=0, 1, . . ., k− 1. (As if, the sub-
matrix components have been folded k-times in horizontal
and vertical directions). For example, with n=4 and
k=3, the block M(0, 0) will now compute the components
(A00B0, A04B4, A08B8), (A40B0, A44B4, A48B8) and
(A80B0, A84B4, A88B8). Among the k2 products elements
to be computed at each processors, k are of same row
and can be added by (k− 1) addition times. There is k
such pairs. So, in general, k(k− 1) addition times reduce
the elements at each processor to k for k different rows.
Now, horizontal data movements along horizontal inter-
block links, in general, require k+(n− 1) steps of data
movements. Now, each block contains elements of k rows.
Addition requires k(n− 1+ k− 1), that is, k(n+ k− 2)
steps to get k sums for k rows in M(*,*, 0, 0) positions.
From there, they can be brought to the 0th column of each
block in 0th column of blocks (i.e., having β value equal to
0) in (k+n) steps.

So, overall time complexity will be O(kn) and the AT 2

value O(k2n6).

7. Parallel Implementation of DFT using MM
Network

7.1 Algorithm PDFT

The elements aαn+i,βn+j , 0≤α, β, i, j≤n− 1, of the
Fourier matrix can be obtained by multiplying the element
aα,β , 0≤α, β≤n− 1, by (ωα)n in row direction and
(ωβ+k)n (or (ωβ)n as ωkn =1) in column direction where
k=0, n, 2n, Initially, aα,β =(ω)α×β are given as input
to the (0,0) processor of blocks M(α, β), 0≤α, β≤n− 1
and then first row elements of blocks M(α, β), 0≤α,
β≤n− 1 are computed by repeated multiplication of aα,β
by the row multiplier (ωα)n. Then all the first row elements
are repeatedly multiplied by the column multiplier (ωβ)n

to generate the other rows of the blocks M(α, β). During
the row generation process of Fourier matrix, the proper
components of B vector are input through the 0th row of
each block and propagated along vertical direction to the
other rows of the same block. B is the vector which is to be
transformed using the parallel implementation of discrete
Fourier transform algorithm (PDFT). The above steps are
done in parallel for all the blocks.

7.1.1 Initialization Step

The step is subdivided into four parts. Two local registers
H1 and H2 are associated with each of the processing
elements.

In this section the Fourier matrix A is generated in H1.
And matrix B is input in H2.

∀ α, β , 0≤α, β≤n− 1 do in parallel
Step 1:
1.1 H2 (α, β, 0, 0)← (ωα)n; /*Input the multiplier for
row direction in H2*/

1.2 do in parallel
H1(α, β, 0, 0)←ωα×β ;
H2 (α, β, 0, 1)←H2 (α, β, 0, 0);

/* the n2 values of ωα×β are pre-calculated and placed
at registers H1 at the upper left corner processor of each
block M(α, β), 0≤α, β≤n− 1 */

Step 2: for k=1 to n− 1 do steps 2.1, 2.2 and 2.3 in
parallel
2.1 H1 (α, β, 0, 1)←H1 (α, β, 0, 0);
2.2 If (k <n− 1) then

H2 (α, β, 0, k+1)←H2 (α, β, 0, k);
2.3 if (k− 1=0) then H2 (α, β, 0, k− 1)← (ωβ)n

/* Input multiplier for column direction in H2*/
else
H2 (α, β, 0, k− 1)←H2 (α, β, 0, k− 2);
endif;

H1 (α, β, 0, k)←H1 (α, β, 0, k)×H2 (α, β, 0, k);
Step 3: H2 (α, β, 0, n− 1)←H2 (α, β, 0, n− 2)

/*succeeding values of Fourier vector are generated by
multiplying the previous values by powers of (ωα)n and
then forwarding to the next processor in row direction
in H1 registers */

/* multiplier for column direction are propagated to all
the processors of 0th row */

