
 

 

WAVELET ENERGIES AS A FEATURE AND THEIR IMPACT ON 

CLASSIFYING MOVEMENTS BASED ON sEMG 

Dimitrios S. Barbakos
1
, Nikolaos Strimpakos

2
, Stavros A. Karkanis

3 

1
 Dept. of Electronic Engineer, Technological Institute of Central Greece, dbarmpakos@teilam.com 

2
Associate Professor, Dept. of Physiotherapy, Technological Institute of Central Greece, nikstrimp@teilam.gr 

3(corresponding author) 
Professor, Dept. of Informatics, Technological Institute of Central Greece, sk@teilam.gr 

Address : Technological Institute of Central Greece, 3
rd

 klm Old National Road to Athens, 35100 Lamia. 

 

 

ABSTRACT 

Surface Electromyography signal processing and 

classification is an issue that concerns a large number of 

research groups, demanding more accurate, simple and 

sophisticated feature extraction schemes in order to 

accomplish better performance in different applications, 

with a solid subject being the control of prosthetics since 

decades ago with early signs of satisfying accuracy. In 

this research, we investigate the effect of efficient feature 

extraction on the wavelet domain using the discrete 

Wavelet transformation (DWT), on NINAPPRO, a 

database of 27 subjects performing different sets of 

movements, which is available for researchers worldwide. 

Energy measures estimated on the wavelet domain is the 

novel set of features introduced in the sEMG signal 

analysis community is implemented and compared to 

already simple features of the time domain. The 

experimental results show the use of wavelet energies on 

the wavelet domain can significantly improve the 

classification challenge. 
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1.   Introduction 
 

Biomedical signals are of great importance for clinical 

evaluation of the patients. The variety of such signals 

according to the body sources that these are acquired from 

as well as the combination of the different biomedical 

signals provide an advanced diagnostic tool to the 

clinician. The biomedical signals usually measure the 

electrical currents during the activity of human organs, 

tissues, muscles etc. and this response is transferred to 

relevant equipment for recording, viewing, monitoring or 

processing purposes. Such signals that emanate from 

contracting muscles representing neuromuscular activities 

are referred as electromyography signals (EMG). The 

EMG signal is a biomedical signal that measures 

electrical currents generated in muscle during its 

contraction. It is acquired directly from the skin’s surface 

using such electrodes, capable to record Motor Unit 

Action Potentials (MUAP) from which the muscle tissue 

is composed. The EMG signal appears with amplitude 

that increases as the rate of the firing muscle response 

increases. These pulses are recorded as functions of time 

with a non-Gaussian form [1]-[3]. 

 

The shape, morphology and distribution in EMG signals 

produced by the corresponding firing rates of Motor Unit 

Action Potentials (MUAPs) is key information for 

diagnosis and can be used for clinical evaluation of the 

patients with kinesiological and neuromuscular disorders. 

During the last decade a lot of research can be found in 

the area of prosthetic hand based on the analysis of EMG 

signal. In addition to this a lot of research has been 

completed to the location of patterns on such signal that 

can then be explained or used by the experts. 

 

Many mathematical models have been developed for the 

extraction of the important characteristics of EMG signals 

in order to process and recognize structures of the EMG. 

More specifically, hand motion recognition has been used 

in research work and a common collusion to the 

recognition / classification of motions using features of 

EMG can create more accurate results. In recent efforts / 

projects, researchers work with groups of subjects with 

predefined scenarios executed with standard patterns. To 

this direction, the introduction of the NINAPRO database, 

which is a database of sEMG and kinematic data gathered 

from 27 intact subjects while performing 52 movements 

of interest brought a standard procedure for the 

assessment of the gesture recognition techniques 

developed to the related scientific society [12].  
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Various signal processing transformations along with 

corresponding measures estimated over the corresponding 

domain have been proposed [9] either on the time domain 

or on the frequency domain after the application of the 

Fourier on the sEMG signal. In addition, the discrete 

wavelet transform (DWT) was elaborated and has shown 

better performance because of its multilevel 

decomposition since it combines time and frequency 

resolution of the signal. Since the analysis of the EMG 

signal and the recognition of patterns within these signals 

is in common use for joint prosthetic hands, the wavelet 

analysis seems to be a valuable tool for extracting more 

information from the input signals [6]. Feature extraction 

aims to locate information through the construction of 

feature sets consisted of feature vectors chosen to 

preserve class separability. Classification accuracy is 

affected more by the choice of feature set than by the 

choice of classifier. Classification algorithms that have 

been used in similar application to the classification of 

EMG signals, include Bayesian classifiers [9], artificial 

neural networks , Gaussian mixture models, hidden 

Markov models, fuzzy logic and genetic algorithms [5]-

[8].  

