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Abstract

With the rapid development of robotics and sensor technology,

vast amounts of valuable multimodal data are collected. It is

extremely critical for a variety of robots performing automated tasks

to find relevant multimodal information quickly and efficiently in

large amounts of data. In this paper, we propose an adversarial

and deep hashing-based hierarchical supervised cross-modal image

and text retrieval algorithm to perform semantic analysis and

association modelling on image and text by making full use of

the rich semantic information of the label hierarchy. First, the

modal adversarial block and the modal differentiation network both

perform adversarial learning to keep different modalities with the

same semantics closest to each other in a common subspace. Second,

the intra-label layer similarity loss and inter-label layer correlation

loss are used to fully exploit the intrinsic similarity existing in each

label layer and the correlation existing between label layers. Finally,

an objective function for different semantic data is redesigned to keep

data with different semantics away from each other in a common

subspace, thus avoiding interference of retrieval by data of different

semantics. The experimental results on two cross-modal retrieval

datasets with hierarchically supervised information show that the

proposed method substantially enhances retrieval performance and

consistently outperforms other state-of-the-art methods.
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1. Introduction

In recent years, various types of intelligent robots
[1], [2] have developed rapidly, e.g., clothing guide
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robots. Cross-modal retrieval [3], [4], a key technology
for robots to achieve automated tasks [5], [6] through
the understanding of multimodal content, is the process
of retrieving data from one modality and returning
data from other modalities that are most semantically
relevant to the retrieved data. For example, if users are
visiting a clothing shop, by submitting a photo of their
favourite, they can get the relevant image and text details
simultaneously.

In recent years, many approaches are proposed to
address cross-modal retrieval. Hardoon et al. [7] proposed
the canonical correlation analysis (CCA) method to map
different modalities into a shared subspace and maximise
the correlation of different modalities sharing the same
semantic information by using statistical analysis. In the
storage and retrieval of large-scale cross-modal data, hash-
ing algorithms are widely regarded for their low-storage
cost and high-retrieval efficiency. Jang et al. [8] proposed
a deep cross-modal hashing (DCMH) method to integrate
feature learning and hash code learning into a unified
framework. Li et al. [9] proposed a self-supervised adver-
sarial hashing (SSAH) method to build self-supervised
semantic networks by using labels as self-supervised
information.

Most of the existing cross-modal retrieval methods
are used for nonhierarchically structured supervised data,
and cannot fully exploit the supervised information of the
labels. However, in many real-world application scenarios,
label-supervised information on cross-modal data often
has some kind of hierarchical structure with rich semantic
information. For example, in the field of public security, the
image or video automatically collected by robots through
sensors may contain multiple layers of label supervision
information.

Currently, there are only a few methods that have been
designed to label supervision information in hierarchical
structures. Wang et al. [10] proposed the supervised
hierarchical deep hashing (SHDH) method, which defines
a similarity formula to weight different levels for labelled
supervised information of the hierarchy and verifies that
the hierarchical information can improve the hash retrieval
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accuracy. However, this method is designed for single-
modal retrieval. To verify the effectiveness of labels
with hierarchical structure in cross-modal retrieval, Sun
et al. [11] proposed the supervised hierarchical cross-
modal hashing (HiCHNet) method to learn hierarchical
information and regularised cross-modal hashing simul-
taneously. However, those methods have the following
problems.

• The distance between multimodal data with the same
semantic information in the common subspace is not
sufficiently minimised.

• The inter-layer correlation of supervisory information
is not sufficiently considered, so that complex inter-
layer correlation information is not fully learnt.

• Cross-modal retrieval has been interfered by dissimilar
data.
To address the above problems, we propose a novel

method for hierarchical supervised cross-modal image and
text retrieval. The contributions of this study are as
follows.

• The feature extraction network and the modality
differentiation network, which are used as generators
and adversaries, respectively, both perform adversarial
learning to result in the closest distance in the common
space for different modalities containing the same
semantics.

• The intra-label layer similarity loss and inter-label
layer correlation loss are introduced to fully explore
the intrinsic similarity existing in each layer of labels
and the correlation existing between label layers, thus
improving the accuracy of cross-modal retrieval.

• An objective function for the distance between different
semantic categories of data is redesigned to keep the
modal data of different semantic categories distant
from each other in the common space.
The remainder of this paper is organised as follows.

Related work is reviewed in Section 2. The proposed
algorithm is illustrated in Section 3. The experimental
results for two cross-modal datasets with hierarchical
supervised information are presented in Section 4. Finally,
conclusions are drawn in Section 5.

