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Abstract

In this paper, a novel real-time 3D dense semantic mapping system,

SemanticSurfel, is proposed to integrate semantic segmentation

results, poses, depth graphs into the constructed map, and to

scale well in large-scale environments. First, a lightweight semantic

segmentation network, HybridNet, is designed with efficient Hybrid

Basic Blocks and Hybrid Dilated Blocks in the encoder and

Attention Pyramid Module in the decoder to accurately and

efficiently segment the input image at pixel level. Then, super-pixels

extracted from semantic, depth, and intensity graphs are used to

construct surfels to build the 3D dense semantic map according to

the pose graph of a sparse SLAM system. Extensive experiments

were carried out to evaluate the performance of HybridNet and

SemanticSurfel. Experimental results demonstrate that HybridNet

achieves a good balance between accuracy and hybrid efficiency, and

the SemanticSurfel system achieves great accuracy and scales well

in large-scale environments.
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1. Introduction

The inclusion of semantic information within a dense
map is essential for mobile robots to work autonomously
in the surrounding world. Simultaneous localisation and
mapping (SLAM) algorithm is an important technology
to estimate the robot poses and map representation of
the environment. However, the maps obtained by most
SLAM systems contain only the geometric information,
which is susceptible to changes of illumination and scene
appearance of the environment. Besides, these maps are not
suitable for autonomous tasks other than localisation, such
as autonomous exploration in an unknown environment,
human activity recognition [1], or scene understanding
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[2]. To address these issues, robots need to be able to
understand the environment more intelligently, i.e., at the
semantic level. This can be achieved by constructing a
3D dense semantic map of the environment with sufficient
semantic and geometric information. In order to be
deployed on mobile robots with limited computing and
memory resources, especially in large-scale environments,
the mapping system needs to be highly efficient in
computing time and memory footprint.

The first step of the semantic mapping system is to
extract the semantic information from the environment.
Traditional image segmentation methods, such as Texton
Forest [3] and Random Forest [4], relied on the brightness,
colour, and texture of the image, and they achieved
poor performance on complex images and could not get
pixelwise segmentation. More recently, deep learning-based
methods have made significant progress. He et al. [5]
proposed Mask-RCNN to get bounding box of objects in
the scene and then perform pixel-level semantic labelling.
It achieved good segmentation accuracy but required very
high computing resources. Aimed at obtaining the best
accuracy under a limited computational budget, many
works have been dedicated to design lightweight networks.
Badrinarayanan et al. [6] proposed to use an encoder–
decoder network architecture in SegNet, and Paszke et al.
[7] proposed ENet which uses dilated convolutions as the
main convolution unit to further improve computational
efficiency. Zhao et al. [8] incorporated multi-resolution
branches under proper label guidance in ICNet to reduce
the amount of computation. Romera et al. [9] proposed
to use residual connections and factorised convolutions in
ERFNet to improve network accuracy and efficiency. In
the same year, Zhang et al. [10] proposed ShuffleNet, which
improved the accuracy and efficiency of the network using
channel shuffle and split. Besides computational efficiency,
many researches focused on reducing network parameter
size to save memory footprint. Wang et al. [11] proposed
an attention pyramid network in LEDNet which had a
lighter network structure and smaller network parameter
size. Wu et al. [12] developed CGNet with several context-
guided blocks that could learn joint features from local
features and surrounding contexts and then improved the
joint feature with global context, thus reduced network
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Figure 1. SemanticSurfel system framework.

parameter size. However, these above networks cannot
achieve good results in improving segmentation accuracy,
improving computational efficiency, or saving memory
footprint in one network.