8

Step 4: for m=0 to n− 1 do in parallel

begin

for k=0 to n− 2 do

begin

4.1 do in parallel

H2 (α, β, k+1, m)←H2 (α, β, k, m);

If (k=0) H2 (α, β, k, m)←bnm+β ;

else H2 (α, β, k, m)←H2 (α, β, k− 1, m);

4.2 H1 (α, β, k+1, m)←H1 (α, β, k, m);

4.3 H1 (α, β, k+1,m)←H1 (α, β, k+1,m)×H2 (α, β,
k+1, m);

end

H2 (α, β, n− 1, m)←H2 (α, β, n− 2, m);

/* Last step to insert the element of input vector into
the n− 1-th row. */

end

/* succeeding values are generated by multiplying the
previous values by powers of and (ωβ)n and then
forwarding to the next processor in column direction */

/* all the b values are copied down to the other rows in
the same block */

7.1.2 Multiplication Step

Same as algorithm PLT.

7.1.3 Data Movement Step

Same as algorithm PLT.

7.1.4 Addition Step

∀ α, β and y, 0≤α, β, y≤n− 1 do in parallel

begin

for i=0 to n− 2 do

H1 (α, β, i+1, y)←H1 (α, β, i+1, y)+H1 (α, β, i, y);

/* P(α, β, n− 1, y) contains the partial sum of n
values */

for j=n− 2 downto 0 do

H1 (α, β, n− 1, j)←H1 (α, β, n− 1, j)+H1 (α, β,
n− 1, j+1);

/* Summing along the last row in each block, the sum of
the n2 data values of the block is finally brought to the
processor P (α, β, n− 1, 0) */

End

7.1.5 Data Arrangement Step

In this step the output data vector C is moved to the 0th
row of all the blocks B (0, β), 0≤β≤n− 1.

∀ α and β, 0≤α, β≤n− 1 do in parallel

H1 (0, β, 0, α)←H1 (α, β, n− 1, 0); // single step vertical
data movement along inter-block link

7.2 Time Complexity of the Algorithm PDFT

Initialization steps involve 3n+1 data movement steps
[(n+2) for steps 1, 2 and 3 and 2(n− 1)+ 1 for step 4]
and 2(n− 1) multiplication steps [(n− 1) multiplication
along row direction and (n− 1) along column direction]
to generate the matrix A, though single step of product
is required to compute partial components aibj in step B.
Steps C, D and E require n, 2(n− 1) and 1step of data
movements respectively. Step D also requires 2(n− 1)
steps of addition. Time complexity of algorithm PDFT
is, therefore, 6n steps of data movement, 2n− 1 steps of
multiplication and 2n− 2 steps of addition, which is O(n).

Comparing the algorithm PDFT with PLT, we see that
though the order of time for data movements and addition
steps are same for both, multiplication time is dependent
on n for the former. The reason for this is, in case of linear
transformation the matrix A was raw data which was input
through the left boundary of each block. Vector B was
given input through the upper boundary of each block. So,
block I/O was more and two boundaries were used. In
case of DFT the matrix A has a special property and our
parallel algorithm exploited that property to generate n4

data elements of A by giving only n2 values as input and
that too in parallel to the upper left corner of each block
of the MM, thereby reducing input time and area.

7.3 Example

To explain the generation of elements of a block M(α, β)
from a single input at (0,0) processor and explain the time
complexity, the data movements and multiplication steps
have been shown in this example taking a 4× 4 mesh.
Figure 6 shows the 0th row generation and Fig. 7 shows
the steps for generation of other rows from the 0th row.
For each processor there are two local registers H1 and
H2. H1s contain elements of A. Initially, register H2s
contain the row multipliers for generation of 0th row, then
they will contain the column multipliers to generate the
other rows, and finally they will contain the elements of
vector B. The example shows the element generation
of block M(1, 2). Correspondingly, the row element
Re = a1,2 =ω1×2, row multiplier MR =(ω1)4 =ω4, column
multiplier MC =(ω2)4 =ω8, and the B vector is (bj , bj+4,
bj+8, bj+12)= (b2, b6, b10, b14). Figure 8 shows the contents
of block M(1, 2) after generation of all the elements where
x=ω2 =(1− i)/

√
2.

