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ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) data con-
sists of time series for each voxel recorded during a cog-
nitive task. In order to extract useful information from
this noisy and redundant data, techniques are proposed to
select the voxels that are relevant to the underlying cog-
nitive task. We propose a simple and efficient algorithm
for decoding the brain states by modelling the correlation
patterns between the voxel time series. For each stimulus
during the experiment, a separate functional connectivity
matrix is computed in voxel level. The elements in con-
nectivity matrices are then filtered out by making use of a
minimum spanning tree formed using a global connectivity
matrix for the entire experiment in order to reduce dimen-
sionality. For a recognition memory experiment with nine
subjects, functional connectivity matrices are computed for
encoding and retrieval phases. The class labels of the re-
trieval samples are predicted within a k-nearest neighbour
space constructed by the traversed entries in the functional
connectivity matrices for encoding samples. The proposed
method is also adapted to large scale functional connectiv-
ity tasks by making use of graphics boards. Classification
performance in ten categories is comparable and even bet-
ter compared to both classical and enhanced methods of
multi-voxel pattern analysis techniques.
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1 Introduction

Understanding and modelling the human brain is one of
the greatest challenges of our century across many fields
in neuro-science, cognitive science and computer science.
Neuro-imaging mediums, in particular, functional Mag-
netic Resonance Imaging (fMRI) is the premier choice for
the analysis of the brain in order to reach this goal. How-
ever, the bulk amount of incomplete, noisy and yet redun-
dant data requires intensive image processing and machine
learning techniques to extract useful information about the
nature of the brain. The techniques employed for analysing
and learning the patterns of brain activity in fMRI data
are called Multi-voxel pattern analysis (MVPA). Under the
umbrella of MVPA techniques, many problems, such as
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hypothesis validation [1], diagnosing disorders [2, 3] and
recently brain state decoding, also known as mind read-
ing [4,5], are studied to be resolved and expected to have a
huge impact on understanding the intrinsics of the brain.

Brain decoding tasks are challenging in nature, be-
cause of the scarcity of the labelled data compared to the
high dimensional feature spaces. Therefore, researchers
try to reduce the dimensionality of the data by selecting
the relevant voxels in order to improve significance. An
alternative to this approach is to incorporate various infor-
mation sources and modalities to improve the accuracy and
the generalization performances.

One way to extract useful information from the fMRI
data is to employ all the temporal measurements and de-
velop a model for the temporal structure between the voxel
pairs. There exist various techniques to represent the re-
lationship between the time series data. A popular model
which is widely used in fMRI data is known as functional
connectivity [6,7]. Functional connectivity is defined as the
statistical dependency between the neural elements or re-
gions across time, and widely used for decoding problems
recently [8—10]. Extracting the functional connectivity pat-
terns from the fMRI measurements is not a well defined
task and requires many assumptions about the data. First of
all, the number of time samples which fall into a cognitive
task is very few. Therefore, it is not easy to estimate the
correlations other then zero-lag in voxel level. Secondly,
due to the many unexplained characteristics of the brain it
is not clear which similarity metric suits to model the time
series between the voxel airs.

There are several approaches proposed in the litera-
ture to model the functional connectivity among the vox-
els for brain decoding. In [9, 10] region level functional
connectivity matrices for two classes are used for classi-
fication by subtracting them to reveal discriminative rela-
tions. In [11] functional connectivity is used to select a
neighbourhood for a mesh model (MAD) [12] around each
voxel to extract features that compress neighbouring struc-
tures for further classification. Most of the above men-
tioned methods utilize functional connectivities among the
brain regions, but not among the voxels, resulting a far
fewer number of elements in connectivity matrix calcu-
lation steps. The major drawback of these inter regional
connectivity analysis is the smoothing effects introduced
by averaging all the voxel intensity values within a region.



