
International Journal of Robotics and Automation, 2022

MARITIME TARGET DETECTION FOR

UNMANNED SURFACE VEHICLESBASED

ON LIGHTWEIGHT NETWORKS

UNDER FOGGY WEATHER

Shuyue Li,∗ Junjie Wang,∗ Jinlu Sheng,∗∗ Ziyu Liu,∗∗∗ Shixin Li,∗∗∗∗ and Ying Cui∗∗∗∗

Abstract

Maritime target detection is a critical component of navigation safety

for unmanned surface vehicles (USVs), particularly under foggy

weather conditions. We propose an efficient and lightweight method

for maritime target detection suitable for foggy weather conditions.

This approach aims to address the high cost of data acquisition and

to enhance the target detection effectiveness. The proposed method

involves several steps to enhance the detection effectiveness and

efficiency. Firstly, we improved the accuracy of foggy image synthesis

by formulating a more realistic loss function for the GAN model.

Secondly, we reduced the model size and number of parameters by

introducing depthwise-separable convolution instead of conventional

convolution. Finally, we applied a lightweight backbone to improve

the high-dimensional maritime target features and accelerate the

inference speed. The experimental results demonstrate significant

improvement in the accuracy and efficiency of the proposed model.

Our model achieved an average accuracy of 89%, which is a

significant improvement over the 77% accuracy of the original

YOLOv4 model. Additionally, the computational volume of our

model was reduced by 83%, and the real-time detection speed reached

45.8 frames per second. This improved accuracy and efficiency make

the proposed method more appropriate for complex conditions and

enhance the safety of USV navigation.
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1. Introduction

In the past several years, applications relying on visual
systems are becoming more and more popular, such as
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the automatic detection of objects and the elimination
of obstacles in general, both indoors and outdoors, the
technique used can also be adapted to the navigation of
marine vehicles under dynamic environments. However,
the system must be modified so that it can be adjusted
to various situations, including changes in the illumination
caused by the sun and clouds, the reflections of the sun,
the glaring, the partial or complete closure of the system
caused by rain or the fog, and other ocean conditions. As
an essential intelligent equipment in the emerging marine
industry, unmanned surface vehicle (USV) plays a vital
role in exploration and research. At present, the vision
detection of targets is an important method of perception
for the smart navigation of USV, consequently, improving
the accuracy and speed of the detection of surface targets
has been a major research area for the USV.

Traditional maritime target detection methods, such as
mean shift [42], deformable models [1], and support vector
machines [45], have been proposed to detect maritime
targets, however, they suffer from false detection defects,
such as water reflection and wave occlusion. To improve
the detection accuracy, deep learning-based methods have
been widely used for maritime target detection. Two-
stage methods achieve detection and classification by
extracting candidate regions and performing with high
accuracy, including the regional convolutional neural
network (R-CNN), spatial pyramidal ensemble network
(SPPNet), and Faster-RCNN [31]. One-stage methods
directly calculate the coordinates and category probability
of the target and provide results after one detection,
which significantly improves the detection speed, including
single-time detector (SSD) [21] and YOLOv1-v4 [3], [9],
[28]–[30], [39] series methods. Many studies on the detection
of maritime targets focus on a single detection stage
[4], [5], [11], [13], [19], but the majority of these models are
based on static surveillance camera systems, which have
difficulties to cope with the speed, the dynamic operation
view, and the complex conditions of the USV.

Several researchers are using mathematical methods
to simulate fog in clear images, relying on the physical
model of this phenomenon and further analysis of the

1



Figure 1. Schematic of the image acquisition system, data augmentation, training stages, and deployment on USV.

image content. However, by employing convolutional neural
networks, we can significantly reduce the need for human
effort in identifying the appropriate ‘fogification’ formulas
and instead allow our model to determine the optimal
approach.

In order to reduce the high rate of false detection
in fog, traditional methods of defofogation based upon
gammatic correction [18] and a posteriori models [17] can
be effective in a single frame image, but they increase
the computational effort on the edge and result in large
delay. Several methods have attempted to simulate the
behaviour of fog and superimpose it onto clear images
to enhance object detection and recognition systems in
adverse weather conditions [33], [34]. These approaches
primarily concentrate on the mathematical models that
describe the physics behind fog generation and aim to
apply it to a fog-free photograph. This process is useful
in generating a new set of annotated foggy images from
clear ones, which can be used as a training dataset for
object detection systems, improving their accuracy by
relying on artificially hazy images. The generated model
will subsequently be applied to real-time photo frames
captured during foggy weather conditions. Therefore, it is
crucial for the synthesised images to resemble real foggy
ones as closely as possible. This is because better results
can be achieved when the trained model is fed with actual
foggy images.

