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ABSTRACT  
Artificial rehabilitative aids to enable object recognition 

to the disabled as well as robot aided and telenavigating 

systems require sending feedback signals to the human 

operator to enable accurate control. This work is a 

preliminary step towards the development of such systems 

using a Brain Computer Interface. In this work 

Electroencephalography (EEG) responses to tactile and 

vibrotactile stimulations, as alternate sensory means than 

vision, for recognizing ten digits, 0 to 9, has been studied. 

During tactile stimulation subjects are instructed to 

palpate digits embossed on plain surfaces, while 

vibrotactile stimulus is provided by vibrating motors 

attached to the subjects’ skin over their clothing in 

specific patterns resembling the seven segment display of 

digits. EEG analysis involves feature extraction and 

classification into the respective digit classes. Correlation 

between the EEG features from the two stimulations is 

investigated and a nonlinear correlation is found to exist 

between them. A maximum classification accuracy of 

73.17%, average over ten digit classes and all subjects 

under experimentation is observed for vibrotactually 

stimulated EEG analysis. 
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1. Introduction 
 

Humans process various sensory stimuli to recognize 

objects and perceive the external world. The common 

sensory channels for object perception include vision, 

touch and hearing. In many neuro-motor or sensory motor 

diseases, the sense of object perception is lost or severely 

hampered because of the damage in any of the sensory 

abilities. Brain Computer Interface (BCI) based control of 

prosthetic aids, to assist the disabled, are associated with 

some form of feedback to the user for accurate control and 

communication [1-3]. BCI based assistance can be used in 

telenavigation or teleoperation using robotic aids as well, 

where object recognition by robots need to provide a 

feedback to the human operator in the form of a sensory 

stimulus. Persons in need of a rehabilitative aid may have 

vision/hearing problems or paralysis, as in locked-in 

syndrome, such that the common sensory channels may 

not be usable for feedback. Again, in situations where 

object recognition is necessary in a multitasking 

environment such as gaming, the visual/auditory channels 

of the operator may be engaged in other activities. In such 

situations, tactile and vibrotactile [3-5] stimulations have 

proved to be an effective way of feedback in BCI 

problems. While tactile stimulation is simply the effect of 

touch, vibrotactile stimulation involves providing vibration 

patterns on the surface of the skin resembling the 

concerned objects.  

Researchers have shown that objects can be identified 

from brain responses in the form of Electroencephalogram 

(EEG) [6], to visual and/or tactile stimuli depending on 

different parameters like shape, size, texture etc. [7-11]. 

Several receptors on the human skin can perceive 

mechanical vibrations and convey precise information to 

the central nervous system at a very high speed [5,12]. 

These include the slow adapting Merkel’s receptors and 

the rapid adapting Meissner’s corpuscles that provide high 

spatial resolution [5], Pacinian corpuscles that have large 

receptive fields and are quickly adapting [12] and the slow 

adapting Ruffini endings. Thus vibrotactile stimulus can 

also prove to be an effective technique for object 

identification. Various parameters determine the 

perception of vibrotactile stimulation; including the body 

part used, the frequency, the intensity (in terms of force) as 

well as the duration of vibration [5]. Vibrotactile 

stimulation based devices have been developed as 

alternative sensory means [13], for bypassing the necessity 

of audio feedback aiding the visually impaired with Braille 

knowledge [14], studying users’ sensitivity to tactile 

apparent motion speed [15], spatial guidance [16], 

distinction of alphanumeric letters on the basis of 

vibrotactile stimulations [17] etc.  

Based on the evidences of object recognition from 

brain signals upon suitable stimulation as mentioned 

above, the present work proposes to identify digits (0-9) 

from brain responses to tactile as well as vibrotactile 

stimulations. Tactile stimulations are provided in the form 

of plain surfaces embossed with the ten digit patterns those 

subjects have to palpate (explore dynamically with their 
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fingertips). Vibrotactile stimulation is arranged by 

attaching six vibrating DC motors on the subjects’ skin 

surface over their clothing which vibrate in specific 

patterns so as to provide the sense of the ten digits 

according to the seven segment display format. While 

these stimulations are provided separately, the subjects’ 

EEG signals are acquired, pre-processed for noise removal 

and are subjected to feature extraction and classification to 

recognize the ten digit classes, due to either type of 

stimulations. For EEG analysis, Adaptive Autoregressive 

Parameters [18-19], Successive signal differences [20] and 

Wavelet Transform [21-22] based features have been used 

along with Principal Component Analysis [29-30] for 

feature dimension reduction. Classification has been 

carried out using different standard pattern classifiers [23-

24].  A nonlinear correlation has been revealed between 

the EEG features of the tactile and vibrotactile 

stimulations. 

