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ABSTRACT

Biological pathways are the crucial biological mechanisms
in living cells. The huge volume of genomics and
proteomics data requires computational methods for
predicting or reconstructing pathways. Thus, the application
of protein-protein interaction (PPI) or gene expression
methods is insufficient to discover meaningful pathways.
The integration of PPIs and gene profiles is a better
approach to uncover the regulation of pathway and must be
utilized well. Previous studies on this topic only focus on
the gene level or some limited local groups. This study
presents an approach to finding potential fragments of
active pathways around known pathways between the
various stages of diseases. The proposed method used a
maximum score-based function that integrates genomics
and proteomics information. This method quantified the
strength of gene expression change and the degree of
protein-protein interactions to illustrate global status as
pathway maps. In this study, we use prostate cancer data as
an example to explain which potential fragments of
pathway co-constructed a pathway map of prostate cancer
at different discase statuses. The resulting map shows a
possible correspondence between known pathway and
cancer-related genes that are not on the known pathway.
Comparing distinct status pathway map reveals a global
change of different disease states pathway level. The
pathway map of different disease statuses can provide more
insight in the progress of cancer.
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1. Introduction

Bioinformatics has benefitted greatly from advances in
computer science and biology laboratory techniques, an era
of rapid accumulation of genomic and proteomic
information. For example, the Gene Expression Omnibus
(GEO) is one of several public genomic data repositories
[1]. The GEO includes 12,211 platforms, 1,024,125
samples, 42,673 series and 3,413 datasets. Computational
biology methods can help researchers obtain a better
understanding of complex systems (e.g., protein-protein
interaction network, regulatory pathways or cancer
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mechanisms). A signal transduction pathway is a main
respondence for extracellular excitement. When signal
pathways are involved in activating apoptosis, cell cycle, or
proliferation, they have a comprehensive effect on
upstream/downstream relationships between interacting
proteins/genes. The widely used pathway database is the
Kyoto Encyclopedia of Genes and Genomes (KEGG). The
KEGG is a database that integrates genomic, chemical, and
systemic functional information [2]. The KEGG currently
includes 275,060 pathways. Researchers can access these
online resources easily through their web-based interface.
Early pathway prediction methods, such as PathFinder,
were based only on PPIs. PathFinder is a tool for finding
potential pathways [3] that maps GO annotations onto the
PPI network and applies the association rule method to
identify pathways with high confidence. The recall rate is
78% and precision rate is 40%. When researchers
investigate the importance of gene regulation, they often
used PPIs and gene expression data to reconstruct some
simple signaling networks [4-6]. One method, NetSearch,
tried to integrate PPl and gene expression [4]. This
approach used gene expression data to cluster proteins and
scored protein by clustering, and was capable of
reconstructing MAPK signal pathways. The recall rate for
this approach is 44%, with a precision rate of 24%. Ruth et
al. built PathwayOracle Toolkit. This toolkit applies the
STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) method [7] to score PPI data, and then
adopts Eppstein’s k-shortest algorithm is used for pathway
prediction [8]. Some of the methods mentioned above only
use PPI, which does not sufficiently represent the entire
pathway, and some are limited to reconstructing specific
species. Even approaches that consider gene-level data only
apply that data for clustering, and fail to exhibit true gene
expression values.

Researchers have recently identified many disease markers
by analyzing genome-wide and proteomic-wide information.
However, investigators have shown that many well-known
risk factors may be partial emphases rather than global
mechanisms of disease. To identify a marker for more
complete performance of disease is a challenging. A sub-
network marker is more reproducible than individual
marker genes selected without network information [9].
Most previous methods cannot identify molecular changes
and relationships on the environmental side.



In the past researches of prostate cancer, Yu et al. tested a
comprehensive gene expression analysis on 152 human
samples and compared with normal neighbouring prostate
tissues to confirm an alteration of gene expression in
prostate cancer [10]. Chandran et al. analyzed Affymetrix
oligonucleotide arrays and their results shows that 415
genes are up-regulated and 364 genes are down-regulated in
metastatic prostate tumor [11].