Hence, to enhance the target detection and recognition
system in adverse weather conditions, some experts resort
to simulating and learning image features, such as fog
contrast and saturation, using unsupervised learning
models to develop synthetic fog datasets for training
purposes [33], [34]. However, the synthetic dataset created
using this network may not incorporate sea fog features,
leaving ample scope for improvement in reducing sea fog
characteristics.

Currently, the USV maritime target detection faces
two significant challenges. Firstly, due to the limited
computational power of the edge computing systems on
USVs, large target detection networks cannot be deployed.
Secondly, foggy conditions are prevalent at sea, and models
trained on high-quality datasets have a high misjudgement
rate under cloudy skies, making it challenging to ensure

navigation safety. Moreover, obtaining and screening sea
fog images suitable for model training poses a significant
challenge, hindering the USV target detection process.

To balance the maritime target detection accuracy and
speed requirements of USVs and improve the airworthiness
in fog, we propose an improved YOLOv4 target detection
method. In the data acquisition stage, the sea condition
images acquired using a USV and the surface target
images acquired online are integrated into a base dataset.
Thereafter, the data augmentation method of the foggy
cycle consistent generation adversarial network (FCGAN)
is used to synthesise a new dataset with different maritime
fog intensities. In the model training stage, we adopt the
K-means clustering algorithm to extract special features
of maritime targets, a depthwise-separable convolution
operation to reduce the number of model parameters,
and the lighter MobileNetv3 as the backbone network of
YOLOv4 to reduce model space complexity. In the model
deployment stage, we use TensorRT and Deepstream to
increase the speed of inference, reduce latency, and improve
the real-time performance of USV detection, as shown in
Fig. 1.

The rest of this paper is organised as follows: Section 2
briefly summarises haze removal methods and lightweight
surface target detection methods; Section 3 introduces
the FCGAN data enhancement and YOLOv4 lightweight
improvement methods proposed in this study; Section 4
briefly introduces the USV and data set contents; Section 5
analyses the effect of the sea fog concentration on the
detection generalisation performance under foggy weather,
compares different lightweight improvement schemes, and
verifies the effectiveness of the proposed model; finally,
Section 6 provides conclusions and the future scope.

2. Related Work

2.1 Unsupervised Learning-Based Fog Image
Synthesis Technique

Unsupervised learning-based methods often use generative
adversarial network (GAN) models [10] to learnt image
features, such as colour contrast and saturation. Generally,
all GAN models comprise a generator and a discriminator.
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The generator generates clear images from fogged images
learning a set of image features with and without fog
(i.e., paired data) [26], [44]. However, the paired images
of real sea scenes are difficult to obtain, it is time
consuming and labour-intensive to instal fixed cameras
and capture videos under foggy conditions at the same
location. Therefore, a cycle-consistent adversarial networks
(CycleGAN) [50], which does not need to establish a
one-to-one mapping relationship between training data,
can realise the conversion of two different styles of
images. Using unpaired data has contributed to image
synthesis, based on CycleGAN, Engin et al. [8] proposed
the cycle-dehaze method, which uses VGG16 as the
backbone network, introduces a perceptual loss function,
and compares the original and final images in feature
instead of pixel to synthesise fog images. Similarly, Liu et al.
[22] proposed the Cycle-Defog2Refog method, where the
main framework also uses CycleGAN, while the backbone
network uses a CNN to remove artefacts and improve
defog quality, using the average pixel value of atmospheric
light for priori estimation and generating fog images using
the atmospheric degradation model. Although the above
method using few data samples to a certain extent, it does
not address the problem of learning confusion caused by
the bi-directional learning framework; furthermore, it does
not sufficiently address the importance of global features
and leaves the synthesised sea fog dataset with defects,
such as poor realism, instability, and low pixels.

2.2 Maritime Surface Target Detection Method

The results obtained from the current high-accuracy
target detection models are computed on large servers,
many parameters in the network architecture cause severe
redundancy. To solve the above problems, more lightweight
networks, such as Inceptionv1-v4 [16], [35]–[37], ShuffleNet
[25], [46], and Inceptionv 3, apply a batch normalisation
layer to increase the speed of gradient descent. ShuffleNet
uses group convolution and channel shuffling to reduce
computational complexity, which helps to reduce computa-
tional requirements. EfficientNet uses a multi-dimensional
hybrid model deflation approach to achieve a faster
detection algorithm by combining network depth, network
width, and image resolution. Zhu and Chen [49] proposed
an algorithm to detect moving object in a real-time
environment with robustness, such as illumination change,
high-speed motion, object occulsion, object distortion,
and noisy object. Liu et al. improved YOLOv3 which
is better than the Faster-RCNN, single shot multibox
detector and YOLOv3. In order to solve the camera-
based vehicle detection under low illumination, Li et al.
[24] simulated the information processing and partition
functions of its pathway, constructed a vision information
processing model, and designed a computing methods
for recognition. Chen et al. [43] used deep convolution
GANs to augment the data and transfer learning method
to avoid training from scratch. Experiments show that
the improved VGG16 network outperforms the traditional
models. Zhou and Yang [48] investigated one-stage and
two-stage object detection algorithms on drone-captured