The rest of the paper is structured as follows. Section 

2 covers the methodology followed with descriptions of 

the tools and techniques used. The experiments conducted 

have been elaborated in section 3. The results are 

discussed in section 4. Finally, in section 5 conclusions are 

drawn and the future scopes of work are stated. 

 

 

2. Methodology 
 

This section highlights the methodology followed along 

with the details of the various tools and techniques used 

for EEG processing and classification. 

 

2.1 EEG Acquisition and Pre-Processing 

 

EEG signals are acquired using a 21 channel Neurowin 

system [31] from Nasan Medical, at a sampling rate of 

250Hz. For EEG acquisition, selection of the EEG 

modality, electrode positions and the frequency band are 

important factors.  

 

2.1.1 Modality  

 

Through a series of experiments, it is observed that 

followed by the tactile/vibrotactile stimuli presentation 

there is a desynchronization of the EEG signals followed 

by their synchronization. Thus event related 

desynchronization/synchronization (ERD/S) [7], [25] is 

considered as the EEG modality in the present work.  

 

2.1.2 EEG Electrode Location and Frequency Band 

 

Touch perception is related to the primary somatosensory 

cortex [9, 25-26]. Integration of the thought process, 

attention, and memory tasks is often related to the frontal 

lobe [27]. EEG signals from the parietal, frontal and motor 

cortex are of interest, which are acquired using scalp 

electrodes P3, P4, Pz; F3, F4, Fz; C3 and C4 placed 

according to the International 10-20 electrode system [25] 

as shown in Figure 1. 

 
Figure 1. Electrode placement showing selected electrodes 

in green 

 

EEG signals for somatosensory perception are 

especially significant in the theta band [28]. On 

performing Fourier Transform on the tactile as well 

vibrotactually stimulated EEG signals it is observed that 

maximum signal power content does not surpass the 

frequency range of 1-30Hz. An elliptical band pass filter, 

(because of its steeper transition characteristics compared 

to other types of filters) with bandwidth of 1-30Hz is 

implemented for extracting the denoised EEG signals.  

 

2.1.3 Spatial Filtering 

 

To eliminate inter-channel interference, spatial filtering [7] 

is implemented through common average referencing. In 

this technique, for data from each EEG channel, that from 

all the channels equally weighted are subtracted. This 

eliminates the commonality of the data from that channel 

with the rest and preserves its specific temporal features.  

 

2.2 Feature Extraction 

 

To represent the EEG signals with reduced dimension 

while producing maximum discrimination between the 

various digit patterns, different features are extracted from 

the pre-processed EEG.  

 

2.2.1 Adaptive Autoregressive Parameters 

 

Autoregressive Parameters and Adaptive Autoregressive 

Parameters (AAR) are time-domain features for EEG 

analysis [18-19]. In AAR model, the AR parameters for 

representing EEG signals are estimated in a time-varying 

manner, as explained by (1) and (2), where the index j is 

an integer to denote discrete, equidistant time points, y(j) is 

the j
th  

instance of the signal, p is the order of the AAR 

model, y(j-i) with i = 1 to p are the p previous sample 

values, ai,j are the time-varying AR model parameters, and 

x(j) is a zero-mean-Gaussian-noise process with time 

varying variance σ
2
x(j). 

 

1, ,( ) ( 1) ... ( ) ( )j p jy j a y j a y j p x j       (1) 

 

  
2( ) {0, ( )}xx j N j   (2) 

 

There are various algorithms to estimate the AAR 

parameters such as, Least Mean Squares, Kalman filtering, 
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Recursive AR or Recursive Least Squares [18]. After trials 

with different model orders, it is found that the best results 

are obtained in most cases with order 6 and hence AAR 

order 6 is computed, using Kalman Filtering as the 

estimation algorithm. The AAR parameters are adapted 

with an update coefficient of 0.0085, set heuristically. 