Figure 9 shows the product of contents of registers H1
and H2. Here, pi,j = ai,j × bj . As the elements pi,j ’s are
now residing in different blocks, they are to be brought
together in proximity for adding them to compute the
elements of vector C. Figure 10 shows the contents of the
meshes after n-steps of horizontal data movements along
the inter-block links of MM network. In both Figs. 9 and
10 only 2nd row of meshes and their horizontal inter-block
links are shown.

The contents of each mesh now can be added in
2(n− 1) steps of data movements and additions within
the mesh to get the components of vector C in (n− 1, 0)

9

Figure 6. Generation of 0th row using row element and row multiplier of a block.

processor of all the blocks. One single step of data move-
ment along the vertical inter-block link will bring the resul-
tant C vector in the upper boundary of the MM network.

Now, it is evident from Fig. 6 that the number of
multiplication steps is 3 and number of data movements
steps is 3+ 3=6, for generation of the first row, whereas,
Fig. 7 shows that three steps of multiplication and seven
data movement steps are required for the generation of
other rows. Generation of pi,j ’s in Fig. 9 will involve
single step of multiplication. Four steps of horizontal data
movements are required to get all the elements as shown
in Fig. 10. Six data movement steps and additions are
required to get the vector C. Finally, single step of data
movement along vertical inter-block link bring the C vector
in the upper boundary of the MM network.

7.4 Parallel DFT Computation of Higher Order
Matrices

The approach is same as that of parallel implementation of
linear transformation of higher order matrices as discussed
in Section 6.4. For k=2r, for positive integer value of
r, k2 sub-matrices of A can be generated from the values

generated in the algorithm PDFT for each block of MM by
properly transforming according to (6).

8. Comparative Study of Time Complexities of
Parallel DFT in MM and Other Architectures

The time complexities of parallel DFT computation in
various architectures have been tabulated in Table 2.

The comparative study shows that our algorithm per-
forms better than 2Dmesh. For the purpose of comparison,
we are considering same mesh size (n×n) and same total
number of nodes (n4) for both MM and multi-dimensional
mesh. The diameters of MM and 4D mesh are 2n and
4(n− 1) respectively, and degree of each node in MM is
uniformly 4, whereas the node degree of each internal node
is 8 for 4D mesh. If smaller meshes are used to construct
the multi-dimensional mesh, the node degree will increase.
Moreover, the time complexity of proposed DFT computa-
tion in MM outperforms multi-dimensional mesh for practi-
cal sizes of meshes, that is, mesh sizes less than 2048× 2048.

In hypercube, better time complexity is achieved
through its high node degree and number of links with
increasing dimensions.

10

Figure 7. Input of vector B and generation of other rows using column multiplier.

Fast implementation of DFT algorithm on architecture
with constant degree processors is also an area of
recent research interest. A number of parallel algorithms
developed for DFT/FFT in different architectures can be

found in the literature [5]–[9], [11], [14], [30]–[32], [34], [35],
[36]–[38]. Parallel implementation of Fourier transform has
been discussed and implemented in mesh [30]–[32], binary
tree [19] and star graph [34].

11

Figure 8. Contents of H1 registers of block M(1, 2) where
x=ω2 =(1− i)/

√
2 and 33= cos(π/8)− i× sin(π/8).

Bliss and Julien [31] have suggested four architectures
using the fast two-dimensional (2D) algorithm for DFT
that achieve the maximum throughput per chip area. The
first two use N -element 2D meshes requiring N +2N3/2

multiplications and 1+2
√
N periods per DFT. The third

and fourth architectures both use pipelined DFT blocks
of length

√
N connected by a pipelined matrix transpose.

