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ABSTRACT 
In this paper, we develop and test a system for integrating 

transformed information of the 12 lead stress ECG 

signals, at the classifier real-valued output level. A 

coronary artery disease data set was collected and utilized 

in this study. Four types of features were extracted using 

the discrete cosine transform, two levels of the discrete 

wavelet transform, and dimensionality-reduced data using 

principle component analysis. For each feature type, 12 

neural networks were trained and tested using the 

backpropagation algorithm. Several experiments have 

been conducted to test this system. Results have 

demonstrated superior performance when using a fusion 

of 12 classifier output values, compared to single lead 

classifier systems. We observed that a 3-level discrete 

wavelet transform has computed 95-100% performance 

success rates, using sensitivity, specificity, or accuracy.  
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1. Introduction 

According to the American Heart Association, each year 

about 295,000 emergency medical services-treated out-of-

hospital cardiac arrests occur in the US, alone. This fact 

suggests a need for an emergency automated system for 

the detection of heart disease. 

        The electrocardiogram (ECG) is an important 

biomedical signal that is used to understand the heart 

activity. The exercise stress ECG is used as an indirect 

method for assessing individuals for limitation of 

coronary blood flow due to obstructive coronary artery 

disease (CAD). The reliability of the changes in the 

exercise ECG in predicting patients who have significant 

coronary disease is dependent on the prevalence of the 

disease in the population being tested [1]. The 

repolarization phase of the ventricular depolarization, the 

ST segment, is used for assessment of ischemia. 

Traditionally, one millimeter of depression of the ST 

segment from the baseline lasting for 80 milliseconds 

following the J point (end of the ventricular 

depolarization or QRS complex) and occurring in at least 

three consecutive QRS complexes is indicative of 

ischemia, when comparing stress to rest ECG signals (see 

Figure 1). 

 

 

   
(A)                                       (B) 

Figure 1. A normal ECG beat is shown at rest in (A), and 

an abnormal beat using stress ECG with horizontal 

ST depression that is 2 mm from the PQ segment is 

shown in (B) 

 

        Research publications have been conducted to detect 

abnormality in the ECG signals such as [2][3][4]. A 12 

lead ECG system is a standard measurement of the heart 

activity using 12 leads. These leads are divided into two 

main groups: limb group (I, II, III, VF, VL, VR) and 

precordial group (v1, v2, v3, v4, v5, v6). The electrodes 

that correspond to the leads are attached to specific points 

on the patient body in order to record the electric activity 

in the heart. According to [5], there exists a relation 

between the individual 12 leads that are utilized to 

generate the entire set of 12 lead signals, such a subset of 

leads may be used to generate a diagnosis.  There are 

research works that have addressed this subject, such as 

[6][7][8].  

        Information fusion has been successfully applied to 

pattern recognition problems such as biometric based 

identification, where the ultimate goal is to identify a 

person based on his or her physiological characteristics 

[9].  Another domain for information fusion is seizure 

detection. For example, research was been conducted with 

the objective of enhancing seizure recognition accuracy 

by integrating ECG and EEG signals [10][11].  

        Information fusion may be implemented using at 

least one of four different processing levels: raw data, 
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extracted feature vectors, matching or classification 

output, and/or the final labeling decision(s). At each level 

of fusion, the amount of information available for fusion 

decreases, as shown in Figure 2. Suppose we want to do a 

fusion of ECG lead signals at level 1 (raw data), then the 

amount of information available at this level would be the 

fully recorded raw signals [9]. If we consider the fusion at 

level two (feature vectors), then we would be combining 

together two (or more) extracted feature vectors. Fusion at 

level three combines together continuous values that 

correspond to output units, as detailed in Section 2.4, 

below. Finally, a level 4 fusion may be implemented 

using a logical operator on a single bit domain, i.e., 0 or 1.  

Figure 2 illustrates the relation between the levels of 

fusion, in terms of information size [12]. 

 

 
Figure 1. Information fusion levels 

 

        In this study, a CAD detection system using stress 

ECGs is introduced. The novelty of the system is 

comprised of the integration of the 12 lead ECG signals 

on the matching level. We have considered this level of 

fusion because the integration at this level is inexpensive, 

computation-wise, compared to earlier levels (raw data or 

feature vectors), and yet there is still a fairly enough 

amount information to be considered.  