 

2.2.2 Wavelet Features 

 

Wavelet transform [21] provides both frequency as well as 

time-domain analysis of a signal at multiple resolutions. In 

Discrete Wavelet Transform signals are passed through 

filters, high pass and low pass, in several stages. At each 

stage i, each filter output is down sampled by two to 

produce the approximation coefficient Ai and the detail 

coefficient Di. The approximation coefficient is then 

decomposed again, to get the approximation and detail 

coefficients of the subsequent stages. The desired level of 

transform and which coefficients are to be selected as the 

features are determined by the required frequency range. 

Wavelet coefficients as features generally result in high 

dimensional feature spaces and hence suitable feature 

selection techniques are used there. In this work Principal 

Component Analysis (PCA) has been used to reduce the 

feature space dimension and select the best features based 

on eigen value decomposition [29-30].  

Apart from the use of the wavelet coefficients directly 

as features, some features on the wavelet coefficients can 

be computed that produce smaller feature space. This 

scheme is termed as a ‘lifting scheme’ in literature [22]. 

Seven features (WLift) have been computed on the 

wavelet coefficients that resulted in good discrimination 

between the classes. These are four statistical features, 

namely Mean, Standard Deviation, Skewness and 

Kurtosis; and Power, Entropy (WE) and Recoursing 

Energy Efficiency (WREE) of the wavelet coefficients. 

WREE is a measure of the ratio of the energy of the 

wavelet coefficients of a particular frequency band to the 

total energy content of all levels and is given by (3) where 

Ei denotes the energy of the i
th

 band/level of 

decomposition and Etotal is the total energy of all the bands. 

Entropy is a measure of the information content in the 

signal. WE is calculated using (4) where WREEi is the 

WREE at level i, for a total of M levels of decomposition. 

i
i

total

E
WREE

E
     (3) 

1

log( )
M

i i i

i

WE WREE WREE


     (4) 

In order to evaluate the wavelet coefficients in the 

frequency range as determined by the EEG power 

spectrum, wavelet approximate coefficients (WAPP) at the 

third level of decomposition are computed as features 

using Daubechies (order 4) mother wavelet. WREE and 

WE are computed with respect to this level of 

decomposition. For wavelet coefficients the number of 

selected features per electrode is fixed at 50 (tactile EEG) 

and 300 (vibrotactile EEG) using PCA. 

2.2.3 Signal Differences 

 

In order to capture the variations in the temporal 

characteristics in the EEG signals, the differences of the 

signal amplitudes at consecutive instants of time have been 

considered as time domain features [20]. First and second 

order differences (D1 and D2) have been considered in this 

work. For a discreet EEG signal y(j) at the j
th

 instant, these 

are computed using (5) and (6), where y
/
(j) and y

//
(j) denote 

the first and  second order differences respectively.  

 

( ) ( 1) ( )y j y j y j        (5) 

 

( ) ( 1) ( )y j y j y j         (6) 

 

Such feature spaces have dimensions in the order of 

L-1 and L-2 respectively for a length of EEG of L and as 

the length L is usually a large number because of the large 

number of EEG samples produced per second, the feature 

dimensions are reduced using PCA [29-30] to obtain the 

best features and the number of selected features is fixed at 

800 (tactile EEG) and 2000 (vibrotactile EEG) per 

electrode, by trial and error, on observing the best 

performance on an average for each type of stimulation. 

Feature extraction is performed for each electrode 

separately and then these are normalized and concatenated 

to obtain the total feature space in each case. 

Normalization is done by (7) where fi,j denotes the j
th
 

instance of the i
th

 feature and fi,max and fi,min denote the 

maximum and minimum values of that feature 

respectively. 