The second step of the semantic mapping system is
to integrate the 2D semantic segmentation result into
the SLAM system to get 3D dense semantic map of the
environment. Salas-Moreno et al. [13] proposed SLAM++,
which mapped indoor scenes at the level of semantically
defined objects. However, this method was limited to
mapping objects in a pre-defined database. Kundu et al.
[14] proposed a conditional random field (CRF) model that
jointly inferred the semantic category and occupancy for
each voxel, and produced a 3D volumetric semantic map.
Grinvald et al. [15] proposed an approach to incrementally
build volumetric object-aware maps. It segmented the
input frame with an unsupervised geometric approach in
combination with an instance-aware semantic prediction
to detect objects and fused information about their
3D shape, location, and semantic class into a global
volume. However, these volumetric maps required powerful
computing resources. Surfel-based or mesh-based methods
were more efficient as these methods did not store all
the voxels of objects in the environment but only the
surfaces. Stückler and Behnke [16] proposed random
decision forests to obtain pixelwise semantic predictions
of each incoming frame and then fuse the segmentation
results into a surfel map by Bayesian estimation. In
order to further improve the computational efficiency,
McCormac et al. [17] proposed SemanticFusion, which used
a convolutional neural network (CNN) to obtain pixelwise
semantic segmentation result and integrated them into the
surfel map constructed by ElasticFusion through Bayesian
estimation. But the network parameter size was too large.
And Dung and Capi [18] proposed to use depth image
camera to do semantic mapping, however, depth camera
has a small range and is only suitable for small-scale scenes.
Hence these methods were not suitable for mobile robots
in large-scale environments.

Therefore, the main contributions of this paper are:
• A lightweight semantic segmentation network, Hybrid-

Net, is proposed for segmenting the scene at pixel
level. In HybridNet, an asymmetric encoder–decoder
network structure is designed with efficient Hybrid
Basic Blocks and Hybrid Dilated Blocks in the encoder

and Attention Pyramid Module in the decoder to
achieve a good balance in the segmentation accuracy,
computational efficiency, and memory footprint.

• A novel SemanticSurfel system integrating HybridNet
and super-pixel-based surfel map construction is
proposed to construct 3D dense semantic map of large-
scale environments in real time. In the SemanticSurfel
system, super-pixels are extracted from semantic,
depth, and intensity graphs to model surfels. Then
these surfels are constructed into the map according to
the pose graph of a sparse SLAM system.
This paper is organised as follows. Section 1 introduces

the background and related works. Section 2 provides
an overview of the SemanticSurfel system framework.
Section 3 introduces the lightweight semantic segmentation
network HybridNet. Super-pixel construction and surfel
map construction are described in detail in Sections 4 and
5, respectively. Experiments and discussion are presented
in Section 6. Finally, a conclusion is drawn.

2. System Framework

The framework of the proposed SemanticSurfel system
is shown in Fig. 1 with three stages, such as semantic
segmentation, super-pixel construction, and surfel map
construction.

In this framework, the input is each image and
IMU frame at the current time period. During semantic
segmentation stage, the proposed HybridNet assigns
semantic label to each pixel of the input image frame. In the
super-pixel construction stage, the depth graph is evaluated
by the depth evaluation network, and the super-pixels are
extracted by an augmented SLIC algorithm using semantic,
depth, and intensity information comprehensively. Finally,
in the surfel map construction stage, ORB-SLAM [19] is
used as the localisation system to provide pose graph of
the camera. With the poses of the camera, the 2D super-
pixels are constructed into the surfels in 3D space. And as
the camera moves, all the surfels will be fused together to
obtain the 3D dense semantic map of the environment.

3. Semantic Segmentation: HybridNet

In this section, a lightweight semantic segmentation
network, HybridNet, is proposed with an asymmetric
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Figure 2. HybridNet network structure.

encoder–decoder network structure in Fig. 2. The encoder
extracts feature maps of different levels from the input
image. Two complementary convolution blocks, Hybrid
Basic Block and Hybrid Dilated Block, are designed in
the encoder to guarantee the continuity of the extracted
features and large receptive field of the kernel. Hybrid
Basic Block can extract features continuously from the
image, but its receptive field is limited in size. On the
contrary, Hybrid Dilated Block has a larger receptive
field but the kernel is discontinuous. In the subsequent
decoder, an Attention Pyramid Module is designed to
capture the context information at different scales without
introducing additional computational requirements. Then
the extracted feature maps are upsampled to ensure the
input and output have the same resolution. Table 1
is a detailed description of the network structure and
parameters of each layer.

In the encoder, Downsampling, Hybrid Basic Blocks,
and Hybrid Dilated Blocks are used in combination to
extract features from the input image. From layer 1 to layer
8 of the network, the resolution of images at each layer is
relatively large. Therefore, Hybrid Basic Block with a small
kernel is adopted to perform convolution operation, which
reduces the requirements of computing resources and is
conducive to extracting the basic features of images.