        The rest of the paper is organized as follows: Section 

2 describes the methodology. Experiments and results are 

introduced and discussed in Section 3, and finally, Section 

4 concludes this paper. 

 

2. Methods 
 

The integration of the 12 lead stress ECG for CAD 

detection involves four main components: preprocessing 

and segmentation, feature extraction, model integration, 

and classification. Figure 3 illustrates an overview of the 

complete system with two phases. The first phase starts 

with acquiring the stress ECG signal bank using the 

standard 12 lead stress ECG system. The lead raw signals 

are fed into the preprocessing stage in order to improve 

signal quality by removing noise that may be presented to 

the signal. Next, the segmentation stage segments and 

selects one heart beat signal for every lead. In the third 

stage, the segmented ECG signal is passed through feature 

extraction in order to extract features that characterize 

beat information so that it becomes feasible for a trained 

classifier to distinguish between normal and pathological 

data. Next, a model selection algorithm determines an 

optimum neural network structure that would be used to 

train and test corresponding lead data. Next, the 

evaluation stage trains and tests the fusion of all neural 

network models used for each lead signal. Finally, neural 

networks are tested using test data. The remainder of this 

section describes system components in detail. 

 

 
 

Figure 2. System overview 

 

2.1 Database 

 

A data set consisting of 65 patients was selected from a 

database of ECG stress test patient data that was collected 

during years 2002-2004 at the University of Missouri 

Hospital Cardiology Division. Patient ages ranged from 

38 to 77. Most patients were men. ECG signals were 

selected such that 33 of the group were labeled normal 

and 32 abnormal. 

        ECG signals were labeled normal if their 

corresponding patients had no known history of coronary 

disease and if their rest and stress test ECG signals were 

both normal (no ST segment changes with exercise). 

        EGG signals were labeled abnormal if two 

conditions were met. First, their stress test EGG signals 

were abnormal, in comparison to rest, demonstrating at 

least 1 mm horizontal ST segment depression that lasted 

for 80 msec. Secondly, a patient must have had a prior 

history in at least one of the following three events: 

myocardial infarction, percutaneous coronary 

intervention, or coronary bypass surgery. 

 

2.2 Pre-Processing 

 

The targets of the pre-processing stage are to detect the 

QRS complex and to remove both baseline drifting and 

noise. For QRS detection, we have adopted the cubic 

spline technique (CST) to find the knots of the QRS 

complex [13]. In this technique, 3 points have to be 

determined: the starting point, endpoint, and the Fiducial 

point (the inflection point leading to the Q point valley) of 

each QRS complex. Next, CST builds a synthetic 

wandering curve by fitting the 3 points to a (third order) 

polynomial function.  
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        To eliminate baseline wandering, CST computes the 

deference between the original ECG signal and the 

synthetic wandering curve.  Figure 4 illustrates a few 

examples that show successful removal of the baseline 

wandering using CST. 

 

 

 

 

 

 
 

Figure 3. Examples that demonstrate the successful 

removal of the baseline drifting 

 

        In order to filter out noise, wavelet transformations 

are applied to ECG signals. A wavelet is a small signal or 

an excursion that has a limited time duration. We used a 

Symlet wavelet for a discrete wavelet transformation 

(DWT). DWT filters the ECG signal into low and high 

frequency parts that are also called approximation and 

detail components, respectively. More information and 

details about DWT are covered in Subsection 2.3.2, 

below.  

        In the pre-processing stage, DWT is used in order to 

remove high frequency noise, using the following three 

steps. First, DWT transforms an ECG signal using a low-

pass filter (g) and the high-pass filter (h). Next, the low-

pass filter response is kept for the reconstruction of the 

ECG signal, while the high-pass filter response (high 

frequency noise) is ignored. Finally, we took the inverse 

of the low-pass filter response, and this last response 

signal is treated as the new, reconstructed and filtered 

ECG signal. 

Having removed the baseline wandering, lead signals 

are expected to have beats that are fitted to the baseline. 