, ,min

,

,max ,min

i j i

i j

i i

f f
f

f f





    (7) 

 

2.3 Classification 

 

Standard pattern classification algorithms are used to 

discriminate the stimulated EEG responses, namely, 

Support Vector Machine (SVM) [23-24] Radial Basis 

Function (RBF) as well as Polynomial kernel, k-Nearest 

Neighbour (k-NN) [23-24] and Naïve Bayes classifier [23-

24]. SVM is used with RBF and Polynomial kernels as 

linear SVM is generally not suitable for BCI problems 

[23]. All the algorithms are based on supervised machine 

learning principle, that is, the classifiers are trained on a 

sample dataset and then implemented on the test dataset. 

The training and testing data sets are determined by 5-fold 

cross-validation. Classification is carried out in a one-vs.-

all basis taking each digit as one class and the rest as the 

other class. SVMs have been tuned with a cost value of 

100, determined experimentally. The width of the 

Gaussian for RBF kernel is taken as 1 and the order and 

constant term of the polynomial as 2 and 0 respectively for 

polynomial kernel. These values are determined after 

noting the best performances after several trials. The Naive 

Bayes classifier is used with the assumption that the 

features have a normal distribution whose mean and 
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covariance are learned during the process of training. For 

kNN, experiments are conducted by varying the distance 

metric as well as the value of ‘k’ or the number of nearest 

neighbours to be considered. In most of the cases 

Euclidean distance with k=3 produced the best results and 

hence these parameters are used along with Majority 

Voting as the voting mechanism to determine the class of 

the test samples.  

Classification accuracy (CA), Sensitivity and 

Specificity as calculated from the confusion matrices [32] 

are considered as metrics for performance analysis. All 

these metrics should approach 1 for good classification. 

The Receiver Operating Characteristics (ROC) [32] 

denotes the variation of the true positive rate (Sensitivity) 

in the y-axis with the false positive rate (1 - Specificity) in 

the x-axis. The area under the ROC curve is termed as 

AUC [32] and is also used as a performance metric.  

 

2.4 Correlation Analysis between EEG Responses from   

Tactile and Vibrotactile Stimulations 

 

Though instances of EEG based object recognition from 

tactile stimulus exists [10], there is no such evidence in 

case of vibrotactile stimulation to the best of the authors’ 

knowledge. To prove that vibrotactile stimulation can 

generate patterns specific to objects that can be recognized 

from EEG, a relation is tried to establish between the 

features from tactually and vibro-tactually stimulated 

EEG. From the computation of Pearson’s linear correlation 

coefficient [33], no conclusive proof of the existence of a 

linear relation can be obtained. Hence a nonlinear 

correlation [34-35] between the features is investigated by 

computing non-linear correlation coefficient (NCC).  

 

 

3.   Experimental Paradigm 
 

3.1 Material Preparation for Tactile Stimulus 

 

Plain surfaces (2.5cm×2cm) are embossed with hard 

acrylic paint that produces digits 0 to 9 with depth of about 

1mm in seven segment digital display format (Figure 2). 

The digits span 2cm and 1cm respectively along the length 

and breadth. The top left corner of each surface is 

embossed with a dot for keeping track of the orientation of 

the digit. Subjects palpate these embossed digits repeatedly 

to understand them during tactile stimulus presentation. 

 

 
Figure 2. Embossed digits 

 

3.2 Vibrotactile Pattern Generation 

 

Vibrotactile displays can be made from vibrating DC 

motors [36]. In this work, six coin vibration motors, named 

M1 to M6, as shown in Figure 3 are placed on the back of 

subjects following specific arrangement, similar to seven 

segment display format, so as to represent the ten digits 0 

to 9. The small DC motors used in the work have 

unbalanced loads in their rotors, whose rotation cause the 

motors to vibrate upon electrical excitation [36]. The 

intensity of vibration is proportional to the input voltage 

while the output frequency is constant. In this study the 

distance between every motor pair is set to 60mm to 

produce better discriminability in vibration patterns, as 

assessed from the subjects’ response. As such amount of 

distance upon a flat surface is conveniently available on 

the subject’s back; we have selected it for motor 

placement. Though the spatial resolution of the back is 

better than 60mm [37], this distance is necessary to 

provide correct discrimination between the digit patterns in 

the present context of experimentations. In order to 

provide vibrotactile sensation corresponding to the 10 

digits, the motors are activated sequentially according to 

the patterns shown in Figure 4. 