The third uses systolic 2D meshes for the short DFTs with
period

√
N. Gertner and Rofheart [35] have proposed a par-

allel algorithm for the 2D DFT computation which elimi-
nates inter-processor communications and uses only O(N)
processors. Shousheng and Torkelson [32] have shown that
a simple planar 2D systolic array having N =M2 process-
ing elements can be used to compute DFT of size N in
2M +1 steps of pipelined operations, achieving the area-
time complexity AT 2 =O(N2 log3 N). They have used an
extension of the common factor algorithm. This architec-
ture has also very good expansibility that a 2t N size DFT
transform can be computed on 2t nearest-neighbour con-
nected N -size arrays with reloaded twiddle factors, which

Figure 9. The product pi,j = ai,j × bj in the algorithm PDFT computed by multiplying the contents of H1 registers by the
content of corresponding H2 registers in second row of meshes in MM for n=4.

Figure 10. The partial product in the algorithm PDFT after n data movement steps along the horizontal inter-block links in
MM for n=4.

makes it more suitable for VLSI implementation of DFT
transform in various practical sizes.

Zhang and Yuns [33] have shown that using n-
dimensional mesh parallel DFT computation can be
achieved in O(log2 n) time using N=nd processors.

The interconnection pattern between the processors
in multi-dimensional mesh and MM is entirely different
although the basic building blocks are 2D meshes in both
the cases. Considering n×n 2D mesh as the basic building

Table 2
Time Complexities of Parallel DFT Computation in

Various Architectures

Architecture Number Length of the Time

of Nodes Vector to be Complexity

Transformed

2D mesh N N N +2N3/2

[30], [31], [32]

Multi- N N O(log2 N)

dimentional

mesh [33]

Hypercube [34] N (=n!) N O(logN)

Binary tree [19] O(N) N O(N logN)

MM [3] N N0.4 O(N1/4)

Star graph [34] n! n! O(n2)

MM (Proposed) N N1/2 O(N1/4)

12

Table 3
Computation Time for DFT in Mesh, PLT and PDFT in MM

Total Number of Processors=N =n4. Vector Size to be Transformed=n2

Algorithm Fourier Transform in Mesh PLT in MM Where Size of PDFT in MM Where Size of

of Size n2×n2 Each Block is n×n Each Block is n×n

Value of n2 Value of n Value of n

16 64 256 4 8 16 4 8 16

Total addition steps 15 63 255 6 14 30 6 14 30

Total multiplication steps 1 1 1 1 1 1 7 15 31

Total data movement steps 31 127 511 19 39 79 24 48 96

Time complexity O(n2) O(n) O(n)

blocks and total number of elements n4, the four-
dimensional mesh architecture has diameter 4(n− 1) and
degree of each internal node is 8 whereas for MM diameter
is 2n and degree of each node is 4.

It is evident from the table that the time complexity for
parallel DFT computation is minimum for MM network.

9. Experimental Results

The PLT described in Section 6 and PDFT described
in Section 7 using MM have been simulated through C
programs and same input which is transformed using these
programs has been set as input to a parallel DFT in mesh
architecture. In all the cases the output transformed vector
is same. The results of the simulation programs using
different sizes of the input vector are shown in Table 3. MM
used is also of different sizes. As expected the calculated
time complexities matched with that of the theoretical
complexities calculated from the algorithm described in
Sections 6 and 7. The multiplication steps are high for
PDFT as the algorithm generates n2 (n2− 1) elements of
Fourier matrix, whereas in PLT all the n4 elements were
input through the left boundaries of the meshes. For mesh
of size n2×n2, addition and data movement steps are
n2− 1 and 2n2− 1, respectively. These numbers of steps
are high compared to those of PLT and PDFT in MM as
the diameter of mesh is high compared to the diameter
of MM.