We have adopted a strategy to pick one beat for the next 

stage of computation. In order to avoid the first and last 

few beats that may have some extra noise components, we 

have consistently picked the 5
th

 beat in every ECG lead 

signal.  

        It is imported to point out that we had to deal with 

leads that have negative values. Basically, the pre-

processing procedure has the same processing over all 

leads except for leads v1, v2, aVR and aVL, as shown in 

Figure 5. These leads have mostly negative values, and 

this indicates that the QRS peaks are inverted along the 

baseline. In order to deal with this computational 

exception, we inverted leads v1, v2, aVR and aVL signals 

before applying the same pre-processing procedure, 

described, above. 

 

 

 

Figure 4. Negative-valued leads   

 

2.3 Feature Extraction 

 

This subsection elaborates on the two transformations 

used to extract features from ECG signals, namely, the 

discrete cosine and the discrete wavelet transforms. 

Moreover, we discuss principal component analysis, a 

known algorithm for dimensionality (features) reduction 

that we used in a separate set of experiments. 

 

2.3.1 The Discrete Cosine Transform (DCT) 

 

DCT is a well-known technique in signal and image 

processing. Basically, it has the power to compute signal 

energy, which is one of the most important characteristics 

of input signal information [14]. Moreover, research has 

shown that the first 20% of the DCT transformation has 

sufficient information that can be used to reconstruct the 

entire original signal [15]. Figure 6 shows as an example 

of one patient ECG signal’s DCT.  

 

 
 

Figure 5. DCT Feature Extraction: A) the original ECG 

signal, B) the full DCT transformation, or y(k), C) The 

final extracted DCT feature values (signal) 

 

        DCT uses the following formula to compute its 

response (i.e. transformation), y(k): 
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where 1,2,3,...n N , x(n) is the original ECG signal, 

and  ( ) are the DCT coefficients   
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2.3.2 The Discrete Wavelet Transform (DWT) 

 

The discrete wavelet transform (DWT) is a known signal 

analysis technique that has been successfully applied in 

several research works for the extraction of discriminant 

signal features [16][17]. DWT is computed by convolving 

(and effectively, down sampling) the ECG signal using a 

mother wavelet, at a dyadic scale. A mother wavelet is the 

wavelet that is being considered at a certain transform 

computation. A dyadic scale refers to the down sampling 

scale and is computed using the base 2, such as 

(         ). Therefore, candidate scale values would be: 

2, 4, 8, 16, 32, …etc.  

        The convolution of the signal with the DWT is 

defined as follows [16]: 

       ( )  ∑ ( )   (      )
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where * is the convolution operator, x(.) is the signal and 

g(.) and h(.) are the low-pass and high-pass filters, 

respectively. Finally, the ψ wavelet is computed by 

dilating and shifting the mother wavelet: 

 

 (   ) ( )    √     ((   )  ) 
 

where a and b are the scaling and shifting parameters, 

respectively. 

        The wavelet is convolved with the original ECG 

signal in order to compute transformation coefficients that 

emphasize portions of the signal that have similar wavelet 

structure and characteristics. Transformation coefficients 

also deemphasize the other signal portions that are 

dissimilar to the wavelet. Therefore, the wavelet 

transformation coefficient values measure the similarity 

between a wavelet and signal parts [18]. Due to the 

similarity nature in the transformation, the output values 

of the wavelet transformation heavily depend on the 

mother wavelet selection [18]. For all of our DWT feature 

extraction, we have chosen the symlet 12-tap wavelet 

(shown in Figure 7), mainly because of its structure that is 

similar to a normal QRS complex structure. 

        In our experiments, we have considered two levels of 

DWT transformations via two passes. During the first 

pass, the ECG signal is filtered into the approximation 

and detail coefficient signals. We selected the first level 

approximation components to be our feature vector, 

named DWT1, that will be used in the classification stage, 

next. 

 

 

Figure 7. Symlet 12-tap wavelet 

 

        Bushra et al. [19] recommended that level 8 

approximation components are a better choice for an ECG 

dataset. Therefore, we repeated the filtering process using 

the approximation components from level 1 into level 2 

(scale value 4) in order to feed into the third level (scale 

value 8). Next, the approximation components of level 3 

are named the DWT2 feature vector. Figure 8 illustrates 

the multi-level DWT feature extraction. 