6
0

m
m

 

Motor Specifications: 

Dimensions: 5mm radius and 2mm thickness

Voltage rating:  1.5V - 3.3V (max.)

Current rating: 36mA - 80mA (max.)

Rated Voltage: 3V DC

Speed: 9000rpm @rated voltage

Vibration Frequency: 30Hz @rated voltage

M1 M2

M4 M3

M5 M6

(a) (b)

60mm

 
Figure 3. (a) DC motor used in the experiments and (b) 

Arrangement of motors in seven segment display format 

 
M1 M2 M3 M6 M5 M4

M2 M3 M6

M1

M1 M2 M3 M4 M5 M6

M1 M2 M3 M4 M3 M6 M5

M1 M4 M3 M2 M3 M6

M2 M1 M4 M3 M6 M5

M2 M1 M4 M3 M6 M5 M4

M2 M3 M6M1

M2 M1 M4 M3 M6 M5 M4 M3 M2

M2 M1 M4 M3 M6 M5M2 M3

 
Figure 4. Vibration sequence of the motors for generating 

vibrotactile stimulus corresponding to the 10 digits 

 

Square pulses are generated to actuate the vibration 

motors in specific sequence and timing to ensure proper 

vibrotactile display of the digits to the subjects. The delay 

between onset of consecutive square pulses (TD), the on-

duration of a particular square pulse (TON), as well as the 

spatial arrangement of the vibrating motors, control the 

feeling of the stimulus to be continuous and smooth such 

that the necessary patterns are properly conveyed and 

understood [38]. For generating these square wave 
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patterns, a general purpose microcontroller unit (MCU), 

the AtMega16 [39], a microcontroller with an 8-bit 

embedded processor, enclosing various peripheral features 

has been used. The processor is operated at a frequency of 

8MHz and programmed prior to experimentation in order 

to set the values of durations of delay (TD) and overlap (TI) 

to 324ms and 107ms respectively, and hence TON= TD+ TI 

is 431ms. These values are set by trial and error to make 

the subjects understand the patterns properly. Input is 

provided to the MCU in the form of on/off switches to 

indicate the sequence of pattern to be generated, i.e. for 

each of the 10 patterns there is a switch. For each pattern 

the corresponding combination of the control signals are 

fired. 

An example of control signal generation for digit-1, 

depicting a series of square wave pulses is illustrated in 

Figure 5. The motors are actuated in the form of a 

‘Delayed Chain Sequence’. First, the motor M2 is turned 

on followed by a delay of TD before turning on the next 

motor, (i.e. M3, in this example). After a delay of TI, (TI 

denoting the overlap duration between two consecutive 

motors), control for M2 is turned off.  The next motor, i.e. 

M6, is turned on TD delay after turning on motor M3. This 

sequence is followed, i.e. each control is turned on, and 

after TD delay the next control is turned on, the previous is 

kept on for another TI delay. When all the motor controls 

required for the pattern are switched on once, an epoch 

ends and is equal to d= (NMC+1)*TD+TI where NMC is 

the number of motor controls required for that pattern. A 

cycle is of duration 4*d. At the end of the first cycle, a 

delay is applied and the cycle is repeated for a second 

time. The values of TD and TI are constant however, the 

duration of vibration for a particular digit (0 to 9) is 

dependent upon the number of motors necessary for that 

particular digit pattern generation. 

The square wave control signals generated by the 

MCU need to be power amplified before they can actually 

drive the motors. The interfacing of each of the MCU 

generated signals with the respective motors is done using 

a transistor based driver circuit. Each driver circuit draws 

power from a 3.5 V voltage regulator and provides outputs 

in the range 3-3.2V and 30-78mA which lie within the 

voltage and current specifications of the motors. 

TD TI

TD

M2

M3

M6

TI

Epoch = d

TD

TD

TI

Cycle = 4*d

Timescale  
Figure 5. Timing diagram for generation of pattern for ‘1’ 

 

3.3 Subjects 

 

Eight healthy subjects, four male and four female, in the 

age group 25±3 years, participate in the experiments after 

signing consent forms. 