Some studies report genes that are not included in published
pathways as cancer-related genes [12-15]. Thus, researchers
must locate the crux of pathways and their environment and
apply gene-wide and protein-wide data to find the
relationship between those genes and published pathways.
Some activated pathways cut across the published pathways
from those cancer-related genes that are not emphasized on
the published pathways. Therefore, a significant change in
gene level is needed, and the character of cancer can match
this requirement. Cancer is strongly associated with defects
in signal transduction pathways. In cancer tissue, the
function of pathways is uncontrolled and inappropriate.
When a gene shows a significant change, an activated
pathway across this gene allows researchers to infer a
pathway from here, even if they do not know which
pathway is activated.

2. Materials and Methods

This study involves the collection of three kinds of data.
Protein-protein interaction data is used for network
construction. Protein location information prevents an
impossible interaction. Finally, gene expression profile
reveals the strength of change. All of the proteins/genes
used in this study were normalized to a specific symbol
using data downloaded from the Uniprot [16].

To construct a PPI network, protein-protein interaction
information was collected from the Interologous Interaction
Database (I2D) [17]. The data is combined from 6
commonly used PPI databases (BIND, BioGrid, HPRD,
INNATEDB, IntAct, and MINT). We filtered out specific
PPIs (e.g., experimental or predicted data). The remaining
PPIs are non-redundant PPIs and the number exceeds
70,000.

To avoid interactions that do not naturally exist, this study
follows the basic protein targeting pathways to remove
them. It means that all reactions in the results can really
happen in cell. The real reactions happen between
cytoplasm and nucleus, cytoplasm and mitochondria,
cytoplasm and endoplasmic reticulum, cytoplasm and
chloroplast, cytoplasm and peroxisome, endoplasmic
reticulum and golgi apparatus, lysosome and golgi
apparatus, secretory vesicles and golgi apparatus, plasma
membrane and golgi apparatus, plasma membrane and
secretory vesicles, plasma membrane and endosome, and
lysosome and endosome.

A change on gene expression is applied to locate pathways
on the PPI network. More severe changes are needed, and
we collected gene expression data of cancer. Many tumors'
gene data samples are available in the GEO data set. This
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study uses prostate cancer (GDS2545), which is a
metastatic prostate tumors and primary prostate tumors
(Affymetrix Human Genome U95 Version 2 Array) that
includes 12,625 identifiers/genes. That study is that normal
tissue adjacent to the tumor and normal donor tissue also
examined. Specifically, metastasis reflects the most adverse
clinical outcome and provides insight into the molecular
mechanisms underlying the metastatic process. This dataset
is from 18 donor and 64 primary prostate tumor samples.
The stages are divided into four stages. The four stages are
“Stage 1: normal prostate tissue”, “Stage 2: normal prostate
adjacent to tumor”, “Stage 3: primary prostate tumor” and
“Stage 4: metastatic prostate tumor”. According the header
description of GDS2545, these samples are divided into
three groups: “normal prostate adjacent to tumor versus
normal prostate tissue”, “primary prostate tumor versus
normal prostate adjacent to tumor” and “metastatic prostate
tumor versus primary prostate tumor”. Next, we used a self-
developed tool to analyze these three groups based on a
function of R package. Stage 1 includes 18 GSMs. Stage 2
includes 63 GSMs. Stage 3 includes 65 GSMs. Stage 4
includes 25 GSMs. Table 1 shows the list of all stages.