Also, in most cases, the region priors from anatomical at-
lases are quite coarse or not detailed enough for the spe-
cific activation patterns caused by the cognitive process in
voxel level. These downsides motivates our research to
further explore voxel level connectivity patterns resulting
large connectivity matrices that are difficult to compute and
store. However, this holistic approach may provide a fine
and informative representation for a cognitive process. An
example of using whole brain connectivity can be found
in [13] where whole brain functional connectivity matri-
ces are used but along with MAD for functional neighbour
selection in a two class classification task again for linear-
spatial feature extraction.

Another soft spot on fMRI brain decoding tasks as
mentioned above, is the scantiness of the labelled samples
compared to the high dimensional feature spaces. Such
regimes are known to be prone to severe deficiencies for
classification problems such as over-fitting, insignificance
and curse of dimensionality. In order to overcome these
problems, dimensionality reduction and/or voxel selec-
tion methods are employed by researchers such as Princi-
pal Component Analysis [14-16], Independent Component
Analysis [17, 18] and Low-Dimensional Embeddings [19].
The commonality between these methods is the transfor-
mation of original feature space into a low dimensional
feature space. Experimental priors are hard to inject in
these approaches and further voxel level interpretations
transformed feature space is not trivial. A convenient and
emerging tool to attack dimensionality reduction problem
is network coding where the network structure regarding
to cognitive states are compressed using graph theoreti-
cal approaches [20-23], as also employed in our proposed
method.

In this study, we employ voxel-level functional con-
nectivity matrices directly to classify cognitive processes.
The difference of our approach with [11, 13] is that we dis-
carded any complicated feature extraction steps after cal-
culating the connectivity matrices and used them directly
for matching the corresponding class label. Furthermore,
we calculated the pair-wise correlation measures from sig-
nal windows adjusted according to the hemo-dynamic re-
sponse function. We also employed graphics boards to fur-
ther improve the capability of calculating whole brain func-
tional connectivity matrices. The quadratic size of the con-
nectivity matrices that form our feature space is reduced by
taking the pairwise correlation measures that are spanned
by a template Minimum Spanning Tree (MST). Template
MST is formed using a separate functional connectivity
matrix that is calculated by the pairwise correlations ac-
counting all the time points, not within small signal win-
dows, which further reduced dimensionality to the number
of voxels in the experiment.

This paper is organised as follows, in the next sec-
tion the fMRI experiment design and pre-processing steps
are explained. Third section clarifies the details of the em-
ployed method. Experiments on fMRI data and classifica-
tion results are analysed in fourth section followed by the
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Figure 1. A sample trial for conducted fMRI recognition
memory experiment. In each trial participant is exposed
to a separate study list belonging to one of ten categories
(animal category is shown). Each trial proceeded with the
presentation of 5-word study list for 2 seconds in encoding
phase, followed by a delay period of math problem solving.
In the retrieval phase a test probe is presented and indicated
whether the word was a member of the current study list.

discussion and conclusion in the fifth and sixth section.

2 Dataset and fMRI Experiment
2.1 fMRI Experiment

In the current study, fMRI recording was conducted during
arecognition memory task for nine healthy subjects in eight
runs per subject. Each participant is shown a list of words
belonging to a specified category in the encoding phase for
2 seconds as a study list. In the study list, 5 words be-
longing to the same category is presented sequentially for
400 ms each. Following the study list, participants solved
math problems 3500 ms each as a delay period. Employ-
ing a delay period for 14 seconds, allows independent as-
sessment of encoding related (i.e. study list period) brain
activation from retrieval related (i.e. during the test probe)
activity patterns. Finally a test probe is presented as the
last step, and the participant executes a yes/no response in-
dicating whether the word belongs to the current study list
for 2 seconds (e.g., see Figure 1). A total of ten semantic
categories were used in the study, which are animals, col-
ors, furniture, body parts, fruits, herbs, clothes, chemical
elements, vegetables and tools. Recording was conducted
using a 3T Siemens scanner with a 2 seconds TR, meaning
that we obtained a separate brain volume each 2 seconds
(see [1] for further experimental details). For the MVPA
analyses we focused on the lateral temporal cortex region
having 8142 voxels total. fMRI data consists of 2400 time
points in eight runs with 240 class labels for the encoding
phase, and 240 class labels for the retrieval phase (for each
of the ten classes, 24 samples are obtained for both encod-
ing and retrieval). The encoding samples are used for train-
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Figure 2. Example of a typical fMRI experiment for brain state decoding. 4D fMRI data consist of several volumes across time,
some of which have assigned to a class labels(indicated by vertical orange lines in time axis). For each class either encoding or
retrieval, a separate functional connectivity matrix is formed by considering a suitable time window that encapsulates indicated
class labels (indicated by highlighted intervals with different colors for classes).

ing and decoding samples are used for testing a classifier
further in our method.