10. Conclusion and Future Work

A parallel algorithm for linear transformation of the form
AB =C, where A is a square matrix of order n2 and B,
C are vectors of length n2, is proposed and implemented
in an architecture called MM of n4 nodes of degree 4 and
having diameter 2n. The time complexity of the algorithm
is O(n) (as opposed to O(n2) in case of a simple mesh
having the same number of processors) and the AT 2 value
is O(n6). Then the algorithm is modified for DFT and is
implemented in the MM network in O(n) time. For the
DFT, instead of the whole matrix A, the input is restricted
to only n2 values of the sub-matrix A00 and the rest are
calculated in the algorithm itself by proper manipulation

(using symmetry and redundancies in the definition of the
Fourier matrix A) of these n2 values which takes O(n)
multiplication steps.

As a future work, we may use the generalized MM
network for DFT where we may relax the restriction that
the number of processors should be n4, for some n. The
difference between the number of processors of two succes-
sive MM networks (i.e., for two consecutive values of n) is
(n+1)4−n4, which increases as O(n3). This difference,
can, however, be reduced if, instead of taking n×n meshes
as the constituent blocks, we take m×n meshes for any m,
n≥ 3, arranging mn number of such meshes in the form
of an n×m matrix. The inter-block links can be defined
in the same manner as in Section 4. The diameter of such
a network can be found to be m+n, whereas the total
number of processors is m2n2. The algorithm for DFT can
be suitably restructured to fit into the generalized version
of the MM network.

Acknowledgement

The authors are thankful to the reviewers for their valuable
comments and suggestions. They also express their sincere
gratitude to the faculty members of the Department of
Engineering & Technological Studies, University of
Kalyani, West Bengal, India, where the work has been
carried out with the financial support of PURSE scheme,
DST.

References

[1] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction
to algorithms (Cambridge, MA: MIT Press, 1989).

[2] S.G. Akl, The design and analysis of parallel algorithms (New
York, NY: Prentice-Hall, 1989).

[3] D. Das, M. De, and B.P. Sinha, A new network topology with
multiple meshes, IEEE Transactions on Computers, 48(5),
1999, 536–551.

[4] B.P. Sinha, Multi-mesh an efficient topology for parallel pro-
cessing, Proc. 9th Int. Parallel Processing Symp. (IPPS), Santa
Barbara, CA, 1995, 17–21.

[5] A. Dardalis, D. Andreas, and V.K. Prasanna, Fast parallel
implementation of DFT using configurable devices, Proc. Int.
Workshop on Field Programmable Logic and Applications,
London, 1–3 September, 1997, 314–323.

13

[6] M.V. Aliev, A.M. Belov, A.V. Ershov, and M.A. Chicheva,
Parallel algorithms for a hyper complex discrete Fourier trans-
form, Pattern Recognition and Image Analysis, 15(1), 2005,
110–112.

[7] Z.C. Xiang, H.G. Qiang, and H.M. He, Some new parallel fast
Fourier transform algorithms, Proc. Sixth Int. Conf. on Par-
allel and Distributed Computing Application and Technology
(PDCAT), 5–8 December, Dalian, China, 2005, 624–628.

[8] R.A. Al Na’mneh, W.D. Pan, and S.M. Yoo, Parallel imple-
mentation of 1-D FFT without inter process communication,
International Journal of Computers and Application, 29(2),
2007, 180–186.

[9] S. Gurevich, R. Hadani, and N. Sochen, The finite harmonic
oscillator and its applications to sequences, communication
and radar, IEEE Transactions on Information Theory, 54 (9),
2008, 4239–4253.

[10] J.M. Cooley and J.W. Tukey, An algorithm for the machine
computation of the complex Fourier series, Mathematics of
Computation, 19, 1965, 297–301.

[11] B.P. Sinha and A. Mukherjee, Parallel sorting algorithm us-
ing multiway merge and its implementation on a multi-mesh
network, Journal of Parallel and Distributed Computing, 60,
2000, 891–960.

[12] B.P. Kundu, M. De, and B.P. Sinha, Wormhole routing for
complete exchange in multi-mesh, Proc. 4th Int. Conf. on
High Performance Computing (HIPC), Bangalore, India, 1997,
432–437.

[13] M. De, D. Das, and B.P. Sinha, An efficient sorting algorithm
on the multi-mesh network, IEEE Transactions on Computers,
46(10), 1997, 1132–1137.