Table 1
Classified GSMs from GDS2545

GDS2545: Metastatic prostate cancer (HG-U95A)

Stage List of GSMs

GSM152804,GSM152805,GSM152806,GSM152807,GSM152808,
StageGSM152809,GSM152810,GSM152811,GSM152812,GSM152813,
1 |GSM152814,GSM152815,GSM152816,GSM152817,GSM152818,
GSM152819,GSM152820,GSM152821

GSM153115,GSM153116,GSM153117,GSM153118,GSM153119,
GSM153120,GSM153121,GSM153122,GSM153123,GSM153124,
GSM153125,GSM153126,GSM153127,GSM153128,GSM153129,
GSM153130,GSM153131,GSM153132,GSM153133,GSM153134,
GSM153135,GSM153136,GSM153137,GSM153138,GSM153139,
GSM153140,GSM153141,GSM153142,GSM153143,GSM153144,
GSM153145,GSM153146,GSM153147,GSM153148,GSM153149,
GSM153150,GSM153151,GSM153152,GSM153153,GSM153154,
GSM153155,GSM153156,GSM153157,GSM153158,GSM153159,
GSM153160,GSM153161,GSM153162,GSM153163,GSM153164,
GSM153165,GSM153166,GSM153167,GSM153168,GSM153169,
GSM153170,GSM153171,GSM153172,GSM153173,GSM153174,
GSM153175,GSM153176,GSM153177

Stage

GSM152931,GSM152932,GSM152933,GSM152934,GSM152935,
GSM152936,GSM152937,GSM152938,GSM152939,GSM152940,
GSM152941,GSM152942,GSM152943,GSM152944,GSM 152945,
GSM152946,GSM152947,GSM152948,GSM152949,GSM152950,
GSM152951,GSM152952,GSM152953,GSM152954,GSM152955,
GSM152956,GSM152957,GSM152958,GSM152959,GSM 152960,
GSM152961,GSM152962,GSM152963,GSM152964,GSM 152965,
GSM152966,GSM152967,GSM152968,GSM152969,GSM152970,
GSM152971,GSM152972,GSM152973,GSM152974,GSM152975,
GSM152976,GSM152977,GSM152978,GSM152979,GSM152980,
GSM152981,GSM152982,GSM152983,GSM152984,GSM152985,
GSM152986,GSM152987,GSM152988,GSM152989,GSM 152990,
GSM152991,GSM187524,GSM187525,GSM187526,GSM 187527

Stage

GSM152856,GSM152857,GSM152858,GSM152859,GSM152860,
GSM152861,GSM152862,GSM152863,GSM152864,GSM 152865,
GSM152866,GSM152867,GSM152868,GSM152869,GSM152870,
GSM152871,GSM152872,GSM152873,GSM152874,GSM152875,
GSM152876,GSM152877,GSM152878,GSM152879,GSM 152880

Stage

The Wilcoxon rank-sum test (also called the Mann—
Whitney U test) is applied to identify the expression change
of a gene between different statuses. When the p-value is




less than 0.05, the expression change of a gene between two
statuses, original status and developed status, is considered
to be significant. A gene with a significant change on gene
expression is named as a locating gene/point. This is
because one or more activated pathway crosses that point in
the developed status. Therefore, we should find fixed-

searching-depth fragments of pathway from a locating point.

We suggest that an activated pathway could exhibit more
severe change than inactivated pathways at the same
situation. Thus, the strength of change should be calculated.
This study uses a parameter GCS (Gene Expression Change
Score) to measure the strength of gene expression change.
The GCS equation is defined as follows (1):

GCS;=(1- p;) 100/n ,jf n=0,GCS =0

here n; is the total interaction number of gene i on the PPI
network (non-loops). To decide the strength of edge
between gene i and gene K, the score equation is defined as
ECS (Edge Change Score) (2):

ECS,= (GCS,+ GCS, )/2

An ECS is the average of two GCSs in an interaction. When
we determine how to measure the strength of edge's change,
the strength of pathway fragment's change in a fixed
searching depth could be calculated as PCS (Pathway
Change Score) (3):

ECS
cs= Searching Depth

A PCS is the average of all ECSs in a merged-fragment
subnetwork. A searching-depth x of fragment includes x+1
nodes/genes. To rank the PCSs, the highest scores are
considered as potential pathway fragments. In the study, we
adopt searching-depth 2 because a fragment including at
most 5 nodes/genes (length 5) can be created from these
results. Results show that every locating point leads to
thousands of fragments that include some loops and two-
way fragments. All top 5 fragments (non-loops and non-
redundancies) were merged into a subnetwork. Merging
these subnetworks produces the final results, which is a
pathway map. The proposed process involves several
scoring and searching steps, as illustrated in Figure 1.