2.2 fMRI Data Pre-Processing

Image processing and data analysis were performed us-
ing SPM5 (http://www fil.ion.ucl.ac.uk/spm/). Following
quality assurance procedures to assess outliers or artefacts
in volume and slice-to-slice variance in the global sig-
nal, functional images were corrected for differences in
slice acquisition timing by re-sampling all slices in time to
match the first slice, followed by motion correction across
all runs (using sinc interpolation). Functional data were
then normalized based on MNI stereotaxic space using a
12-parameter affine transformation along with a nonlin-
ear transformation using cosine basis functions. Images
were resampled into 2-mm cubic voxels and then spatially
smoothed with an 8-mm FWHM isotropic Gaussian kernel.
Further detrending and normalization was avoided because
we employed connectivity measures within small time win-
dows.

3 Method

fMRI data consists of 3-dimensional brain volumes across
time {t;}? ,, where each 3D volume is formed by stacking
several 2D scans (slices). Each pixel in these 2D images
represents the intensity of a small volume of brain tissue
(voxel) at a time instant ¢;. We represent the intensity of
a voxel at location §; in a time instant ¢; as v(t;,5;) and
note that 5; is a three dimensional vector indicating the po-
sition of a voxel in the volume. We indicate the time signal
vector for a voxel at location 5; as 0(tp.q, 5;) where time
points are delimited starting from p and ending at q. A
typical fMRI experiment consists of several runs, where in
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each run the subject is exposed to some task specific stim-
ulus {c;}5_, at the predefined time instants, where S is the
total number of semantic classes in the experiment and n
is the total length of the experiment across runs (see Fig-
ure 2). Within a large amount of samples across time, only
few have assigned class labels (orange vertical lines in Fig-
ure 2). The rest of the samples that are not having a class
label ¢; ., are generally discarded in MVPA tasks or a pre-
determined number of time points are averaged according
to the prior knowledge of the peaks of hemo-dynamic re-
sponse function (e.g. 2-3 time points after the stimulus).

3.1 Functional Connectivity for Feature Representa-
tion
In this study we utilize the entire temporal structure of
voxels for each stimulus and none of the samples are dis-
carded. For this purpose, first we determine a time win-
dow delimited by p and ¢ for each separate stimulus. It
is well known that, Hemo-dynamic Response Function
(HRF) peaks around 4-6 seconds after a stimulus and re-
turns to a baseline after 10-12 seconds [24]. In order to cap-
ture the temporal structure, we specified time windows that
span 6 samples in the fMRI recordings (see Figure 2). Con-
sidering 2 seconds TR as the experimental protocol, 6 sam-
ples span a full hemo-dynamic response function with 12
seconds. After determining a window size in time, we ex-
tract a distinct functional connectivity matrix for each time
window in voxel-level (blue and green highlighted bars in
Figure 2). Note that starting from a time window adjusted
for a single stimulus delimited by p and ¢, we obtain a sin-
gle connectivity matrix for each stimulus. As we expand
the delimiters to the experimental limits where p = 1 and
q = n, we obtain a single connectivity matrix for the whole



experiment. The elements in the functional connectivity
matrix are represented by symmetric dependence measures
in the time domain. It has been suggested that correlation
based measures are well suited for functional connectivity
analysis [25]. Consequently, we use zero-order correlation
(cross-correlation) to measure the functional similarity be-
tween time-series. The zero-order correlation coefficient
Pk, between two voxels at location 5; and 5, within the
time window started at time point p and ended at time point
q is calculated by,