images and YOLOv5 shows the best performance on their
data. Jiang et al. [7] proposed a network that adopts
an encoder-decoder structure and introduced the efficient
channel attention method. This network leveraged the
importance of crack pixels, leading to a lower computation
cost. Meanwhile, the superposition of max-pooling and
mean-pooling enables the extraction of more features. The
lightweight convolution models reduce the computation
cost, while the superposition of max-pooling and mean-
pooling enables the extraction of more minutiae pixels.
Zhang et al. [47] used the ENF model to fuse the low-
level feature maps several times and then use the neural
architecture search technique to automatically search for
the most suitable feature extraction network, the improved
two-stage model overcomes high missed detection rate.

With the help of lightweight network improvement,
Hu et al. [14] replaced the backbone network of YOLOv3
with MobileNetv2 to implement a fish morphology detec-
tion system. Hu et al. [15] used DenseNet to improve the
CSPdarknet of YOLOv4 to reduce the loss of the feature
layer information in high-dimension features. Li et al. [23]
performed channel pruning for YOLOv3 to improve the
speed of target detection algorithms running in real time
on UAVs. Ouyang et al. [27] used a lightweight backbone
network, including an hourglass convolutional feature
extraction module and a parallel expansion convolutional
module, for the adaptation of the system to different target
sizes. Huang et al. [13] replaced YOLOv3’s darknet53
with darknet19 to classify ships with a lightweight feature
extraction layer to improve the operation speed of maritime
surveillance. However, the improved algorithms above still
cannot directly apply to the actual sea trials with high
integration and energy consumption.

3. Methodology

3.1 Foggy Cycle Generation Adversarial Network
for Data Enhancement

Synthesising specific characteristics of sea fog directly
using the cycleGAN can result in unrealistic or inaccurate
images, as the model may not fully capture the complex and
dynamic nature of sea fog. Additionally, the synthesised
images may not accurately reflect the diversity of real-
world sea fog conditions, which can pose a challenge for the
model’s generalisation ability. This can lead to reduced per-
formance when detecting maritime targets under different
scenarios or when applied to other datasets. To overcome
this problem, we propose a more realistic loss function to
synthesise the foggy images for the cycleGAN model. This
loss function enables the generation of synthetic images
that better resemble the specific characteristics of sea fog,
such as reduced visibility and scattered light. The proposed
loss function is designed to encourage the preservation of
low-frequency details and colour distribution, while also
reducing artefacts and image blurring caused by the fog. To
synthesise more realistic sea fog pictures, we designed two
sets of loops, one is fog–clear–fog cycle, another is clear–
fog–clear cycle, as shown in Fig. 2. These were drawn on
the CycleGAN model to establish a feedback link between
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Figure 2. FCGAN structure: (a) clear-fog-clear cycle and .(b) fog-clear-fog cycle.

Figure 3. Generator and discriminator structures.

the two loops. Inside the single loop, via the adversarial
training between the discriminator and the generator, the
pixel distribution of the dataset is learnt to generate new
images, the learning effect is characterised using the gener-
ative adversarial loss function. In addition, to learn global
features, we innovatively propose a sea fog characteristics
loss function, the fog intensity value is introduced as the
fourth channel of training input, it can establish a multi-
mapping height constraint to synthesise a more realistic

sea fog image. The new model is defined as the FCGAN.
Taking the size of the dataset, the complexity of the model
architecture, and the foggy task that the model is trained
on, the learning rate of the FCGAN model in this article
is 0.001.