3.4 Stimulus Presentation 

 

The presentation of stimulus follows the sequence depicted 

in Figure 6(a). Figure 6(b) shows the experimental setup 

for vibrotactile stimulation. 

Duration (Seconds)

BL BE S MA

10 2 5 / 28 5

BL : Blank at the beginning of the Stimulus

BE : Beep Sound to Alert Subject for Stimulus

S : Stimulus (5s for Tactile/28s for Vibrotactile)

MA : Manual Assesment of Subject’s Response

R : Rest Period before the next Pattern

(b)(a)

R

5

EEG

6 Vibrating MotorsMCU 

 
Figure 6. (a) Stimulus pattern and (b) Experimental setup 

for vibrotactile stimulation 

 

Data is acquired from the subjects in blindfolded 

condition. Ten seconds of rest is used to bring the EEG 

signals to the base level at the beginning. For each sample 

a beep sound alerts the subject of the start of the stimulus. 

Next the digit is presented to the subject either in the form 

of tactile stimulation by embossed surface patterns or by 

vibrotactile stimulation using the vibrating motors. From 

the subjects’ feedbacks it is found that 5 seconds is 

sufficient for any of the embossed digit recognition from 

tactile stimulus. For the vibrotactile stimulus, taking 

TD=324ms, TI=107ms, the time required for pattern ‘8’ is 

the largest, (as it requires the maximum number of motor 

controls) and a little less than 28 seconds. The stimulus 

duration, fixed at 28 seconds, is kept constant for all 

patterns. In case of the other patterns that complete epochs 

before that of ‘8’, the number of repetitions is increased in 

such a way that the stimulus duration remains the same. At 

the end of the stimulation each subject is instructed to say 

the digit that he/she understood from the stimulation for 

manual assessment of the subject’s understanding. A 

period of 5 seconds of rest then precedes the pattern for the 

next sample. For tactile stimulation, an instance is of 5 

seconds duration. For vibrotactile stimulation the duration 

of each stimulus is longer. From each stimulus of 28s 

duration, EEG data of as many instances as the number of 

repetitions of a vibration cycle, are acquired using 

windows of appropriate lengths. In each type of the 

stimulations, 10 instances of each class of data acquired 

from each subject are processed.  

 

 

4. Results and Discussions 

 
4.1 Classification Results 

 

The one vs. all classification accuracies of each digit class 

D for tactile and vibrotactile EEGs are reported in Table 1 

and Table 2 respectively. In all the tables, the mean 

classification accuracy (CA) and the standard deviation SD 

(in parenthesis) over the 8 subjects are shown.  

 

271



Table 1 

Mean CA in %  (±SD) from Tactile Stimulated EEG 

Df 
Features 

AARa WAPPb WLiftc D1d D2e 

0 
71.25 
(±0.06) 

66.00 
(±0.03) 

72.75 
(±0.05) 

63.25 
(±0.03) 

68.50 
(±0.04) 

1 
74.75 

(±0.04) 

69.25 

(±0.04) 

73.00 

(±0.05) 

65.25 

(±0.03) 

70.25 

(±0.03) 

2 
68.75 
(±0.08) 

67.50 
(±0.04) 

69.25 
(±0.09) 

64.25 
(±0.03) 

68.75 
(±0.04) 

3 
70.25 

(±0.07) 

65.75 

(±0.03) 

66.25 

(±0.07) 

62.25 

(±0.03) 

69.50 

(±0.03) 

4 
69.25 
(±0.08) 

69.50 
(±0.04) 

73.25 
(±0.05) 

64.75 
(±0.03) 

70.00 
(±0.03) 

5 
70.25 

(±0.06) 

66.00 

(±0.05) 

69.75 

(±0.09) 

64.75 

(±0.03) 

69.75 

(±0.03) 

6 
75.50 
(±0.05) 

68.75 
(±0.04) 

66.50 
(±0.08) 

64.00 
(±0.05) 

69.00 
(±0.04) 

7 
67.50 

(±0.07) 

67.50 

(±0.05) 

72.75 

(±0.05) 

65.25 

(±0.03) 

71.25 

(±0.05) 

8 
74.00 
(±0.04) 

66.25 
(±0.05) 

69.00 
(±0.03) 