COVjk (ﬁ(tp:mgj)a ﬁ(tp:mgk))
\/varj (@(tp:q, Ej)) -vary (17(1517:{17 Ek))

where covjy, is the covariance of the signals measured at
two voxels within the time window, and var; is the vari-
ance of the signals measured at a voxel 0(¢p.q,35;) and
pjk € [—1,1]. Note that, p is set to the beginning of a stim-
ulus, g is the end point of the window as p + 6 and the time
window is indicated by p : q. Here, the voxel intensities
within a time window p : ¢ comprise a vector of intensity
values ¥ and used to calculate pj;. Each stimulus corre-
sponds either to encoding (training) or retrieval (test) phase
and accommodates a class label. By calculating connec-
tivity matrices F'Cy., for all stimulus, we obtain a training
and test set for our further classification task. Consider-
ing the nature of zero-order correlation which is symmetric,
resulting functional connectivity matrices are also symmet-
ric. Therefore it is sufficient to take into account only the
lower diagonals of each connectivity matrix. In this study
we constructed our feature space for classification, by ex-
tracting lower diagonals of connectivity matrices and con-
verting them into column vectors for further comparison.
Each connectivity matrix is converted into a column vector
and represented in the feature space by these vectors where
we finally used a k-nearest neighbours method to determine
the class labels for test samples.

Pik = (D

3.2 Large Scale Connectivity and Parallelism

The functional connectivity matrices grow quadratically as
we increase the number of voxels considered in the exper-
iment. As an example, a single connectivity matrix for 8k
voxels has 64M pairwise elements and is time and space
consuming to calculate. For 80k voxels, 6.4B entries re-
serve around 50GB of memory which is just for one con-
nectivity matrix. The practical solution for time and space
complexity can be achieved by making use of graphics
boards to speed-up computation time and storing resulting
matrix into disk as chunks for the space complexity. We
attacked this problem by first storing a portion of the time
signals data on the texture memory of GPU then comput-
ing only the corresponding chunk of connectivity matrix
and storing result to disk in binary format to further space
gain and speed. By iterating over different time signal por-
tions repeatedly, lower diagonal chunks of resulting func-
tional connectivity matrix is calculated and stored to disk.
For speeding up the computations, correlation measure is
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expanded to exploit parallelism. Let us simplify the nota-
tion of correlation and denote x and y as our time window
intensity vectors for two distinct voxels. The correlation
measure in (1) can be re-written as follows with a slight
abuse of notation,

e (%) (5)

o Yt (5)) (- (32))

2
where m is the temporal window size, which is 6 in our
case.

The parallelism can be achieved easily by convert-
ing a complex problem into a matrix-vector multiplica-
tion problem which is very efficient to calculate on GPUs.
Analysing the re-arranged formula (2), we observe that
S @i, Y yi, Y.z and Y y2 can be calculated with a single
matrix-vector multiplication. Only the summation Y z;y;
needs to be calculated in a kernel as the last step. We can
achieve further computation enhancements by storing other
summation results in texture memory of GPU. The overall
algorithm to compute a large scale functional connectivity
matrix is given as follows:

1. Load data chunk to device memory (time series)

2. Calculate > x;, > y; using CUBLAS, save resulting
vectors on device memory

3. Square data matrix with a transform routine on Thrust
and calculate > 22,5 y2 using CUBLAS, save re-
sulting vectors on device memory

4. Load source and destination time-series into texture
memory (pairwise cliques)

5. Calculate pairwise correlation on GPU, save resulting
matrix chunk on disk

6. Return to step 4

In our CUDA implementation for large scale func-
tional connectivity calculation, we employed CUDA Basic
Linear Algebra Subroutines (CUBLAS) and CUDA Thrust
libraries for speed up and simplicity.