3. Results

This study uses prostate cancer data (KEGG pathway map
hsa05215 and GEO GDS2545) to develop and test the
proposed method. According to the available data, three
groups (A: Stage 1 versus Stage 2, B: Stage 2 versus Stage
3 and C: Stage 3 versus Stage 4) were produced from
GDS2545.
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Figure 1. Schematic overview of this study.

For the Wilcoxon rank-sum test, if the p-value of the
change of gene expression between original status and
developed status is less than 0.05, it is considered as
significance. The group A contains 1,485 genes with a
significant change in gene expression. The group B contains
2,619 genes with a significant change in gene expression.
The group C contains 4,380 genes with a significant change
in gene expression. For group A, 17 significant protein
families can be mapped to the KEGG prostate cancer map.
For group B, 24 significant protein families can be mapped
to the KEGG prostate cancer map. For group C, 48
significant protein families can be mapped to the KEGG
prostate cancer map. Table 2 shows the locating points on
the KEGG prostate cancer map at these three groups. The
next step calculates the gene expression change score GCS
of each point.

To understand which pathway is active, the edge expression
change score ECS is defined to score the intensity of change
in the link/edge between normal and other situations. The
number of pathway fragments that need to be scored
depends on the degree of interaction. From the distributions
of fragment score, rare fragments that pass the locating
points have strong reaction.

For merging top-x score fragments, three pathway maps of
these groups for prostate cancer are shown in Figure 2.
(Pathway map A), Figure 3. (Pathway map B) and Figure 4.
(Pathway map C). The top score fragments are calculated
based on the pathway change score PCS. Apart from
finding the potential pathways of complicity in cancer, this
approach also shows the progress of cancer in pathway
level. The resulting pathway map shows some interesting
results in the hubs of nodes that belong to the KEGG
prostate cancer map. Specifically, 7 genes appear as hubs in
the pathway map A (AURKA, EPRS, HSPA9, MAP3K7,
MLSTS, NR2C2, and RAF1). 4 hubs appear in the
environment pathway B (CTNNBI, EGFR, FGF2, and
PLCG1). Furthermore, 17 hubs appear in the environment
pathway C (AKTI1, CALCOCOI1, CREB3L4, CTNNBI,
CTSD, IDE, MLSTS8, NR2C2, PIK3CG, PPP4C, PRKCD,
RAF1, RB1, SFN, SUMO3, TANK and ZBTB17).



4. Conclusion

We proposed a heuristic method to measure the change of
pathway expression. We pointed out that only PPIs or gene
expressions are not enough for pathway inference. This
method could solve the problem to integration of protein-
protein interaction and gene expression. A series of
computational test was conducted to show that our
algorithm could draw pathways maps with stage status and
showed the progress of cancer.

As for group A, pathway map in Figure 2 shows the
progress from normal to tumor. AURKA, EPRS, HSPAY,
MAP3K7, MLSTS, NR2C2, and RAF1 appear on the first
pathway map. Among these, AURKA, EPRS, MAPK3K7

and RAF1 could be found on the related page of GeneCards.

In the pathway map for group B (see Figure 3), CTNNBI

and EGFR could be found on the related page of GeneCards.

In the pathway map for group C (see Figure 4), AKTI,
CREB3L4, CTNNBI, PIK3CG, RAFI, RBI and SFN)
could be found on the related page of GeneCards. It proves
these genes are associated with prostate cancer to a certain
degree. As for other genes that are not show the association
to prostate cancer on the GeneCards, they have to be proved
by further works.