The initial input values in Fig. 3 include a fog intensity
tensor and a 256 × 256 color image. The real number I
representing fog intensity is repeated 256 × 256 times as
a fourth layer channel and added to the input image to
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produce a 4-channel image (R, G, B, I). While the fog
intensity i is defined as the ratio of the all-white to total
pixel values of the image, as (1):

i =
white pixel

all pixel
(1)

In FCGAN, each loop internally comprises two
generators and discriminators, the defog generator Gclear

and the add-fog generator Gfog are used to extract the
sea fog characteristics in the image using a modified U-
Net [32] structure and the residual connections between
the downsampled outputs; furthermore, Gclear and Gfog

are concatenated with the corresponding upsampled
outputs, as shown in Fig. 3(a). The clear discriminator
Dclear and the fog discriminator Dfog are responsible for
distinguishing between the real and generated images.
They comprise a CNN, as shown in Fig. 3(b), where
the three downsampling modules produce a convolutional
kernel of size 256, and after normalisation, convolution,
and zero padding, a 30 × 30 convolutional kernel is
generated. To enhance the constraint of fog intensity on
the FCGAN model, a multi-objective optimised sea fog
characteristics loss function is proposed, including identity
loss, transmission map loss, whitening loss, and RGB ratio
losses, as shown in (2):

Lfog = Lidentity + Ltrans + α · (Lwhite + Lrgb) (2)

where α is the penalty factor. Under ideal conditions, the
synthetic sea fog image generated by the add-fog generator
Gfog should be identical to the real fogged image. Similarly,
the synthetic clear image generated by the defog generator
Gclear should be identical to the real clear image, and this
loss is defined as identity loss, as shown in (3):

Lidentity = Ef

[
‖Gfog (f, if )− f‖1

+Ec [‖Gclear (c, ic)− c‖1 (3)

where c ∈ C refers to the set of clear image samples with
concentration ic ∈ I, f ∈ F refers to the set of fogged
image samples with concentration if ∈ I, I = [0, 1], Ef

is the expected value of fogged image samples; and Ec is
the expected value of clear image samples. To ensure that
the clear images can be uniformly distributed in the sea
fog concentration ic when generating the data set with fog
images, the transmission map loss is defined in this study
using an atmospheric degradation model, as shown in (4):

Ltrans = Ec|mean (Gfog (c, ic))−mean (c (1− ic) + ic) |
+Ec

[
‖Gfog(c, 0)− c‖1 − ‖Gfog(c, 1)− w‖1

]
(4)

The whitening and RGB ratio losses are calculated
using the ramp function (ReLU function), which ensures
that the generated fogged images generate the correct
output under the two extreme conditions of ic = 0 and
ic = 1. In (6), r, g, and b represent the three channels of

the input image c. Meanwhile, r̂, ĝ, cand b̂ correspond to
the three-channel values of the fogged images generated

from the clear images.

Lwhite = Ec

[
‖ReLU (c−Gfog (c, ic))‖1

]
(5)

Lrgb = Ec

[
‖ r · ĝ − g · r̂ ‖1 + ‖ g · b̂− b · ĝ ‖1

]
(6)

In summary, the loss function of FCGAN is defined as
follows:

LFCGAN = LGAN (Gfog, Dfog, C, F, I) +

LGAN (Gclear, Dclear, F, C, I) +

λLcyc(C,F, I) + λLfog (7)

We use more advanced optimisation techniques, such
as evolutionary strategies and gradient-based optimisation,
to search for the optimal weight combinations for the sea
fog loss function. By evaluating the performance of the
model with different weight combinations, we identify the
weight settings that lead to the best trade-off between
different performance metrics, such as realism and artefact
reduction. This approach can help to fine-tune the design
of the sea fog loss function and improve the performance of
the cycleGAN for synthesising realistic sea fog images. In
this model, λ is the penalty factor, α = 10, and λ = 5.

3.2 Maritime Target Detection Algorithm Based
on M-YOLOv4

The original YOLOv4 network is mainly divided into three
major parts: backbone, neck, and head, as shown in Fig. 4.
Firstly, the backbone network uses the CSPDarknet53
module to extract preliminary features; secondly, the neck
module is used for feature fusion including the path
aggregation network (PANet) [20] structure and the
spatial pyramid pooling (SPP) module; thirdly, the YOLO
head module obtains prediction results with the help of
the effective feature layers obtained from the first two
parts. Although YOLOv4 adequately performs on small
targets with multiscale prediction, the relatively complex
CSPDarknet53 backbone network severely delayed the
detection speed.

We propose a more lightweight network, as shown in
Fig. 4. In the YOLO backbone section, we use the optimal
anchor of the maritime target after K-means clustering and
replace the CSPDarknet with MobileNetv3. The standard
convolution (Conv) in the neck and head are replaced by
the depthwise-separable convolution (DW-Conv), to ensure
that the high-dimensional features are not lost and to
reduce the number of parameters. The improved network
is named M-YOLOv4, and the main improvement methods
include the following two points.
(1) Anchors after K-means clustering

With the change of the number and proportion of
feature layers, the proportion of anchors should accordingly
adjusted together, the anchor size close to the maritime
target size can reduce traversals number and ensure the
accuracy of detection results. Therefore, we use the K-
means clustering algorithm [2] to re-cluster the maritime
target dataset and calculate the average intersection ratio
of anchors when the number of clusters K is taken in
the interval [2], [20]. The K-means algorithm is used to
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Figure 4. M-YOLOv4 structure.