3.3 Dimensionality Reduction using Minimum Span-
ning Trees
The quadratic growth of the connectivity matrices drasti-
cally increases the dimension of feature space when we
use all the correlation measures directly in classification.
As an example 8k voxels results in a connectivity matrix
that has 64M pairwise elements and a feature vector having
32M dimensions (considering only lower diagonals). Due
to the scarcity of the labelled samples which is 240/240 for
training/test, we need to employ some dimension reduction
techniques. In such large scales, conventional dimensional-
ity reduction approaches become obsolete because of their
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Figure 3. Template Minimum Spanning Tree calculation process. Each pairwise relations within the entire experiment is used
to calculate a global connectivity matrix F'C}.,, with a time window equal to the length of experiment. Template MST is then
formed by converting connectivity matrix into an intermediate distance matrix G.

time and space complexities (even inverting a big matrix
or singular value decomposition is costly). Therefore one
needs an efficient approach to resolve this problem. Graph
theory is a well structured and developed field in computer
science where it becomes handy in large scale network
analysis problems. Now let us reconsider our dimensional-
ity reduction problem with a graph theoretical perspective.
A functional connectivity matrix is an affinity matrix which
can be converted to a distance matrix easily. For each pair-
wise element jk of a connectivity matrix F'C', we can con-
vert a correlation measure p;;, into a distance measure d
by calculating,

djr =1—|pjrl, forall pairs jk, 3)

where both positive and negative correlation are assumed
to have equal information, and zero correlation indicating
largest distance.

After defining a distance measure, we can transform
our dimensionality reduction problem into a graph traversal
problem using a Minimum Spanning Tree (MST). An MST
spans all the nodes of the graph (voxels) with minimum to-
tal distance (regarding to maximum correlation after our
transformation). The suggested approach enables us to
compress the information encoded in a correlation matrix
by taking into account only the most informative (highly
positive or negative correlations) pair-wise relations, span-
ning entire region of interest in the brain for cognitive pro-
cesses. Furthermore, we use the path traversed by the MST
to filter out elements in any other correlation matrix by
considering only the pairwise relations reside on the path.
Note that, in a graph with V' nodes, MST of the graph has
V' — 1 edges, meaning that we can transform a functional
connectivity matrix as a distance matrix for 8k voxels hav-
ing 64M elements then representing it with a spanning tree
having only 8k-1 edges (elements of the distance matrix)
out of 64M elements. The reduction of the dimensionality
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Figure 4. Algorithm flow of proposed method. Input fMRI
data is used simultaneously to compute functional connec-
tivity matrices for each stimulus within small time windows
tp.q and calculating the template MST within entire time
domain %1.,. Resulting template MST is then used to filter
out elements of each F'C),.4, constructing training and test
data further fed to classifier.

is colossal and easy to compute with iterative MST rou-
tines [26].

Extraction of a unique MST from a set of functional
connectivity matrices is not a trivial problem; because in
our model, for each stimulus, a different connectivity ma-
trix is calculated and correlations are extracted within the
time interval of that stimulus. If we extract a different MST
for each connectivity matrix, then each MST will span a
different feature space. A practical solution to overcome
this problem is to calculate a unique MST that is shared
among all the connectivity matrices extracted from distinct
stimulus windows. This global template MST should en-
capsulate all the shared structure among different stimulus
and must be shared to extract comparable features that are
localized with its unique path. As mentioned before, we



Method Subject-1  Subject-2  Subject-3  Subject-4  Subject-5 Subject-6  Subject-7 Subject-8  Subject-9
MVPA 0.39 0.54 0.46 0.47 0.49 0.47 0.44 0.52 0.43
MAD [12] 0.51 0.65 0.60 0.64 0.67 0.58 0.56 0.63 0.55
FC-Euc 0.64 0.68 0.63 0.60 0.63 0.67 0.61 0.61 0.64
FC-Cos 0.63 0.68 0.62 0.60 0.62 0.64 0.61 0.60 0.64
FC-Cor 0.65 0.68 0.64 0.62 0.61 0.68 0.62 0.63 0.64
FC-Abs 0.64 0.68 0.63 0.60 0.62 0.66 0.61 0.61 0.64
FC-MST-Euc 0.54 0.61 0.58 0.55 0.56 0.61 0.57 0.56 0.62
FC-MST-Cos 0.50 0.59 0.54 0.54 0.54 0.60 0.55 0.54 0.59
FC-MST-Cor 0.66 0.67 0.64 0.62 0.61 0.65 0.63 0.64 0.64
FC-MST-Abs 0.57 0.63 0.59 0.58 0.57 0.63 0.57 0.58 0.62
Max - FC 0.65 0.68 0.64 0.62 0.63 0.68 0.62 0.63 0.64
Max - FC-MST 0.66 0.67 0.64 0.62 0.61 0.65 0.63 0.64 0.64
Impr.wrt MAD 0.15 0.03 0.03 -0.01 -0.04 0.10 0.07 0.01 0.09
Impr.wrt MVPA 0.26 0.14 0.18 0.15 0.14 0.21 0.19 0.12 0.21