 

In this paper, we used a widely known signal 

transformation, the wavelet transform, which combines 

frequency and spatial signal information and transforms 

the signal into the relevant wavelet domain. The input 

signal which in our case is the sEMG signal is 

decomposed in a number of levels applying filtering, 

downsampling procedures. Consequently energy 

measures for each different decomposition level in the 

wavelet domain are estimated constituting the 

corresponding feature vector. These feature / energy 

based vectors formed in this way are then used for the 

recognition of each movement from the set of 52 

movements and the 27 users that exist in the NINAPRO 

database [12].  From the experiments, which are shown in 

the following paragraphs, we concluded that the use of 

energy values in the wavelet domain brings a significant 

improvement to the classification performance. This 

improvement was obvious compared to the performance 

of other features, usually estimated in time domain, on the 

same EMG data. It is worth to be noted that a reasonable 

improvement achieved in the accuracy of which gesture a 

user is performing, even without training for that user.  

 

The paper is structured as follows. In the second 

paragraph is presented a short description of the 

architecture of the NINAPRO database. The third 

paragraph contains the description of the wavelet 

decomposition approach as well as the estimation of the 

energy features on the wavelet domain of the EMG signal. 

Results and discussion on the application of the energy 

vectors are presented to the fourth paragraph and the 

conclusions along with the future trends of this work are 

described in the fifth paragraph.  

 

 
2.   Architecture and Data Description 

 

NINAPRO [12], the database used in our research 

consists of measurements of 27 male and female subjects, 

performing repetitions of 52 movements, which were 

introduced to them using a video. During measurements, 

each subject followed the instructions on the video, on 

when he/she should perform each movement and when to 

rest. The experimental setup consisted of a 22-senror 

Cyberglove II dataglove to gather the finger positions. 

The glove has 22 strain gauges sewn, and it represents 22 

joint angles as 8-bit values, for an average of resolution of 

less than one degree. A standard commercial 2-axis 

inclinometer is fixed onto the subject’s wrist and used to 

collect the wrist orientation. Activity of the muscles was 

gathered using ten active double-differential OttoBock 

MyoBock 13E200 surface EMG electrodes, which 

provide an amplified, bandpass filtered and rectified 

signal, with a bandwidth of 0-25 Hz. As for the electrodes 

placement, the targeted placement is not necessary as 

pattern recognition techniques can function properly, 

sometimes can even take advantage of muscle cross-talk. 

Eight uniformly spaced electrodes are placed beneath the 

elbow, while two more are placed on the flexor and 

extensor muscles.   

 

In our research, we only used the data from the electrodes 

in order to recognize different movements only based on 

sEMG, a project quite challenging for such size of data. 

The movements were divided in four main classes: 

 12 basic movements of the fingers,  

 8 isometric, isotonic hand configurations, 

 9 basic movements of the wrist and 

 23 functional movements using everyday objects 

in order to mimic a daily-life action.  

The purpose of our work is to investigate the correlation 

between same movements from different subjects and the 

classification, or generalization of a move among 

different people.  

 

We focused on classifying same movements without 

choosing standard patients. In other words, the training 
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and the testing of the system were inter subject, and 

without using the same patients data for each phase. In 

other similar works in literature with high accuracy results 

[9]-[11], the high percentage of classification success was 

achieved as the best result of all the trials, or a mean value 

of the trials. In [11], the results were not higher than 80%, 

in all the well-known combinations for feature extraction 

and classification in sEMG signals. The idea behind the 

classification method we used is to use random 

movements from the 4 different sets of movements, and to 

develop a system capable of defining in which set the 

move belongs to with the highest possible accuracy 

without knowing who executed the exercise. That leads to 

a system capable of recognizing a movement from its 

shape, using the features that have similar properties from 

each signal and using them for creating a patter for 

moves, not moves from a person. 

 

3.   Wavelet Energies in sEMG signals 

  

Fast Fourier Transformation (FFT) has been used as a 

valuable tool for signal analysis based on the frequency 

spectrum. Since FFT represents a global frequency 

analysis it is proven weak in location of more dynamic 

movements that happen to the input signal. In this case is 

needed a time information of the signal along with the 

frequency analysis of the FFT. A tool that could be used 

is the Wavelet transformation of the signal which, by 

definition, combines the information from signal 

components, frequency and time.   

 

Recent studies have come to the conclusion that a 

spatial/frequency representation, which preserves both 

global and local information, is adequate for the 

characterization of signal. The wavelet transform offers a 

tool for spatial/frequency representation by decomposing 

the original signal to the corresponding scales / levels. 

When decomposition level decreases in the spatial 

domain, it increases in the frequency domain providing 

zooming capabilities and local characterization of the 

signal characteristics. Wavelets offer the advantage is the 

time-frequency localization which is a necessary 

characteristic in signal analysis. The energy of the wavelet 

is expected within a finite time interval revealing 

frequency localization at low frequencies and time 

localization at high frequencies.  