 

 

Figure 8. Multi-level DWT feature extraction: A) Level 

one, only ; B) Levels one, two, and three 

2.3.3 Principal Component Analysis 
 

Principal component analysis (PCA) is a mathematical 

method that stems from linear algebra and has been 

successfully applied to dimensionality reduction and/or 

feature selection of data that have correlated dimensions. 

PCA computes the uncorrelated variables of all the data 

using the correlation matrix as follow: 

   (     ) 
where E is the expectation function and X is the full data 

matrix. So the reduced space using PCA is computed as: 

           
where λ_P is a subset of eigenvectors computed using the 

following formula: 
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λ_q is the eigenvector and q∈p , and v is the 

corresponding eigenvalue. 

        In a separate set of experiments, we compute PCA 

for the pre-processed ECG beats in order to compute 

PCA-reduced feature vectors, as described in Section 3, 

below. 

 

 

2.4 Information Fusion and Classification  

 

In order to classify patient data into either normal or 

abnormal ECG signals, we have integrated 12 multi-layer 

perceptron (MLP) classifiers that were trained using the 

backpropagation algorithm.  MLP is a common artificial 

neural network technique that has been frequently used 

for classification problems. Although MLP has a 

mathematically sound algorithm – backpropagation - that 

computes the gradient at each step in order to approach a 

global minimum error, it is considered sometimes to be 

like a black-box classifier.  This is due to the selection of 

several MLP learning parameters, such as the selection of 

training subset samples, network topology (number of 

hidden layers), the number of neurons for each layer, 

activation functions, and the learning algorithm. Such 

parameters and/or functions may not necessarily compute 

the same target discriminant boundary for the same 

problem, every time. However, once the overall 

classification system efficiently determines the MLP 

learning parameters, the system will reuse the parameters 

on the new testing data in order to distinguish between 

normal and abnormal signals, efficiently.  

        The MLP network topology was set to be the same 

for all ECG leads in all experiments. The names of the 12 

MLPs correspond to the numbering of the 12 leads. For 

example, the system uses MLP1 for a neural network that 

classifies lead I data, MLP2 for lead 2 data, and so on. 

Experimentally, the MLP structure has been determined 

to consist of three layers: 1 input, 1 hidden, and 1 output 

layer. On the other hand, experiments have been carried 

out using different parameters for different MLPs, in 

order to target an enhanced classification of different lead 

signals. Figure 2, above, illustrates the combination of 

MLPs at the testing phase.  

        The algorithm directs the system to select its 

parameters from a predefined set of values as tabulated in 

Table 1. 

        The output of each MLP may be interpreted as a 

score value that predicts whether a given input belongs to 

the positive class (i.e. the disease). The higher the value of 

the score, the higher the probability that the input 

(transformed) signal exhibits an abnormal pattern.  

        There are several information integration metrics that 

have been studied, previously. The average sum rule is 

among the strong statistically sound information fusion 

technique that was proven to combine information 

efficiently [12].  Therefore, we have adopted an average 

sum rule fusion in order to combine the output of the 12 

MLPs into a single value that is named the Fusion value. 

 

 

Table 1 

MLPs set of parameters 

H.layer 

Neurons 

Act. 

Fun(H) 

Act. Fun 

(Out) 

Training Alg. 

10 

Purelin Tansig Trainlm 

Tansig Purelin Traincgf 

Purelin Logsig Trainlm 

Logsig Tansig Traincgf 

20 

Purelin Tansig Trainlm 

Tansig Purelin Traincgf 

Purelin Logsig Traincgf 

Logsig Purelin Trainlm 

Logsig Purelin Traincgf 

Logsig Tansig Traincgf 

 

The system computes the Fusion value as follows: 

 

       
 

 
 ∑  

 

   

 

 

where yi is the prediction score of MLPi , and i =1,  2 … 

12. 