Hybrid Basic Block: As shown in Fig. 3, three
techniques, such as channel split and shuffle, spatial
separable convolution, and residual connection, are
adopted in Hybrid Basic Block. The input feature channels
are splitted into two equally sized groups at the beginning
of each block. By this split operation, each group

Figure 3. Hybrid Basic Block.

has half number of channels, hence the computational
cost of subsequent convolution operation is affordable
under a limited computation budget. At each group,
spatial separable convolution is used to extract features.
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Table 1
Hybrid Network Structure Description

Layer Module Channel Output Size

Encoder 1 Down sampling 32 512 × 256

2–3 Hybrid basic block 64 256 × 128

4 Down sampling 64 256 × 128

5–6 Hybrid basic block 128 128 × 64

7 Down sampling 128 128 × 64

8 Hybrid basic block 128 128 × 64

9 Hybrid dilated block (dilation = 2) 128 128 × 64

10 Hybrid dilated block (dilation = 5) 128 128 × 64

11 Hybrid dilated block (dilation = 7) 128 128 × 64

12 Hybrid dilated block (dilation = 9) 128 128 × 64

13 Hybrid dilated block (dilation = 11) 128 128 × 64

Decoder 14 Attention pyramid module 20 256 × 128

15 Upsampling 20 512 × 256

16 Upsampling 20 1024 × 512

The spatial separable convolution replaces the 3 × 3
convolution kernel with the joint convolution of 3 × 1
and 1 × 3, which reduces the number of parameters by
33%. After spatial separable convolution, two groups are
combined to ensure the input and output have the same
number of channels. And to avoid the vanishing gradient
problem during the training phase, residual connection is
adopted to superimpose the input feature channels and
the feature channels after spatial separable convolution.
Finally, channels are reordered by channel shuffle to enable
information communication.

At layers 9–13 of the network, the image resolution
becomes smaller after downsampling, and the computation
requirements are greatly reduced. Hence Hybrid Dilated
Blocks with large dilation rate are adopted for convolution
operation, so as to obtain a large receptive field
and improve the distinction between small objects and
background as well as the segmentation accuracy.

Hybrid Dilated Block: For the sake of efficiency, small
convolution kernels are adopted in Hybrid Basic Block. The
drawback is that the receptive field is limited and is not
conducive to the communication of context information.
To address this issue, dilated convolution is applied
in Hybrid Dilated Block, as shown in Fig. 4. Dilated
convolution improves the receptive field of the convolution
operation without introducing additional parameters,
which is beneficial to improve accuracy while maintaining
efficiency. Compared with larger convolution kernels, the
receptive field of dilate convolution increases exponentially
as the dilation rate rises, but it does not bring additional
requirements for computation and memory resources,
as the number of parameters remains unchanged. The
potential problem of dilated convolution is that the kernel

Figure 4. Hybrid Dilated Block.

is discontinuous, which means not all pixels are involved
in the convolution operation, so there will be information
loss. To ensure the richness of feature information, dilated
convolution is used only for the latter two units in spatial
separable convolution, and the dilation rates of the Hybrid
Dilated Block used in layers 9–13 are pairwise co-prime.
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Attention Pyramid Module: Attention Pyramid Mod-
ule is designed in the decoder (layer 14 of the network),
so as to capture multi-scale context information without
affecting the efficiency. The Attention Pyramid Module
has a multi-branch structure, which transfers the feature
maps obtained by the encoder to four branches, such as
a 9 × 9 convolution branch, a 1 × 1 convolution branch,
a maximum pooling branch, and a downsampling branch,
as shown in the middle of Fig. 2. The 9 × 9 convolution
kernel has a larger receptive field than the convolution
kernel in the encoder, hence has a stronger ability to
obtain features. Moreover, after downsampling, the input
feature maps of this layer have small resolution, so the
9 × 9 convolution will not bring too much computation
burden. The role of the 1 × 1 convolution branch is
to enable information communication between different
feature channels, hence improving the richness of the
features. The maximum pooling branch filters out small
values to obtain the information of high global priority. The
downsampling branch reduces the image resolution twice
and obtains information at different scales, then the feature
information are cascaded through pyramid structure.