5. Discussion

Via three result pathway maps, different genes play
important roles at different disease stages respectively. The
number of genes with “significant gene expression change”
grows. The direction is from membrane to nuclear. The
proposed method integrates gene expression data and
protein-protein interactions for pathway research. This
approach uses quantitative identification to find the
fragments of activated pathways and construct the
neighbourhood around known pathways. This study reveals
the role and importance of the neighbourhood around
cancer pathways. In the global pathway maps the results
show the potential relationships of cancer-related genes that
do not appear on the known pathway map. These
relationships provide a possible approach to find potential
and unknown cancer-related genes.
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The test result of locating points at three groups of GDS2545

Table 2

. . Group A Group B Group C
Family Member or Alias Name Significant p-value Significant p-value Significant p-value
GSTP1__|DFN7, FAEES3, GST3, GSTP, GSTPI , PI GSTPI 0.000003 GSTPI 0.000000003076
INKX3-1 |BAPX2; NKX3; NKX3.1; NKX3A
PTEN  |10q23del; BZS; CWS1; DEC; GLM2;
MHAM; MMAC]I; PTEN1; TEPI TEP1 0.000001723
EGF, PDGFA, PDGFB, INS, PDGFC_D, INS 0.00003993
GF IGFL. TGFA, PDGFA 0.00493 IGF1 0.006689 G 000002488
[EGFR, ERBBI, FGFR1, PDGFRA, 0.002864 FGERI 0.001295 EGFR 0.006172
ERBB2, HER2, INSRR, IGFIR, PDGFRB, : ERBB2 0.000000005907
GFR FGFR2
FGFR2 f— 00000217 IGFIR 0.0009311
) FGFR2 0.0000009558
PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3CG 0.007083 giggf‘ 8'888832;8 3
PI3K  [PIK3RI, PIK3R2, PIK3R3, PIK3RS5, PICIA 0002192
PIK3C2A, PIK3C2B, PIK3C2G PIK3R2 0.0474 PIK3C2B 00436
PDKI _ |PDPKI; PDK1; PDPK2; PRO0461 PDPK1 0.02111 PDK1 0.003776
PKB/Akt |AKTI1, AKT2, AKT3 AKT2 0.0142 AKT2 0.0335
AKT3 0.001146
SRD5A2 |SRD5A2, MGC138457
GRB2, ASH; EGFRBP-GRB2; Grb3-3; 0.009916 0.01819
Grb2 | T0R4: MSTPOSS: NCKADP2 GRB2 GRB2 GRB2 0.000000000001861
SOS SOS1, SOS2 SOSI 0.02208 SOS2 0.02002
HRAS; C-BAS/HAS; C-H-RAS; C-HA- 0.01225 0.009854 HRAS 0.00003995
IRas RAS1; CTLO; H-RASIDX; HAMSV; HRAS KRAS
HRAS; KRAS; NRAS; RASHI KRAS 0.02608
BRAF, RAF1, ARAF, ARAF1, CRAF, 0.0000000009557
Raf PKS2; RAFAI ARAF
IMAP2K1, MEK1, MAPKK1 , MKK1; 0.02523
MEKI o MK, MAP2K1
MEK2 ﬁf‘&%’ MEK2, MAPKK2, MKK2; MAP2K2 0.001385 MAP2K2 0.005339 MAP2K2 0.00005548
MAPKI, MAPK2, MAPK3, ERK-1; 0.01324
ERK " ERK1; ERT2, PRKMI; PRKM2, PRKM3 MAPKI
AR /AR, AIS; DHTR; HUMARA; HYSPI; KD; AR 0.0032 AR 0.000000000004022
INR3C4; SBMA; SMAX1; TFM
htpG, HSP90A, HSP90B, HSPI0BI, 0.00000000003789
HSP TRAL, ECGP; GP96, GRPY4 HSP9OBI
ICASP9, APAF-3; APAF3; CASPASE-Oc; 0.04144
Casp?  CE-LAPG; MCH6; PPPIR56 CASP9
BAD _ [BAD, BBC2, BBC6, BCL2LS BAD 0.03744
FKHR _ [FOXO1, FKHI; FKHR; FOXO1A FOXO1 0.006002 FOXO1 0.00007959