        The fusion score is fed to a one-bit threshold 

decision unit, i.e., has either one of 2 values: {0, 1}, using 

the following standard threshold rule:  

 

   {
                          
                    

 

where D is the system decision, C1 and C2  are the 

normal and abnormal classes, respectively. A decision 

with a 0 value implies absence of the disease, whereas a 

decision with value 1 implies presence of the disease. 

 

 

3. Experiments and Results 
 

This section shows and discusses the experiments and 

results. Every lead has 33 ECG samples representing the 

positive (CAD-labeled) class and 32 samples representing 

negative class. To train and test the system, we have 

divided the data into 70% training and 30% testing 

segments. The reported performance is computed using 

only the testing data. 

        We have done several experiments using four types 

of feature vector sets: DCT, DWT1, DWT2, and PCA as 

discussed, above. The dimensionality of each type is 

different. For the DCT feature type, the algorithm selected 

only 33 out of a hundred coefficients because around the 

third of the DCT response can be used to reconstruct the 
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original signal, as illustrated in Figure 6, above. Both 

DWT1 and DWT2 computed 62 coefficients, each. These 

numbers were picked due to down sampling a given beat 

DWT response signal into an approximation and detail. 

Only the approximation is kept for the training and testing 

stage, as explained, above. PCA selects only a set of pre-

processed data features ranging from 6 to 9 points for 

each beat. In this sense, at least 90% of the information 

variance was retained.  

        Figure 9 illustrates the DCT-related results. Lead-v5 

shows the best results in comparison to the other single 

leads taken one at a time. The MLP performance using the 

fusion of 12 multiple leads has generally outperformed 

the lead v5 computed performance, or was at least 

matching it in one case for DCT data case, as shown, 

below. This demonstrates the significance of using the 

fusion technique 

 

 
 

Figure 6. DCT performance 

        Figures 10 and 11 illustrate DWT1 and DWT2 

related results. It can be observed that the performance 

using DWT1 and DWT2 on lead-v5 is better than those 

corresponding to other leads. Fusion in both cases has a 

higher performance compared to using any single lead, 

alone.  

 

 
 

 Figure 7. DWT1 performance 

 

Figure 8. DWT2 performance  

        Figure 12 shows that using PCA on pre-processed 

data as described, above, lead-v6 has better performance 

over other leads. However, lead-v6 has poor specificity 

that reduces its general performance. Our interpretation of 

the fluctuation in the results of v5 and v6 leads for this 

PCA data set is that there is a measurable effect that is 

due to the reduction of the extracted feature vectors 

dimensionality. This reduction appears to have caused the 

loss a certain amount of information that was significantly 

needed during the training process. 

 

 
 

Figure 9. PCA performance  

 

        Overall, Fusion has a stable performance, compared 

to using data from any other single lead. Its sensitivity and 

specificity have almost identical high values. Therefore, 

we can say that the fusion of the 12 lead data at the 

matching level better models the complex dynamics of the 

CAD data set classification.  

 

 

4. Conclusion 
 

Experimentally, this paper has shown that the fusion of 

real-valued classifier outputs establishes a performance 

upper bound, compared to that of classifiers that 

correspond to individual leads in a 12 lead system.  

Results have shown that a combination of classifiers 

corresponding to 12 lead ECG recordings computes either 

an improved system performance or a performance that is 

at least comparable to classifiers corresponding to 
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individual leads, using a coronary artery disease data set.  

Moreover, a fusion model is relatively more stable and 

more consistent when performance was measured using 

specificity, accuracy and sensitivity. 

        Wavelets have shown strength in extracting beat 

information that is similar to a mother wavelet. Of special 

interest was the 3-level discrete wavelet transform that 

has computed 95-100% success rates using sensitivity, 

specificity, or accuracy. 

        On the other hand, dimensionality reduction appears 

to show some risk and therefore, caution is advised when 

reducing data dimensionality.  

        Results also confirmed that v5 is a very important 

lead that may be used for CAD diagnosis, especially if a 

system is to base its diagnosis using only one lead. 

        Future work includes doing more experimentation 

using other data, such as arrhythmia, building a 

mathematical support for using a fusion of classifier real 

valued output, and exploring other feature extraction 

strategies. 
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