At the end of the Attention Pyramid Module, the
features outputted by each branch are cascaded together
and then upsampled at layers 15 and 16 to restore the image
resolution and obtain the final semantic segmentation
result. Bilinear interpolation is adopted for upsampling,
which does not require convolution operation. Compared
with the commonly used transpose convolution method,
bilinear interpolation requires fewer parameters and has
high computational efficiency.

4. Super-pixel Construction

In the SemanticSurfel system, super-pixel-based surfels
are used to construct 3D dense semantic map of the
environment. Using super-pixels instead of pixels as the
basic unit can effectively reduce the amount of data to
be processed and reduce the memory footprint, which
is more suitable for mobile robots working in large-scale
environments. In addition, in the process of super-pixel
extraction, semantic, depth, and intensity information of
pixels are comprehensively utilised, and only the dominant
information in the super-pixel region is considered.
Therefore, the noise and image blur caused by the moving
camera will be reduced and the map construction accuracy
will be improved.

4.1 Depth Evaluation

Depth information can be obtained directly by RGB-D
camera or calculated by the binocular matching algorithm.
However, RGB-D camera has limited range and is easily
disturbed by sunlight, so it is not suitable for large-scale
outdoor environment. And binocular matching algorithm
is usually difficult to achieve good balance between speed
and accuracy. In the SemanticSurfel system, StereoDNN
[20] network is adopted to estimate the dense depth graph
because of its high accuracy and efficiency.

4.2 Super-pixel Extraction

SLIC is a traditional k -means algorithm for super-pixel
extraction [21]. In this subsection, an augmented SLIC
algorithm that fuses semantic, depth, and intensity graphs
together is proposed.

During initialisation, the input image is divided into
K evenly distributed grids, and each grid is initialised as
a cluster Ci = [xi, yi, di, ci, si, ni, ri]

T , where {xi, yi} is the
centre coordinate, di is the average depth, ci is the average
intensity, si is the number of the pixels in this cluster with
most commonly semantic label, ni is the number of all the
pixels in the cluster, and ri is the cluster radius, which is
the largest distance between the pixels in the cluster to the
centre.

After initialisation, iterations are carried out on all
the pixels to add them to their nearest cluster. In the
iteration process, (1) and (2) are used to judge the
distance of one pixel from the cluster centre, including
the location distance, intensity distance, depth distance,
semantic information, and other factors.

D =
(xi − xu)2 + (yi − yu)2

N2
l

+
(ci − cu)2

N2
c

+
ni

suN2
s

(1)

Dd = D +
(1/di − 1/du)2

N2
d

(2)

where {xu, yu}, cu, du is the coordinate, intensity, and
depth of a pixel u, su is the number of pixels with same
semantic label as pixel u in this cluster, and Dd is the
distance between the pixel and the cluster centre. N2

l ,
N2
c , N2

s , and N2
d are used to normalise location, intensity,

semantic information, and depth, respectively.
When the iteration converges, all pixels are finally

divided, and the final cluster centre {xi, yi} and ci is update
to the mean value of the cluster, depth di is optimised
by Gauss–Newton iterative, with optimisation goal Ed =∑
u Lδ(du − di), where Lδ is the Huber kernel function.

The resulting clusters constitute the super-pixels.

5. Surfel Map Construction

In the SemanticSurfel system, the super-pixels extracted
from the current image are used together with the current
pose of the camera to construct surfels in the 3D global
coordinate frame. And as the camera moves, the newly
created surfels are merged with the existing surfels in the
map to form a consistent 3D dense semantic map of the
environment.

5.1 Surfel Initialisation

The definition of surfel in SemanticSurfel system is Ci =
[Sp, Sn, Sc, Ss, Sr, Sw, St, Si]

T , which represents the 3D
coordinate, normal vector, intensity, semantic information,
radius, weight, fusion counter, and associated keyframe id
of the surfel, respectively.
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For each super-pixel, a surfel is initialised with it
and the pose of the associate keyframe. Intensity Sc and
semantic label Ss are initialised to ci and si of the super-
pixel. Si is the keyframe ID given by SLAM system, and
St is initialised to 0, indicating that the surfel has not
been fused. The weight Sw is initialised to si

ni
, which is

the ratio between the number of the pixels with most
commonly semantic label to the total number of pixels in
this super-pixel.