Table 1. Classification performances of proposed method compared with classical methods for fMRI machine learning tasks
(MVPA) and a local-linear feature extraction method (MAD). Proposed method is indicated by FC and followed by the distance

metric used.

can extend the time window of a stimulus into the limits
and obtain a single connectivity matrix for the whole exper-
iment by setting delimiters p = 1 and ¢ = n. This yields a
single connectivity matrix which can also be considered as
correlation pattern of the entire experiment. By calculating
a unique connectivity matrix for the entire experiment, we
can extract a template MST to be used as a reference path
to filter out not-spanned edges in each of the connectivity
matrices calculated for each stimulus.

Formally speaking, a minimum spanning tree is con-
nected sub-graph of an undirected weighted graph, con-
taining all the nodes in the original graph with no cycles.
Such a sub-graph with no cycles is a spanning tree and with
the minimum total weights it is called minimum spanning
tree. We define a fully connected intermediate graph G as
G = (V, E) where the nodes of the graph 5; € V, rep-
resent the voxel coordinates and edge weights are defined
as d;, calculated using (1) by setting p = 1 and ¢ = n
then transforming into distances using (3). Note that in
the time interval ¢;.,, sample windows that belong to re-
trieval phases (test samples) are excluded at all steps for
fairness. Computation of the template MST for whole time
series M STrc,,,, is straightforward after nodes and arc
weights are defined, using Kruskal’s method. Resulting
MSTrc,., has V — 1 edges that are further used to fil-
ter each connectivity matrix extracted using small windows
of stimulus. This process is illustrated in Figure 3, where
functional connectivity matrix is calculated using all voxel
pairs including entire time points this time. Resulting tem-
plate minimum spanning tree M STrc,,, of connectivity
matrix F'Cy., is then computed with the help of interme-
diate graph G. In Figure 3, template MST is visualised
only with the edges marked in lower diagonal since it is
undirected. The marked elements in the template MST is
further used to filter each connectivity matrices to reduce
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the dimension of the feature vectors. The algorithm flow is
illustrated in Figure 4. In the last step of the algorithm, the
selected elements in the lower diagonals by template MST
of each stimulus FC matrix, are used to form training and
test data, depending on the records obtained at the encoding
or retrieval phase of the experiment.

4 Experiments

In our experiments on fMRI brain decoding task, we em-
ploy a region of interest having 8142 voxels for 9 sub-
ject where each subject has 8 experimental runs. The
classification performance is measured for each run sep-
arately and then averaged for each subject. For a k-
nearest neighbour classification regime, we need a dis-
tance metric for our feature space. In this study, we em-
ploy four different distance metrics to measure the distance
between training and test sample vectors. These metrics
are standard Euclidean distance (FC/FCMST-Euc), cosine
between two vectors (FC/FCMST-Cos), 1-absolute corre-
lation (FC/FCMST-Cor) and sum of absolute differences
(FC/FCMST-Abs). We compare our method, first with a
standard MVPA approach where voxel intensity values are
directly fed into the classifiers. As a second comparison
we used Mesh Learning approach (MAD) to extract local-
linear features from voxel intensity values, which exploit
spatial structure among the voxels. The performance re-
sults are illustrated in Table 1. We observe a significant im-
provement up to 25% compared to classical MVPA method
in all of the subjects. This improvement is expected as we
incorporated temporal information into classification pro-
cess. Calculating correlation and using coefficients as fea-
tures smooths out noise in voxel intensities.