2. Related Work

The traditional cross-modal retrieval methods [7], [12]–
[14] construct a matrix for different media, projecting it
uniformly into a shared subspace, and then utilise distance
metrics, such as Euclidean distance or cosine distance, to
measure the similarity between heterogeneous modalities.
CCA [7] is widely used in cross-modal retrieval, and
many cross-modal retrieval methods have been built on it.
However, the problem of the “heterogeneity gap” is still
not effectively addressed by most traditional cross-modal
retrieval methods which rely on hand-designed features.

Deep neural networks have made progress in many
fields, such as computer vision [15], [16] and natural
language processing [17], [18] and have also been effectively
adopted in cross-modal retrieval. However, there are
problems of high storage costs and slow retrieval speed

when employing the deep learning methods [19]–[21] for
cross-modal retrieval of large-scale data.

In the storage and retrieval of large-scale cross-modal
data, hashing algorithms [22]–[26] are widely regarded
for their low storage cost and high retrieval efficiency.
Jiang et al. [8] proposed DCMH to integrate feature
learning and hash code learning into a unified framework.
Li et al. [9] proposed the SSAH method to build self-
supervised semantic networks by using labels as self-
supervised information.

At present, there is only a little work on cross-
modal data for multilayer label supervision. Sun et al.
[11] proposed the HiCHNet method to effectively utilise
label hierarchy information for facilitating hash code
learning through hierarchical discriminative learning and
regularised cross-modal hashing methods. However, the
distance between multimodal with the same semantic
information in the common subspace is not sufficiently
minimised, the inter-layer correlation of supervisory
information is not sufficiently considered, and the different
semantic data are not sufficiently separated.

3. An Adversarial and Deep Hashing-based
Hierarchical Supervised Cross-modal Image and
Text Retrieval Algorithm

Dataset β (i) =
{(
xi, ti

)
|i ∈ 1, 2, . . . , N } has N sets of

image-text pairs, where xi is the original feature vector
of the i-th image data, px is the feature dimension of
xi, ti is the representation of the i-th text data, and
qt is the feature dimension of ti. The image-text pair is
labelled by E layers, with the label layer indexed from
top to bottom as {1, 2, . . . , E} , and Φe denotes the total
number of labels in the e-th layer. There is a label vector
Se = {sei}

E
e=1 for each set of image-text pairs β (i), where

sei =
{
se1
i , s

e2
i , . . . , s

eΦe
i

}
, and sej

i = 1 denotes that the

i-th image-text pair data is labelled by the j-th label of the
e-th layer; otherwise, sej

i = 0.

3.1 Overview

As shown in Fig. 1, our method consists of three blocks.
The feature extraction block consists of an image feature
extraction task and a text feature extraction task. Each
image in the dataset is resized to 224 × 224 and fed into
a deep neural network to extract the high-dimensional
features of the image. The deep neural network is a VGG-16
pre-trained on the large-scale dataset ImageNet [27]. The
last layer of the original network structure was modified
to be the output layer of the hash code, the number of
neurons is the hash code length value, and the output is
mapped to between −1 and 1 using the Tanh activation
function. Text feature extraction consists of three steps.
First, a bag-of-words (BOW) model is used to represent
each text, and a BOW model of the text modality is used
as the input to the network. Then, the high and low-level
features under different perceptual fields are extracted by
a multiscale feature stacking model (MSFSM) constructed
from five parallel levels of mean pooling layers with window
sizes of 1× 1, 2× 2, 3× 3, 5× 5, and 10× 10, respectively.
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Figure 1. Flowchart of the proposed method.

Finally, the features are extracted by a neural network
consisting of three fully connected layers and then a hash
code of the text features is output.

In the modal adversarial block, the feature extraction
network and the modal differentiation networks both
perform adversarial learning until it is difficult for modal
differentiation networks to distinguish the modal type of
the modal features extracted by the feature extraction
network, which results in the closest distance in the
common space between different modal data that share the
same semantics.

The hash code generation block contains four branches,
namely, cross-modal hash loss, intra-label layer similarity
loss, inter-label layer relevance loss, and different semantic
class differentiation. Cross-modal hash loss is used to
enable the model to perform both feature learning and
hash code learning simultaneously. It is extremely essential
to fully exploit the interconnections within the label
hierarchy. Therefore, intra-label layer similarity loss and
inter-label layer correlation loss are used to fully exploit the
intrinsic similarity of each layer of labels and the inter-label
layer correlation. The different objective functions for
the same modal and different modal data of different
semantic categories are set separately, so that the modal of
different semantic categories are kept at a certain distance
from each other in the common space, thus avoiding the
interference of cross-modal retrieval by data of different
semantic.