The normal vector Sn, position Sp, and radius Sr are
initialised using the methods in [22]. Sn is initialised as the
average normal vector of all pixels firstly, and then more
accurate result is obtained by means of optimisation, as
shown in (3):

Es =
∑
u

Lδ (Sn · (pu − p̄) + b) (3)

where pu = R · p2d + t is the 3D coordinates of pixel point,
p2d is the 2D coordinates of the pixel in the current image,
R and t are the rotation matrix and translation vector of
the current camera pose estimated by ORB-SLAM, p̄ is
the average coordinate of all 3D points, and b is used to
estimate bias.

Sp and Sr are initialised using (4) and (5):

Sp =
Sn · p̄− b

Sn · (K−1[xi, yi, 1]T )
K−1[xi, yi, 1]T (4)

Sr =
Sp (z) · ri · ‖ K−1[xi, yi, 1]T ‖
f · Sn · (K−1[xi, yi, 1]T )

(5)

where K is the camera intrinsic parameter matrix, Sp(z) is
the depth of the surfel, ri is the radius of the super-pixel,
and f is the focal length of the camera.

5.2 Surfel Fusion

During the movement of the camera, keyframes are
updated and new surfels are extracted gradually. The
same surfel observed in different keyframes is fused in this
subsection.

When a new surfel Sn is initialised, if a surfel Sl in
the map has the same semantic label with Sn, and the
distance between them and the angle difference between
their normal vectors is less than a threshold, they are
considered to be the same surfel. The judgement criterion
is shown in (6): 

Sns = Sls∣∣Snp − Slp∣∣ < σp

Snn · Sln > σn

(6)

If (6) is satisfied, Sn and Sl are fused into one surfel Sf

by (7), where the coordinate, normal vector, intensity, and
radius of Sf are the weighted sum of the corresponding
parameters of Sn and Sl, Sfi is set to the associate keyframe

id of Sn, Sft is set to the fusion counter of Sl plus 1, and

Sfw is the sum of the weight of Sn and Sl.

Sfk =
Sl
kS

l
w+Sn

k S
n
w

Sl
w+Sn

w
, k ∈ {p, n, c, r}

Sfs = Sns

Sfi = Sni

Sft = Slt + 1

Sfw = Slw + Snw

(7)

Through the surfel fusion process, all surfels are added
into the global semantic map. In order to reduce the size of
the map and deal with outliers, surfels that are more than
10 keyframes away from the current keyframe but updated
less than 5 times will be removed from the map.

6. Experiments and Discussion

6.1 Experiment 1: Semantic Segmentation
Accuracy and Efficiency

6.1.1 Methods and Procedures

Experiment 1 was designed to evaluate the accuracy and
efficiency of the proposed semantic segmentation network,
HybridNet using the Cityscape dataset.

Cityscape Dataset: The Cityscape dataset contains
5,000 images collected in street scenes from 50 different
cities. 2,975, 500, and 1,525 images in Cityscape are used as
the training set, verification set, and test set, respectively.
High-quality pixel-level annotations of 19 semantic classes
are provided in this dataset.

Methods for Comparison: The segmentation result of
HybridNet was compared with several other state-of-the-
art lightweight semantic segmentation networks, such as
ENet, ICNet, ERFNet, and CGNet. ENet and CGNet
have the smallest network parameter size while ICNet and
ERFNet have the highest accuracy.

Evaluation Index: Segmentation accuracy is evaluated
using the common mean-Intersection-over-Union (mIoU).
In this paper, the hybrid efficiency is defined as the index
weighting the computing time and network parameter size
to comprehensively evaluate the computational efficiency
and memory footprint of these networks:

invtime = 1
time

invsize = 1
parametersize

efficiency = α · normalize (invtime)

+ (1− α) · normalize (invsize)

(8)

In practise, time efficiency is more important than
memory footprint, and the speed of CPU and GPU is
evolving slower than the size of memory. Therefore, the
coefficient α used in this experiment was 0.75, which means
we valued more on computational efficiency.