Figure 5. Clustered anchors.

cluster the bounding boxes based on their aspect ratio
into K groups, where K is the number of anchor boxes
specified in the YOLOv4 model. The multiple k-means
sub-detectors first classify the feature space with the
diversity of features or multi-subclassed into k clusters
[41]. For each cluster, the centroid is calculated as the
mean aspect ratio of all bounding boxes in the cluster. The
final anchor boxes for YOLOv4 are then determined by
sorting the centroids in descending order of their frequency
and selecting the top K centroids as the anchor boxes.
This ensures that the anchor boxes are representative of
the most common object sizes and aspect ratios in the
training set.

As shown in Fig. 5(a), the average intersection ratio
is 65.9% when K = 9 and the curvature is maximum,
and the best number of clusters K∗ = 9, which can be
determined using the elbow rule. The red pentagrams
in Fig. 5(b) represent the centre point of each cluster,
and the corresponding coordinate value is the optimal

anchor under the three output feature layers. The optimal
anchor value will be used as the initial anchor value for
model training, which in turn makes the model easier to
converge.
(2) Depthwise-separable convolution and MobileNetv3

backbone networks
The MobileNetv3 backbone network structure with

extracted features is shown in Fig. 6(a). MobileNetv3
reduces the model size and the number of parameters
mainly through the application of depthwise-separable
convolution (DW-Conv) [6], which utilises the idea of group
convolution and splits a standard convolution operation
(Conv) into two steps, including depthwise convolution
and pointwise convolution, as shown in Fig. 6(b) and
(c). If the input size of the existing feature layer is
DK and the number of channels is M, an output of
size DF and N channels are required. The ratio of the
computation of conventional convolution and depthwise-
separable convolution ∆ is shown in (8), where ∆ ≈ 1100
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Figure 6. MobileNetv3 backbone and depthwise-separable convolution.

when N = 256 and DK = 12. Therefore, using depthwise-
separable convolution can significantly reduce computation
time.

∆ = DW−Conv
Conv (8)

This model uses Complete Intersection over Union
(CIoU) loss for learning and training the features of the
maritime target, as is shown in (9) and (10):

IoU =
|A ∩B|
|A ∪B|

(9)

LCIoU = 1− IoU(A,B) +
ρ2 (b, bgt)

r2
+ β · v (10)

where b and bgt represent the centroids of the prediction
and real frames, ρ represents the Euclidean distance
between the two centroids; A and B represent the closure
regions of the prediction and real frames, c represents
the diagonal distance of the smallest closure region that
can contain both the prediction and real frames; β is
a positive trade-off parameter; and v is measured by
calculating the candidate frame length and height. This
loss function enhances the consistency of the aspect ratio,
more effectively characterises loss, and avoids gradient
explosion.

We used frames per second (FPS) and mean average
accuracy (mAP) as the main evaluation metrics. mAP is
the average of the AP of the surface target category, and
AP refers to the area under the accuracy–recall (PR) curve,
as is shown in (11) and (12):

Precison =
TP

TP + FP
,

Recall =
TP

TP + FN
(11)

AP =

∫ 1

0

Precision×Recall,

AP50:95 =
1

10
(AP50 +AP55 +AP95) (12)

Consider the category ‘yacht’ as an example, where
true positive (TP) is the number of the predicted and

true results of ‘yacht’ false positive (FP) is the number
of the predicted and real results of ‘yacht,’ false negative
(FN) is the number of the predicted and real results of
‘yacht.’ mAP@50 is the average value of AP when the IoU
threshold is 50%, and mAP@50@95 is the average value of
AP when the IoU value is taken from 50% to 95% in steps
of 5%.

To solve the problem of the difficult deployment of
YOLOv4 at the edge computing side of USVs, we replicated
six lightweight networks, such as Inceptionv4, under the
Pytorch framework, which were trained as the backbone
network of YOLOv4 on the target dataset at sea to test the
detection speed and accuracy. The computational results
are shown in Table 1. At mAP@0.5 and mAP@0.5@0.95
metrics, CSPDarknet53 achieved the optimal accuracy
performance of 0.91 and 0.83. In terms of detection speed,
MobileNetv3 achieved a detection speed of 44.7 FPS,
which is 32.8 FPS higher than that of CSPdarknet.
Under the model size metric, MobileNetv3 achieved the
optimal result of 123.6 MB, and on balance, MobileNetv3
was used as the backbone network for YOLOv4 in
this study.