[14] J.H. Reif and A. Tyagi, Efficient parallel algorithms for optical
computing with discrete Fourier transform primitive, Applied
Optics, 36(20), 1997, 7327–7340.

[15] N. Afroz, S. Bandyopadhyay, R. Islam, and B.P. Sinha, On the
implementation of links in multi-mesh network using WDM
optical networks, Proc. 7th Int. Workshop on Distributed
Computing, Kharagpur, India, December 27–30, 2005 (LNCS
3741), 183–188.

[16] A. Sen, S. Bandyopadhyay, and B.P. Sinha, A new architecture
and a new metric for lightwave networks, Journal of Lightwave
Technology, 19(7), 2001, 913–925.

[17] S. Murthy and A. Sen, A peer-to-peer network based on multi-
mesh architecture, Global Telecommunications Conf., 7, 1–5
December, San Francisco, USA, 2003, 3840–3844.

[18] I.D. Scherson and S. Sen, Parallel sorting algorithm in two-
dimensional VLSI models, IEEE Transactions on Computers,
38(2), 1989, 238–249.

[19] J. Ja Ja, An introduction to parallel algorithms (MA: Addition-
Wesley, 1992).

[20] A. Gupta, Mesh based algorithm for finite exponential function,
Proc. 2nd Int. Conf. on Advanced Computing and Communi-
cation Technologies, Rothak, Haryana, India, 2012, 328–330.

[21] Q. Jianxian, A time-space optimal parallel sorting on a hy-
percube, University Journal of Natural Sciences, 1(3/4), 1996,
465–469.

[22] E. Dekkel, D. Nassimi, and S. Sahni, Parallel matrix and
graph algorithms, SIAM Journal on Computing, 10(10), 1981,
657–673.

[23] C.P. Katti and R. Kumari, A new parallel algorithm for La-
grange interpolation on a hypercube, Computers & Mathemat-
ics with Applications, 51(6–7), 2006, 1057–1064.

[24] E.T. Leighton, Introduction on parallel algorithms and archi-
tectures: Array, trees and hypercubes (San Mateo, CA: Morgan
Kaufmann, 1992).

[25] D.K. Mallick and P.K. Jana, Parallel prefix on mesh of trees and
OTIS mesh of trees, http://nguyendangbinh.org/proceedings/
IPCV08/Papers/PDP4269.pdf.

[26] P.K. Jana and B.P. Sinha, Fast parallel algorithm for polyno-
mial interpolation, 29(4), 1995, 85–92.

[27] C.D. Thompson and H.T. Kung, Sorting on a mesh connected
parallel computer, Communications of the ACM, 20(4), 1977,
263–271.

[28] A. Aggarwal, A comparative study of Xtree, pyramid and
related machines, Proc. 25th Annual Symp. on Foundation
of Computer Science, October, 1984, IEEE, New York, NY,
89–99.

[29] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction
to parallel Computing, 2nd ed. (Boston, MA: Addison Wesley,
2003).

[30] J.P. Strong, The Fourier transform on mesh connected pro-
cessing arrays such as massively parallel processors, Proc. 1985
IEEE Workshop on Computer Architecture for Pattern Anal-
ysis and Image Database Management, CAPAIDM, Miami
Beach, Florida, 1985, 190–196.

[31] W.G. Bliss and A.F. Julien, Efficient and reliable VLSI al-
gorithms and architectures for the discrete Fourier transform,
Proc. Int. Conf. on Acoustics Speech and Signal Processing,
2(3–6), 1990, 901–904.

[32] H. Shousheng and M. Torkelson, A systolic array implementa-
tion of common factor algorithm to compute DFT, Int. Symp.
on Parallel Architectures, Algorithms and Networks (ISPAN),
December 14–16, Kanazawa, Japan, 1994, 374–381.