Implementation Protocol: During the training phase,
HybridNet was trained 300 iterations on the Cityscape
dataset. All parameters of the convolution kernels were
initialised by normal distribution with the mean value be
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Figure 5. Semantic segmentation result on the Cityscape dataset.

0 and the standard deviation be 1.0, and the batch size
of each iteration was set to 5. Adam optimizer was used
for training because it has no stationary requirement for
the cost function and handles the sparse gradient well.
The initial value of the learning rate was set to 0.0005,
and adaptive attenuation was used to ensure the early
acceleration and the late convergence. In order to improve
the generalisability of HybridNet, the training set was
augmented by randomly dividing the training set into two
groups, and then move the image 0, 1, or 2 pixels towards
a random direction. All of these networks were deployed
on the same 1080Ti platform.

6.1.2 Experimental Results and Discussion

The semantic segmentation result of HybridNet on the
Cityscape dataset is shown in Fig. 5, where the left

column is the original images, and the right column is
the segmentation results. In the results, different colors
indicate different objects. As Fig. 5 shows, the road, the
pavement, motors, pedestrians, street lamps, road signs,
trees, walls, and the sky are segmented correctly.

Table 2 lists the comparison of the segmentation
results of HybridNet and other networks in terms of the
mIoU, the mean computing time, the network parameter
size, and the hybrid efficiency. According to Table 2, the
accuracy of HybridNet is 68.3%, and the hybrid efficiency
is 0.80. Compared with ICNet (the best accuracy), the
accuracy of ERFNet, HybridNet, CGNet, and ENet is
1.01%, 1.73%, 6.76%, and 16.12% lower, respectively. So
the accuracy of the proposed HybridNet and ERFNet are
very close to ICNet. And HybridNet achieves the highest
hybrid efficiency, which is much higher than other networks.
For instance, CGNet (second rank) is 25.9% lower than
HybridNet.

7



Table 2
Semantic Segmentation Comparison on the Cityscape Dataset

Network mIoU (%) Time (ms) Parameter size (Mb) Hybrid Efficiency

Enet 58.3 34 0.36 0.493

ICNet 69.5 33 7.8 0.262

ERFNet 68.8 27 3.0 0.336

CGNet 64.8 20 0.5 0.593

HybridNet 68.3 11 1.8 0.80

Figure 6. Semantic segmentation comparison in terms of
mIoU and hybrid efficiency. Segmentation result on the
Cityscape dataset.

Visualised comparison between these networks in terms
of mIoU and hybrid efficiency is plotted in Fig. 6. For each
network, the closer it is to the top right corner, the better
its balance between accuracy and hybrid efficiency. As
Fig. 6 shows, HybridNet achieves the best balance, which
is suitable for the real-time operation of mobile robots.

6.2 Experiment 2: Mapping Accuracy and
Efficiency

6.2.1 Methods and Procedures

Experiment 2 was designed to evaluate the performance of
the proposed SemanticSurfel system using the ICL-NIUM
dataset and the KITTI dataset.

ICL-NIUM and KITTI Datasets: ICL-NIUM is a
dataset derived from a rendered room model to evaluate the
accuracy of SemanticSurfel because it includes the ground
truth of the model. The mapping accuracy is evaluated
using the mean difference between the constructed map and
the ground truth. The KITTI dataset contains sequences
from different scenes, such as villages, urban areas, and
highways. The 00 sequence of the KITTI dataset was used
in this experiment to show the real-time application of
SemanticSurfel in large-scale environments.

Methods for Comparison: The mapping accuracy of
SemanticSurfel on the ICL-NIUM dataset was compared
with state-of-the-art methods BundleFusion [23], Elastic-
Fusion, and InfiniTAM [24].

Implementation Protocol: During this experiment, the
SemanticSurfel system was deployed on an Intel i5-7500
CPU platform with an additional embedded Jetson TX2
GPU.