4. Platform and Basic Dataset

In this study, the acquisition of image data and the real-
time detection of lightweight targets were based on the
6-m USV designed and manufactured by Qingdao Intel-
ligent Yacht Manufacturing and Development Technology
Engineering Laboratory. The image acquisition uses a
1920× 1080 resolution front view camera (HIKVISON DS-
2DC4423IW-D), and assuming the camera isn’t obscured
by water droplets. The communication of the camera,
control chip, and other hardware devices is shown in
Fig. 7(b). Jetson Xavier NX as the master controller is
responsible for receiving the video stream and performing
the calculation of the target detection algorithm, while the
hull motion control is received by the slave controller with
GPS and electronic compass information commands. This
master–slave control design ensures the stability and safety
of the USV when sailing to the maximum extent.
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Table 1
Different Backbone Influence on YOLOv4

Backbone mAP @0.5@0.95 Model Volume (MB) FPS

Inceptionv4 [16] 0.69 418.2 12.3

ShuffleNetv2 [25] 0.31 233.2 25.4

EffcientNet [38] 0.64 196.9 19.2

Darknet19 [28] 0.52 257.1 39.7

CSPDarknet53 [40] 0.83 362.7 11.9

MobileNetv3 [12] 0.79 123.6 44.7

Figure 7. USV platform.

Table 2
Configuration Information

Configurate Platform

PC USV

System Ubuntu20.04 Jetpack4.5.1

Pytorch 1.7.0 1.6.0

Tensorflow 2.6.0 \

CUDA 11.0 10.2

cuDNN 8.0 8.0

TensorRT \ 7.1

Deepstream \ 5.1.0

The algorithms in this study were trained on
a personal computer (PC) configured with Intel
i5-10400F@2.6GHZ*12 CPU, Nvidia GTX3060@12-GB
GPU. The speed and accuracy of the models were tested
with a deep learning environment configured on the PC and
the USV, respectively, the relevant versions are detailed in
Table 2.

The public COCO or VOC datasets is widely used to
measure the performance of the network model, however,
all kinds of ships are simply categorised as ‘ships.’ The
common targets at sea, such as buoys and islands, are

not labelled, besides, pictures are taken under well-
lit and distinctive conditions without considering the
complex background features in foggy weather. The dataset
comprises 14,218 images, wherein 49% are from the
website, and 51% are from USV missions. The dataset
mainly includes island reefs and ships with different
functions, such as the liner, container ship, bulk carrier,
sailboat, yacht, fishing vessel, passenger ship, and warship.
The maritime target dataset produced in this study is
open-source and accessible on GitHub.

5. Experiments and Analysis

5.1 Impact of Synthetic Sea Fog Datasets on
Maritime Target Detection Performance

We randomly selected 1000 clear sea images from the USV
base dataset as the initial dataset for the FCGAN model,
and 10 sets of sea fog datasets with different concentrations
were synthesised as shown in Fig. 8. We defined three
levels of fog: light, medium, and heavy. Figure 9 shows the
loss values of all generators and discriminators after each
epoch of training. The decrease in the loss of Dclear implies
that it is becoming more competent at generating foggy
images from clear images, so the loss of Dfog increases.
Similarly, when Dfog is trained, the decrease in the loss
of Dclear implies that it is becoming more competent
at distinguishing between real and generated fog images,
increase the loss of the generator. In the 0–30 epoch
stage, the loss of the generator and the discriminator
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Figure 8. Dataset with foggy intensity.

Figure 9. Loss values for the generators and discriminators of FCGAN.

Table 3
Fog Level Effect on Detect Performance

Combo YOLOv4 M-YOLOv4

Recall Precision Recall Precision

1 0.58 0.51 0.76 0.78

2 0.60 0.59 0.81 0.79

3 0.73 0.69 0.86 0.87

4 0.32 0.35 0.31 0.43

decrease as the training batch increases, and in the 130–230
epoch stage, the generator loss and the discriminator loss
tend to stabilise and can be approximated to converge,
the loss function becomes locally optimal. Therefore, we
consider the FCGAN training weight at epoch = 230 as
the optimal weight.

To evaluate the performance of the target detection
algorithm on the sea fog dataset, 3,000 samples generated
under the optimal weights were combined with the

base dataset. The tag files of the synthesised images
were kept consistent with those of the initial dataset,
only names were used to distinguish them during
training. The recall and precision values in Table 3 were
obtained via training under two networks, YOLOv4 and
M-YOLOv4.