MAD approach exploits spatial structure of the voxel
intensities for each time instant separately and enhances
the classification performance compared to the classical
MVPA approach. We observed a better performance up



to 14% compared to MAD approach. For two out of nine
subjects, MAD approach give better results. For the other
seven subjects proposed method substantially outperforms
the MAD approach.

5 Discussion

The suggested approach is distinguished from the other
comparable methods in the way of accounting the fMRI
data modalities. MAD exploits spatial modality of fMRI
data whereas our proposed method exploits temporal
modality. Considering the noisy spatial acquisition pro-
cess of fMRI data, MAD approach is more prone to noise
with respect to proposed method which slightly smooths-
out noise component by correlation analysis. Another ad-
vantage of the proposed method is its simplicity. The model
order selection or neighbour selection problems of MAD
approach are simply avoided by incorporating correlation
structures. However, the problem of selecting the informa-
tive pairwise relations is emerged. This problem is resolved
by calculating a template MST to span the most informa-
tive pair-wise relations and accounting only the ones that
are spanned by template MST. Final step reduced the di-
mensionality drastically down to 8141 from 32M with a
minor performance drawback in three subjects but equal
or better performance in other subjects. The performance
gain observed by reduced dimensionality is also expected.
Avoiding the curse of dimensionality and overfitting by re-
duced dimensions results a higher generalization perfor-
mance with a better significance. The dimensionality of
the feature spaces for each method is also illustrated in Ta-
ble 2. By analysing Table 2 we observe that improved per-
formance for enhanced methods are encouraged by higher
dimensions in the feature spaces. The baseline MVPA
method employs around 8k feature dimensions. With such
enhanced methods (MAD) in order to achieve better per-
formance the trade off reveals it self as increased feature
dimensions. The proposed method aids this problem by
retracting the high number of dimensions with improved
classification accuracy.

Another observation regarding to the proposed
method is the structure of the calculated template MST. In
Figure 3, illustrated MST has the majority of the connec-
tions near diagonals meaning that the most correlated and
informative relations reside in a close vicinity of a voxel
which is known from the capillary structure of the brain
and point spread function of the fMRI medium. But the in-
teresting connections also observed off the diagonals which
are remote informative relations. Further studies should re-
veal these connectivities and examine the hub and cluster-
ing structures.

In our experiments we also employed a stress test
for correlation analysis on GPU, by calculating a pairwise
functional connectivity matrix for 80.000 and 220.000 vox-
els. We observed that the developed approach is capable of
calculating and storing in such large-scales which is just
not possible with a straight-forward approach or by using
tools such as SPM, Functional Connectivity Toolbox [27]
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Method  Dimension of Feature Space

MVPA 8.142
MAD 16.284-154.698
FC 33M
FC-MST 8.141

Table 2. Dimensionality of the feature spaces for different
method employed and proposed method.

or FSL [28]. The developed approach implemented with
CUDA is available on http://ceng.metu.edu.tr/
~el1697481/SCT/.

6 Conclusion

In this study we introduced a simple approach for brain de-
coding using temporal structures of voxel activations. In
the proposed method, voxels are represented in the fea-
ture space by their pairwise correlation coefficients with all
other voxels within a time window determined by hemo-
dynamic response function. Proposed method is tested in
a recognition memory experiment having 10 classes with
9 subjects and results are compared with standard methods
and methods that exploit spatial structure. Experimental
results suggest that the proposed method is more robust to
noise by incorporating temporal structure and comparable
with the current methods for MVPA.

Further studies should focus on selecting the informa-
tive relations encoded in the functional connectivity ma-
trices in order to discriminate semantic classes for higher
classification accuracy. For a better significance, dimen-
sionality of the feature representations should be further
reduced by either model order selection methods or by
analysing between class connectivity matrices. As a future
work we take into consideration to combine the proposed
method with methods exploiting spatial structures.
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