6.2.2 Experimental Results and Discussion

Table 3 shows the performance of SemanticSurfel com-
pared with other methods on the ICL-NIUM dataset,
including mapping accuracy and required computing
resources. According to Table 3, in terms of mapping
accuracy, BundleFusion has the best average while
SemanticSurfel has the smallest variance. So BundleFusion
and SemanticSurfel are comparable in accuracy. In terms
of computing resources, BundleFusion, ElasticFusion, and
InfiniTAM need two or one desktop GPUs, which is not
applicable for real-time implementations in large-scale
environments. Therefore, the proposed SemanticSurfel can
achieve comparable accuracy and also can be applied to
real-time scenarios.

The close shot and overview of the mapping results
of the SemanticSurfel system on KITTI-00 sequence are
shown in Figs. 7 and 8, where red, blue, green, and light
grey area represent the road, buildings, trees, and other
kinds of objects in the environment, respectively. Although
the density of the constructed map is satisfactory for
most applications, more detailed map can be constructed
by introducing high-resolution Lidar as complementary
information in super-pixel construction process in the near
future.

Figure 9 shows the time-consuming of SemanticSurfel
on KITTI-00 sequence. Among all the modules, the SLAM
system, semantic segmentation, and depth estimation
process each frame at about 50 ms, 20 ms, and 11 ms,
respectively. The average processing time of SemanticSurfel
per frame is 88.8 ms, and then the frequency is about
11.3 fps, which satisfies the real-time requirement. And
the processing time remains relatively stable as the
number of frames accumulates. Therefore, it is concluded
that SemanticSurfel system can scale well in large-scale
environments.
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Table 3
Mapping Accuracy and Computing Resource Comparison on the ICL-NIUM Dataset (cm)

Method ICL-NIUM Sequence Computing Resource Real-time Implementation

kt0 kt1 kt2 kt3 Average Variance

BundleFusion 0.5 0.6 0.7 0.8 0.65 0.0167 Two desktop GPU Not applicable

ElasticFusion 0.7 0.7 0.8 2.8 1.25 1.07 One desktop GPU Not applicable

InfiniTAM 1.3 1.1 0.1 2.8 1.325 1.2425 One desktop GPU Not applicable

SemanticSurfel 0.6 0.7 0.8 0.8 0.725 0.0092 Embedded GPU Applicable

Figure 7. KITTI-00 mapping result in close shot.

Figure 8. KITTI-00 mapping result in overview.
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Figure 9. Time -consuming on KITTI-00 sequence.

6.3 Experiment 3: Mapping in Real Campus
Environment

6.3.1 Methods and Procedures

In order to verify the effectiveness of SemanticSurfel in
real environment, this experiment was carried out in the
campus of Harbin Institute of Technology (Shenzhen)
where the mapping area was about 7000 m2. The hardware
platform used in this experiment was a mobile robot with

a ZED stereo camera and an Intel i5-7500 CPU platform
with an additional embedded Jetson TX2 GPU. During
the experiment, 1,831 pairs of stereo images were collected
at the resolution 1280× 720.

6.3.2 Experimental Results and Discussion

The mapping results in the real campus are shown in
Figs. 10 and 11, where purple, pink, blue, dark grey, and
green areas represent the road, pavement, sky, buildings,
and trees, respectively. In the close shot of the mapping
result in Fig. 10, the top row is the original image, the
middle row is the corresponding semantic segmentation
result, and the bottom row is the corresponding map. The
map overview is shown in Fig. 10. Figure 11 shows the
time-consuming of SemanticSurfel in this experiment. As
shown, the average processing time per frame is 123.4 ms,
and then the frequency is about 8.1 fps. Moreover, the
processing time remains relatively stable as the number
of frames accumulates. Therefore, the experimental results
demonstrate that SemanticSurfel system can effectively
build the 3D dense semantic map of real large-scale
environment on a mobile robot.

7. Conclusion

This paper proposes HybridNet and SemanticSurfel, which
can semantically segment the input image at pixel-level
and construct the 3D dense semantic map of the large-
scale environment in real time. In the future, we will focus

Figure 10. Campus mapping result in close shot.
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Figure 10. Campus mapping result in overview.

Figure 11. Time-consuming in real campus environment.

on introducing high-resolution Lidar as complementary
information in super-pixel construction process to obtain
more detailed map, and utilise the constructed semantic
map in mobile robot auto-exploration tasks.
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