61.75 
(±0.03) 

69.25 
(±0.03) 

9 
66.50 

(±0.08) 

65.50 

(±0.06) 

65.75 

(±0.07) 

63.25 

(±0.04) 

68.75 

(±0.04) 
aAdaptive Autoregressive Parameters, bApproximate Wavelet 
Coefficients, cLifted Wavelet Features, dFirst order temporal difference, 
eSecond order temporal difference, fDigit/Class 

 

Table 2 

Mean CA in %  (±SD) from Vibrotactile Stimulated EEG 

Df Features 

AARa WAPPb WLiftc D1d D2e 

0 
73.25 

(±0.02) 

72.50 

(±0.02) 

71.00 

(±0.08) 

72.25 

(±0.06) 

72.00 

(±0.03) 

1 
71.75 

(±0.02) 

74.25 

(±0.02) 

76.25 

(±0.03) 

74.00 

(±0.06) 

72.25 

(±0.03) 

2 
74.50 

(±0.01) 

74.50 

(±0.02) 

68.50 

(±0.07) 

69.25 

(±0.06) 

71.75 

(±0.04) 

3 
73.50 

(±0.01) 

74.25 

(±0.02) 

71.00 

(±0.05) 

68.00 

(±0.08) 

72.75 

(±0.03) 

4 
73.50 

(±0.02) 

74.50 

(±0.02) 

75.25 

(±0.06) 

72.25 

(±0.06) 

71.75 

(±0.04) 

5 
73.00 

(±0.02) 

71.75 

(±0.06) 

71.50 

(±0.09) 

73.25 

(±0.06) 

72.25 

(±0.04) 

6 
73.75 

(±0.02) 

72.00 

(±0.05) 

66.00 

(±0.06) 

69.50 

(±0.07) 

69.75 

(±0.04) 

7 
74.25 

(±0.02) 

72.25 

(±0.05) 

74.00 

(±0.06) 

74.00 

(±0.05) 

71.25 

(±0.04) 

8 
72.50 

(±0.02) 

70.75 

(±0.05) 

69.75 

(±0.06) 

68.50 

(±0.05) 

73.50 

(±0.04) 

9 
71.75 

(±0.02) 

71.00 

(±0.05) 

67.75 

(±0.08) 

69.50 

(±0.08) 

68.25 

(±0.06) 
aAdaptive Autoregressive Parameters, bApproximate Wavelet 
Coefficients, cLifted Wavelet Features, dFirst order temporal difference, 
eSecond order temporal difference, fDigit/Class 

 

From the above tables it is clearly observed that 

vibrotactile stimulation performs better for digit 

classification from EEG on an average, achieving a highest 

of 73.17% accuracy over all classes with AAR features. 

The plots of ROC along with the AUC values for a 

particular class (digit ‘1’), as positive class in OVA 

classification using kNN (k=3) classifier for Subject 1 is 

illustrated in Figure 7. For tactile stimulation the point 

(0.3, 0.6) on the ROC curve indicates sensitivity of 60% 

and specificity of 70% while for vibrotactile stimulation 

the point (0, 0.6) indicates sensitivity 60% and specificity 

100%. 

(a) (b)  
Figure 7. Sample ROC plots with AUC values for class 1 

(Wavelet Approximate Coefficient features) as positive 

class in OVA classification with 3-NN classifier for (a) 

Tactile Stimulus and (b) Vibrotactile Stimulus 

 

4.2 Classifier Performance Assessment 

 

In order to evaluate efficiency of the classifiers used and 

find the best, their performances are compared. Friedman 

Test [40] is conducted to rank the classifiers on the basis 

of mean classification accuracies (CA). The null 

hypothesis states that all the classifiers are equivalent and 

hence their ranks Rj should be equal. The Friedman 

statistic, distributed according to K-1 degrees of freedom is 

given by (8), where, K is the number of classification 

algorithms and N is the number of datasets respectively. 
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Table 3 

Friedman Test 

Classifier /  

EEG Type 
k-NNa 

(k=3) 