Figure 10 shows results detecting by three dif-
ferent fog weights. The comparison indicates that
the results obtained by light fog may have false
detection and inaccurate position, while the results
obtained by heavy fog weight detection may have missed
detection and false detection. Therefore, we show the
weight optimal solution obtained by training under
medium fog.

Under the M-YOLOv4 model, the maximum recall
and precision values appear in combination 2, which
improved by 10% and 11%, over the unadded sea fog
dataset, while the recall and precision values obtained from
combination 1 improved by only 7% and 1%, respectively,
over the base dataset. This indicates that the sea fog
and base datasets in a suitable combination can improve
the M-YOLOv4 detection performance. In combination
3, the recall and precision values of the detection model
decreased by 45% and 35%, respectively, so it can be
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Figure 10. Typical results by three different fog weights.

Figure 11. Comparison between different structures.

inferred that the texture features of the image were
blurred when the fog concentration was excessively high;
thus, the corresponding features of each target were not
learnt in the feature extraction stage, which reduced the
detection performance. In addition, the recall and precision
values obtained by M-YOLOv4 in each combination were
larger than those corresponding to YOLOv4, indicating
that the improvement of M-YOLOv4 has a certain effect
on the precision improvement. Therefore, we adopted the
combination scheme of the base dataset plus the medium
fog dataset for the final training dataset, then compared
and analysed the detection effect of the novel model
on USVs.

5.2 Comparison and Analysis of M-YOLOv4
Training Results

In this study, to explore the mechanisms of the
effects of improvement points on the improvement of
accuracy and speed, we designed ablation experiments
according to the single variable principle, as shown in

Table 4. After performing the following: (I) clustering
optimised initial anchor, (II) new MobileNetv3 backbone
network, (III) deeply separable convolutional PANet, and
(IV) TensorRT and Deepstream acceleration operations on
the original YOLOv4, M-YOLOv4 improved the speed by
33.9 FPS with 2% decrease in mAP, which meets the USV
real-time detection requirements. When only improvement
I is available, all indicators are not significantly improved,
therefore, I is not the improvement factor of this model.
Only under the effect of improvement II, the number
of parameters decreased by 60% compared to that of
the initial model, and the model shrunk by 55%. The
model accuracy is reduced by 3% only under the effect
of improvement point III, but the number of parameters
and the model size are not significantly different from
those of II. M-YOLOv4 integrates I–IV, and I–III enables
the model to achieve a detection speed of 28.7 FPS with
79% accuracy. The size and number of parameters are not
relevant.

We compared the improved M-YOLOv4 with two-
stage target detection method Faster-RCNN, SSD300
(another model of single-stage detection method), and
YOLOv4-tiny. The accuracy of the M-YOLOv4 model
was 4% lower than that of Faster-RCNN, but the speed
was 37.1 FPS higher; the model size was 99.3 MB larger
than that of YOLOv4-tiny, but accuracy was 57% higher
and the performance of detecting types was superior. A
typical model is selected for the macro comparison in the
speed, accuracy, and model size to obtain Fig. 11, which
clearly reflects the superiority of M-YOLOv4 in the model
size and the detection speed. When the maritime target
detection algorithm is deployed in the USV, to reduce
the latency and improve the computational throughput
rate, we adopted NVIDIA’s TensorRT inference method
and the Deepstream module to generate the corresponding
engine file to further improve the detection frame rate.
Figure 12 shows the effect of the sea trial under clear and
foggy weather, respectively. Using the M-YOLOv4 model
proposed in this study, the target detection frame rate can
reach 45.8 FPS, which is a 30% improvement compared to
that of the original YOLOv4 and can meet the real-time
effect.

Figures 13 and 14 compare the accuracy and training
duration of the latest YOLOv4 model in the same series
of training 100 batches, YOLOv4-tiny is a simplified
version of YOLOv4, YOLOv4-tiny only retains the 19-layer
network in the 53-layer backbone network, YOLOv5 is
an improved version of YOLOv4, using a variety of data
enhancement methods and parameter iteration methods,
it has three different version with different depth and
width, named YOLOv5-L, YOLOv5-X, and YOLOv5-S,
respectively. The test results show that the accuracy of the
M-YOLO model is comparable with that of YOLOv5-X,
which is the deepest level of the model. By contrast, the
YOLOv5-X has a faster convergence rate, but its training
time exceeds 150 h with the weight size of 699.7 MB.