 

We have chosen to use Discrete Wavelet Transform 

(DWT) for the decomposition of the frequency domain of 

the signal for the representation of the signal which offers 

a representation of the frequency domain since they have 

appear with robustness in the presence of noise, can be 

sparser, and can have greater flexibility in representing 

the structure of the input signal. The 2D DWT 

transformation is implemented by applying a separable 

filterbank [14].  

 

In the area of biomedical signals analysis wavelets offer a 

valuable tool for signals that are nonstationary and time 

varying in nature like the EMG signals. Multi resolution 

analysis used in the wavelet transformation provides 

characteristics that come from the different frequency 

components and the time simultaneously. The wavelet 

decomposition is utilized with the application of basis 

functions, translations and dilations of a function called 

mother wavelet [14]. In the proposed approach each EMG 

signal is transformed to its wavelet domain using the 

Discrete Wavelet Transform (DWT), 
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where k0  Z, Z is the set of integers, K is the total 

number of wavelet decomposition levels, φ is the scaling 

function, ψ is the mother wavelet, 
 )(,)( ,00

tgic ikk 
 

and 
 )(,)( , tgid ikk 

. Daubechies wavelet bases were 

used due to their orthonormal property, which is 

important for the preservation of the signal characteristics 

along the different scales of the transform [13]. The above 

equations provide a recursive way for calculating the 

DWT coefficients. In practice, it is assumed that a discrete 

signal in its original resolution is equivalent to the 

approximation coefficients.  

By definition energy measures are calculated as the sum 

of square of the signal’s values. In the case of a 

transformed signal  the corresponding energy measures 

are calculated accordingly to the definition but also taking 

into consideration the specific properties of the 

transformation. Having applied the wavelet 

transformation on the input EMG signal, the energy 

measures that are to be calculated are in correspondence 

with the decomposition level the wavelet is applied as 

well as the output of the filter banks produced by the 

decomposition procedure. The estimated local energy 

measures of wavelet coefficients are varying over 

different scales and are estimated by summing the squares 

of all coefficients: 
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with kjb , : the wavelet coefficients of the signal 

decomposition level Bj(k), j = 0, 1, 2, 3 …  . Since the first 

level, for j = 0, of the decomposition usually called the 

approximation level, its coefficients contains significant 

signal information and as it is expected more energy 

appear in this scale compared to other coefficients at the 

same level. Another major advantage for the use of local 

energy measures is that the energy features are the 

statistical measures of the whole band without considering 

the time variance problem, they may not effectively 

distinguish some kinds local signal characteristics. 

Considering the concept of local energy values of 

frequency bands this overcomes the inclusion of the local 

signal features varying in time [13].  

 

4.   Results and Discussion 

 

The experimental study of this paper outlines the series of 

the conducted experiments and the obtained results in 

order to evaluate the novel feature extraction 

methodology based on the energy values of the wavelet 

transformation of the sEMG input signal. The aim of the 

experimentation presented in this paragraph is the 

determination of significance of the contribution to a 

better classification of the movements using the local 

wavelet energy values of the signal. 

 

As it has already been documented in the previous 

paragraph, the wavelet transformation locates and 

underlines signal characteristics from both time and 

frequency domains of the signal. In addition the use of 

energies on the wavelet domain encodes energy signal 

components from both domains bringing out the local 

properties of each examined signal window. 

 

The experimentation setup developed in this work, uses 

the whole data from the NINApro database meaning that 

we didn’t exclude any of the 27 subjects and the 52 

movements of each subject. As for the experimenting 

procedure we randomly choose sets of 3 or 4 movements 

using various sizes of windows. Each signal window 

contains a part of the signal of a limited duration. Window 

sizes chosen are of size 100ms to 500ms. Following this, 

the window is then decomposed into 2 levels using the 

Daubechies-4 mother wavelet as a basis function. The 

variety of mother wavelets that could be used instead of 

Daubechies-4 as well as the various wavelet 

transformation algorithms is rather wide but this is not 

within the scope of this paper. For simplicity reasons we 

finally chosen the 2-d discrete wavelet decomposition 

using the Daubechies-4 basis function. 

 

The decomposition of the initial sEMG signal is 

completed in two levels according to equation (1) and for 

each level we estimate the signal’s energy value 

according to the equation (2). The feature vector consists 

of the corresponding energies on different levels, 

consisted of the horizontal, vertical and diagonal 

directions at i-th level which are defined as : 

 

, 

, 

 (3) 

 

For the two level wavelet decomposition according to the 

above equation (3) we obtain a set of 7 local energy 

values which are the components of the corresponding 

feature vector. Using such vectors, a 7-dimensional 

feature space is created. This space contains all the 

vectors of the different values that are examined and the 

next step is the application of a classifier to the data in 

order to classify each vector to one of the 52 movements. 