[33] C.N. Zhang and D.Y.Y. Yuns, Multidimensional systolic net-
works for discrete Fourier transform, Proc. ISCA ’84 11th
Annual Int. Symp. on Computer Architecture, Ann Arbor, MI,
June, 1984, 215–222.

[34] P. Fragopoulou and S.G. Akl, A parallel algorithm for com-
puting Fourier transform on the star graph, Transaction on
Parallel and Distributed Systems, 5(5), 1994, 525–531.

[35] I. Gertner and M. Rofheart, A parallel algorithm for 2D
DFT computation with no interprocess communication, IEEE
Transaction on Parallel and Distributed Systems, 1(3), 1990,
377–382.

[36] N. Rakesh, Analysis of multi-sort algorithm on multi-mesh of
trees (MMT) architecture, The Journal of Supercomputing,
57(3), September 2011, 276–313.

[37] W. Bliss and A.W. Julien, Efficient and reliable VLSI algo-
rithms and architectures for the discrete Fourier transform, Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP),
April 3–6, Albuquerque, NM, 1990, 901–904.

[38] F. Qureshi and O. Gustafsson, Generation of all radix-2 fast
Fourier transform algorithms using binary trees, Proc. 20th
European Conf. on Circuit Theory and Design (ECCTD),
August 29–31, Linkoping, Sweden, 2011, 667–680.

Biographies

Somen De did his Ph.D. from
the Department of Physics, Uni-
versity of Kalyani. Presently
he is assistant professor in the
Department of Physics, Bijoy
Krishna Girls’ College, Howrah,
India. He has published more
than 10 research papers in inter-
national journals.

Amit Datta received his B.Tech.
and M.Tech. degrees in I.T. from
University of Kalyani in 2003 and
University of Calcutta in 2005,
respectively. Presently, he is a
Ph.D. research fellow at Depart-
ment of Engineering & Technolog-
ical Studies under University of
Kalyani. His research interest is
on parallel computing & architec-
tures and fault-tolerant comput-
ing. He is also a member of IEEE.

14

Asit B. Bhattacharya did his
Ph.D. from the Department of
Physics, University of Calcutta
and Post-doc from the Mas-
sachusetts Institute of Technol-
ogy, MA, USA. Presently he is
a professor in the Department of
Physics, Kalyani University and
a fellow of the Institute of Elec-
tronics and Telecommunication
Engineers. He worked in close
collaboration with the leading

laboratories like Lincoln Laboratory, Milestone Hill Ob-
servatory, Earth, Atmosphere and Planetary Sciences of
MIT, MA, USA. He has published more than 200 research
papers in international journals and guided many Ph.D.
students. He is a reviewer of many scientific journals and
his major field of work has been in antenna, astronomical
radio spectrograph, solar-terrestrial physics and remote
sensing. He is the author of 14 text books on science
and engineering topics which includes astronomy and as-
trophysics (Infinity Science Press, Hingham, MA, USA),
“Search for Extraterrestrial Intelligence”, “Particle Physics
as a building block of the Universe” and “The Ionosphere
and its Transient Variations” (Lap Lambert Academic
Publishing, Germany).

MallikaDe received herB.Sc. de-
gree in Physics fromCalcutta Uni-
versity in 1973 and the M.Sc. de-
gree in AppliedMathematics from
Jadavpur University in 1976. She
received the Advanced Diploma
in Computer Science and M.Tech.
in Computer Science in the year
1980 and 1985, respectively, from
Indian Statistical Institute, Cal-
cutta. Her Ph.D. degree in Engi-
neering was awarded in the year

1997 from Jadavpur University. She is currently a senior
faculty of the Department of Engineering & Technologi-
cal Studies at University of Kalyani, where she is serving
for last 28 years as faculty. Her research interest includes
parallel algorithms & architectures, fault-tolerant comput-
ing, image processing, soft computing and quantum cellu-
lar automata. She has authored/coauthored 35 refereed
journal articles and more than 30 conference papers. She
has worked as paper reviewer for few international confer-
ences such as advanced computing & communication, high
performance computing and Asian test symposium.

15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