However, the M-YOLO only takes 5.6 h to obtain the

same detection effect, and its weight size is 123.6 MB. In

summary, using the more lightweight MobileNetv3 as the

backbone network, the target detection accuracy is not
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Table 4
Training Results

Models Anchor Backbone Conv T&D mAP Parameter Model Volume (MB) FPS

YOLOv4 7 7 7 7 0.91 58.3 257.7 11.9

I 3 7 7 7 0.82 58.4 258.2 20.2

II 7 3 7 7 0.86 35.1 143.1 27.9

III 7 7 3 7 0.79 41.9 142.8 28.7

IV 7 7 7 3 0.89 57.8 257.3 39.7

M-YOLOv4 3 3 3 3 0.89 19.3 123.6 45.8

Table 5
Comparison of Different Models

Models Recall Precision mAP Parameter (million) Model Volume (MB) FPS

Faster-RCNN 0.82 0.91 0.93 37.1 196.7 8.7

SSD300 0.63 0.58 0.6 39.2 362.7 6.5

YOLOv4 0.73 0.69 0.91 58.3 257.7 11.9

YOLOv4-tiny 0.42 0.31 0.32 31.6 24.3 39.7

M-YOLOv4 0.86 0.87 0.89 19.3 123.6 45.8

Figure 12. USV detection results.

Figure 13. Convergence epoch curves. Figure 14. Training time consumption.
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Figure 15. Real-time detection effect: (a) YOLOv4-tiny; (b) YOLOv5-S; and (c) M-YOLO.

greatly reduced compared with YOLOv4, and it can still
effectively classify maritime targets and meet the needs of
unmanned marine target detection. The reason is that the
use of deep separable convolution has the most obvious
effect on reducing the number of parameters. Considering
the real-time detection effect, only the M-YOLO, YOLOv4-
tiny, and YOLOv5-S models are deployed on the edge
computing end for testing.

To compare and test the real-time detection effect of
the M-YOLO model, three lightweight target detection
models are deployed simultaneously on the edge computing
end, and the real-time detection screenshots of (a), (b),
and (c) in Fig. 15 are YOLOv4-tiny, YOLOv5-S, and M-
YOLO, respectively. Due to the small size of some targets,
this paper enlarges the panoramic image and captures the
local detection results for analysis. In scenario (1), all three
models successfully detected the target category, among
which M-YOLO had the highest detection accuracy. In
scenario (2), the targets are small with a concentrated
distribution. By comparison, the YOLOv4-tiny algorithm
only detects 1 target. The YOLOv5 detects the sea-sky
line as an island and reef and ignores the sailboat, which
indicates that it has a poor detection ability for small
targets. Similar comparative results have been obtained in
scenario (3). In scenarios (4) and (5), all three models fail
to identify the target, indicating that the recognition of

complex nearshore scenes still needs to be further refined.
In summary, under the background of small targets and
complex situations, the detection results of M-YOLO are
more stable than the others and have higher detection
performance.

6. Conclusion

The lightweight target detection method for USVs in
foggy weather proposed in this study improves the
generalisation of the algorithm and can improve the
operational capability of USVs to cope with foggy weather.
Under the constraint of sea fog characteristics loss, the
FCGAN proposed in this study can synthesise a sea fog
dataset more consistent with the actual fog features than
other synthetic fog algorithms, and the generated fogged
images are more realistic. The re-clustered anchor is more
suitable for the detection of targets, such as ships and
islands, at sea. Using MobileNetv3 to replace the backbone
network of YOLOv4 and applying depthwise-separable
convolution, the network model is reduced to 19.3 million
parameters with guaranteed accuracy, which has excellent
engineering applications. To deploy the studied lightweight
target detection network on USVs, we combined the
TensorRT acceleration mechanism and Deepstream to
achieve adequate performance in model inference and
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deployment. Furthermore, this model runs at 45.8 FPS on
USVs with effective real-time image information to ensure
navigation safety, which provides for the improved real-
time fast detection of USV navigation and solutions.

Although the addition of data-enhanced fog pictures
to the original data improves the prediction accuracy of
USVs in foggy weather, the training batches converge
20% higher than those without the addition of foggy
pictures, i.e., the model takes 9 h longer to learnt the
features during the training phase because the fog features
blur the pixel features of boats and targets. Due to the
actual experimental conditions, this solution only considers
the effect of foggy weather on the detection performance
and fails to consider other extreme conditions, such as
insufficient light, blurred rain, and snow. Future work will
mainly improve the influence of various factors to obtain
the applicable target detection method for USVs under
multimodal conditions and match the targets detected
by USVs with those detected by radar, combined with
path planning algorithms, thus realising the intelligent
navigation of USVs.
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