The proposed classifiers, in the literature constitutes an 

extended set which can be categorized into two main 

categories, supervised or unsupervised algorithms 

depending on the need or not of training samples that 

represent each class.  

Figure 1. Classification accuracy using RMS and Entropy 

versus Wavelet Energies for three movements 

 

 In our experimentation and mainly for simplicity reasons 

we adopted a supervised classifier, the k-NN. Since it is a 

supervised algorithm we separate the input sEMG data 
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form the NINAPRO database into two set, one for the 

training set and the rest for the test set with a small 

percentage of training and a larger set of testing data. In 

similar research works in literature, the size of the two set 

usually was chosen of the same size by dividing the whole 

set of data by two. 

 

Summarizing all the above we would like to highlight the 

influence of the different parameters involved in the 

proposed classification scheme:  

a) Scenarios developed include two and three 

movements with 30% training. We tried an 

increase to 50% for the training set. (Fig.2a) 

b) The comparison was implemented between 

similar simple features for sEMG found in 

literature, like Root Mean Square (RMS) and 

Entropy, and wavelet energies. 

c) All the features are extracted using window sizes 

of 100ms, 250ms and 500ms. The windows were 

overlapped.(Figure 2b) 

 

 

Figure 2a. Impact of change in training percentage 

 

 

 

Figure 2b. Changes caused by reducing the time window 

 

Combining all the above, we came to the conclusion, that 

the use of the wavelet energy values estimated on the 

sEMG signals, from the NINAPRO database, results a) to 

a significant improvement to the classification rate of 

movements include within the NINPRO database and b) a 

reasonable accuracy which movement a user is 

performing, even without a training phase for that user. 

This is more obvious in the next Figures 3a and 3b in 

which the line that corresponds to the performance 

achieved by the use of the wavelet energies is at a higher 

level independently to the parameter values that are 

chosen (30%-50% for the training set and 250-500ms for 

the window size) 

 

 
Figure 3a. The overall performance of RMS and Entropy 

for different settings 

 

 
Figure 3b. Performance of Wavelet energy for the same 

input values 

 

In Table 1 the standard deviations along with the 

experimental results for the mean value of sets of two and 

three movements classification are presented, all with a 

time window 500ms and training set- testing set ratio 

approximately equal to 1/3 (30% for training, 100% for 

testing). Although the standard deviation is fairly low and 

does not show an unstable system, in future work methods 

for more linearity will be applied, in order to secure a 

versatile system in different sets of data. The results look 

promising, and the system will be tested with different 

datasets of surface Electromyography data in order to 

validate its true efficiency.  
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 Two movements Three movements 

 Rms+Entropy Wavelet 

Energy 

Rms+Entropy Wavelet 

Energy 

Standard 

deviation 

± 1,8877 ±4.7447 ±1.4002 ±2.7501 

Accuracy 

(%) 

72.92 85.23 61.22 77.94 

 

Table 1. Comparison between standard deviations and 

classification accuracy 

 

 

The trials were repeated 50 times each, each time with 

different movements picked up randomly, without 

interruption. The effect of increasing the movements 

tested has an interesting conclusion to give. Although as it 

was natural, increasing the movements decreases the 

classifiers performance, there seems to be a stabilized 

overall accuracy over the samples used. In Figure 4, the 

performance for two and three movements is presented, 

both when using RMS and signal Entropy as features, and 

when using Wavelet Energy. 

 

 
Figure 4. Mean values of 50 experiments for two and 

three movements 

 

 

 

 

5.   Conclusion 

  

The use of simple in implementation of sEMG signal 

measures, energies, on the wavelet domain improves the 

movement classification performance significantly. We 

tested the proposed approach on sEMG signals included 

in the standard, for bio-robotics application, NINAPRO 

database. Based on the nature of the energy values on the 

time / frequency decomposition of the sEMG signal and 

the above described experimentation scheme we came to 

the conclusion that these values can contribute in the 

increase of the movement recognition in a number of 

important application like, robotics, prosthetics etc. The 

wavelet energies can significantly contribute along or not 

with other features to higher movement classification rate 

even in cases that the system is not trained for a specific 

user.  

From this point of research there are a number of relevant 

topics that can be investigated in order to set-up a simple 

mathematical framework for such applications of 

movement classification. Some of these attractive future 

research trends can be the comparison of the already 

proposed feature sets but estimated on the time / 

frequency domain, the comparison of the results with 

other supervised classifiers that can possibly bring better 

results than the k-NN. Finally, since the proposed 

framework is a simple one, its hardware implementation 

is a feasible task and especially useful either for use by 

clinicians or by humans that are affected. 
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