CDKNIA, P21, CIP1, CAP20; CDKNI; 0.03011
p21 IMDA-6; SDI1; WAF1; p21CIP1 CDKNIA
b7 CDKN1B, P27, KIP1, CDKN4, MEN1B;
MEN4; P27KIP1
MDM2 _|[MDM2, ACTFS; HDMX; hdm2 MDM2 0.0007657
GSK3  |GSK3A, GSK3B GSK3A 0.000428 GSK3B 0.000000000541
GSK3B 0.006835
IKKA _ [[KBKA, IKKA, CHUK CHUK 0.00003134 CHUK 0.003317
[KKB___ [[KBKB, IKKB IKBKB 0.03559 IKBKB 0.03504
IKKG __ [[KBKG, IKKG, NEMO IKBKG 0.00163
imTOR  IMTOR, FRAP, FRAP1; FRAP2; RAFTI, 0.000002106
’ ’ MTOR
RAPT1
CREB1 _|CREBI CREBI 0.00007958
CREB2 _|ATF4, CREB2 ATF4 0.00002567
CREB3 _|CREB3, LUMAN; LZIP CREB3 0.000002061
CREB5__|CREBS; CREBPA CREB5 0.03238
CREB3LI1|CREB3LI CREB3LI 0.0002449 CREB3LI 0.002783
CREB3L2|CREB3L2 CREB3L2 0.003839 CREB3L2 0.003317
CREB3L3|CREB3L3
CREB3L4|/CREB3L4
- Catenin CTNNBI1, CTNNB; MRD19; armadillo
kB INFKBIA, IKBA; MAD-3; NFKBI NFKBIA 0.01786
INFKBI, RELA, NFKB2, RELB, REL 0.006975 NFKBI 0.00001596
INFKB RELB RELA 0.03504
REL 0.02375
CDK2 _ [CDK2, p33 CDK2 0.00003416
cyclin E_|CCNE, CCNEI, CCNE2, CYCE2 CCNE2 0.00003416
IRb RB1, RB; pRb; OSRC; pp110; pl05-Rb
[E2F1, E2F2, E2F3 0.01107 E2F2 0.03911
[E2F E2F2 E2F3 0.000000166
CBP [EP300, CREBBP, KAT3, CBP, RSTS CREBBP 0.02731
53 TP53, P53, BCC7; LFSI; TRP53 TP53 0.03197 TP53 0.001042
TCF/LEF [TCF7, TCF7LI, TCF7L2, LEFI, TCF7L2 0.0002974 TCF7 0.005841
LEF1 0.005033 TCF7L2 0.003514
LEF1 0.03955
cyclin D1 |[CCNDI, BCLI; D11S287E; PRADI; CONDI 0.000001195 CCNDI 0.001473
U21B31
BCL2 __ [BCL2, PPPIRS0
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Figure 2. The pathway map A for group A. This map shows the situation from normal to tumor in prostate cancer. The pink
ellipses show a node in KEGG prostate cancer pathway map with significant change in gene expression at group A. The
orange ellipses show a node in KEGG prostate cancer pathway map without significant change in gene expression at group A,
but a hub for pink ellipses in this map.
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Figure 3. The pathway map B for group B. This map shows the situation from early prostate tumor to primary prostate tumor.
The pink ellipses show a node in KEGG prostate cancer pathway map with significant change in gene expression at group B.
The orange ellipses show a node in KEGG prostate cancer pathway map without significant change in gene expression at
group B, but a hub for pink ellipses in this map.
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Figure 4. The pathway map C for group C. This map shows the situation from primary prostate tumor to metastatic prostate
tumor. The pink ellipses show a node in KEGG prostate cancer pathway map with significant change in gene expression at
group C. The orange ellipses show a node in KEGG prostate cancer pathway map without significant change in gene
expression at group C, but a hub for pink ellipses in this map.
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