SVMb 

RBF 

SVMc 

Polynomial 

Naive 

Bayes 

Tactile 

Mean 

CA (%) 
71.20 70.85 66.35 65.53 

Mean 

Rank 
1.25 1.75 3.25 3.63 

Vibro-

tactile 

Mean 
CA (%) 

73.17 71.30 66.42 69.67 

Mean 

Rank 
1.25 1.88 3.88 3 

ak-Nearest Neighbour classifier, bSupport Vector Machine with Radial 
Basis Function kernel, cSupport Vector Machine with Polynomial kernel 

 

In this work K=4 and N=8 (for 8 subjects). The 

classifiers ranked on the basis of the best mean one vs. all 

(over the different features) classification accuracies over 

all datasets are tabulated in Table 3. Using these ranks,
2

F  

is calculated by (8) to be 16.15 and 19.92 for tactile and 

vibrotactile EEG classifications respectively. These are 

greater than
2

3,0.95 7.815   that indicate the null 

hypothesis to be correct to an extent of 5%. Hence, the null 

hypothesis claiming the equivalence of all classifiers fails, 

and they are ranked by their classification accuracies. 
 

4.3 Non-Linear Correlation Assessment 

 

As the feature dimensions for AAR and WLift are the 

same for both the EEG (tactile and vibrotactile), Linear 

Correlation Coefficient (LCC) and NCC are evaluated for 
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only these features. The absolute values of LCC must be 

near unity for perfect covariance, either positive or 

negative. However, obtained LCC values (feature-wise) 

always lie below 0.5. The average of the feature-wise NCC 

values (evaluated according to the method in [34-35] 

taking 5 ranks), for each of these feature spaces over all 

classes for each subject is above 0.5 denoting the existence 

of a non linear correlation in between the tactually and the 

vibrotactually stimulated EEG. The mean values and the 

standard deviations (in parenthesis) of the LCC and NCC 

over all subjects are reported for 4 randomly selected digit 

classes in Table 4. 

 

Table 4 

LCC and NCC Values for AAR and WLift Features  

Class 
LCCa NCCb 

AARc WLiftd AARc WLiftd 

‘1’ 0.1105 
(±0.22) 

0.1665 
(±0.26) 

0.6558 
(±0.13) 

0.6277 
(±0.08) 

‘3’ 
0.1587 

(±0.42) 

0.1920 

(±0.34) 

0.6196 

(±0.15) 

0.5693 

(±0.08) 

‘5’ 
0.2355 
(±0.37) 

0.3025 
(±0.42) 

0.6276 
(±0.10) 

0.8277 
(±0.16) 

‘7’ 
0.1225 

(±0.45) 

0.2925 

(±0.35) 

0.7213 

(±0.11) 

0.6473 

(±0.07) 
    aLinear Correlation Coefficient, bNon-Linear Correlation Coefficient, 

cAdaptive Autoregressive Parameters, dLifted Wavelet Features 

 

4.4 Assessment of Subjects’ Verbal Responses 

 

The subjects’ verbal responses show commendable 

accuracy in perceiving the tactile/vibrotactile stimulations 

to recognize the 10 digits. The percentage of correct 

responses over all instances of a particular class, average 

over all the subjects is reported in Figure 8.  

 

 
Figure 8. Average percentage of correct verbal responses 

over all instances of a particular class 

 

 

5.   Conclusion 
 

The present work successfully illustrates the classification 

of EEG signals in response to tactile as well as vibrotactile 

stimulations for digit recognition. The study is validated 

from the analysis of results from 8 healthy subjects who 

palpate embossed digits as tactile stimulus and feel 

vibrotactile stimulus in patterns of the seven segment 

display through vibration motors attached on their back in 

blindfolded conditions. Manual assessment of the subjects’ 

verbal responses of the stimuli is also done to determine 

whether the subject could understand the stimulus. It is 

found that individually vibrotactile stimuli are better for 

recognition of digits from EEG.  

The present work can be extended in the future for 

applications in the development of alternative sensory 

means based artificial rehabilitative aids to enable digit 

recognition to the paralyzed/visually disabled. After 

extensive performance evaluation, it can also be useful in 

robot aided telenavigating systems that must send 

feedback signals to a human operator in a multitasking 

environment with the operator’s visual/auditory channels 

engaged in other activities. 
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