3.2 Modal Adversarial Block

The output of the fc2 layer of the image feature extraction
block and the text feature extraction block is fed into
the modal adversarial block. Modal adversarial is based
on the adversarial idea of learning the common space
of image modality and text modality. The task of the
feature extraction is representation learning of image and
text modalities, mapping image and text modalities into
a common subspace, to confuse the discrimination as
an adversary of the modal adversarial block, and thus
improving the discriminatory power of the adversarial

block. The task of the modal adversarial block is to
discriminate the modal type of the samples in the feature
extraction block to enhance the representational power
of the feature extraction block and further minimise the
distance between different modal data with the same
semantic information in a common subspace.

The E networks with three fully connected layers
are used by the modal adversarial block, with the first
hidden layer having the same number of nodes as the input
feature dimension, the second hidden layer having the same
number of nodes as the total number of labels Φe in layer e,
and the third layer having a node count of 2. Its activation
function is a sigmoid function, and the output is a binary
code with 0 indicating image modality and 1 indicating
text modality.

The cross-entropy loss function used in the modal
adversarial block is defined as follows:

LAdv =

E∑
e=1

LAdv e (1)

LAdv e (ε) = − 1

N

N∑
i=1

(
vi ·
(
logG(xi; ε)+log(1−G(ti; ε))

))
(2)

where LAdv denotes the overall objective function of the
modal adversarial block, LAdv e denotes the adversarial
loss corresponding to the layer e labels. vi denotes the true
label supervision information for each data, and G(∗; ε)
denotes the modal probability distribution generated by
the sample β(i) in the modal adversarial network. ε is the
parameter of the modal adversarial block.

3.3 Hash Code Generation Block

3.3.1 Cross-modal Hashing

The output of the feature extraction block is introduced
into the fc3 layer and the objective function of the cross-
modal hash is defined as follows:

Lhash =
∥∥Dx − f

(
xi,Wf

)∥∥2

F
+
∥∥Dt − g

(
ti,Wg

)∥∥2

F
(3)
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where f
(
xi,Wf

)
and g

(
ti,Wg

)
denote the image and text

features of the sample βi learnt by the feature extraction
block, respectively. Wf and Wg denote the network
parameters of the image and text modal, respectively.
Dx ∈ {−1, 1}h and Dt ∈ {−1, 1}h are the hash codes
learnt from the image and text modalities, respectively.
‖•‖2F represents the Frobenius norm. The neural network
parameters and the binary hash codes are learnt in the
same objective function.

3.3.2 Intra-label Similarity

To maintain the similarity of labels at each layer in the
label hierarchy, a label hash code Ce ∈ {−1, 1}h×Φe ,
e ∈ {1, 2, . . . , E} is generated for each label at each layer.
The loss function is as follows:

Lintra layer =

E∑
e=1

ζe

(∥∥hSe−f
(
xi,Wf

)
Ce

∥∥2

F

+
∥∥hSe−g

(
ti,Wg

)
Ce

∥∥2

F

)
(4)

where Ce is the class hash code at the e-th layer, ζe is the
confidence degree of the labels at the e-th layer, and the
sum of the confidence degrees of all label layers is 1.

3.3.3 Inter-label Correlation

It is extremely important to mine the relevance of different
layers in a hierarchy of labels. To fully capture cross-layer
relevance, a cross-layer label similarity matrix is defined as
follows:

Ψij
eE =

1, if Ej is a descendant node of ei

0, otherwise
(5)

where e ∈ { 1, 2, . . . , E − 1} . ei represents the i -th label of

the e-th layer and E represents the last layer label. Ψij
eE = 1

denotes that the j-th label of the E -layer is a descendant
node of the i-th label of the e-th layer; otherwise, Ψij

eE = 0.
The objective function for the cross-layer association of
labels is as follows:

Linter layer =

E∑
e=1

ηe

(
‖hΨeE − CECe‖2F

)
(6)

where CE is the hash matrix of the E-layer labels, ηe
represents the hyperparameters, and

∑E−1
e=1 ηe = 1.

3.4 Different Semantic Classes Distinguish Blocks

In the common subspace, the distance between different
semantic categories and different modalities should be
as large as possible. The deep neural network extracts
feature for the i-th image text pair and the j-th
image text pair and maps them into a common
subspace using a hash function. The image features are
F
(
xi
)

and F
(
xj
)
, and the text features are G

(
ti
)

and G
(
tj
)
.

The objective function for the distance between
different semantic classes and different modal data can be

written as:

L1 (i, j) =
∣∣dis

(
F
(
xi
)
, G
(
tj
))

−
√

dis (F (xi) , F (xj)) • dis (G (ti) , G (tj))
∣∣∣

+
∣∣dis

(
F
(
xj
)
, G
(
ti
))

−
√

dis (F (xi) , F (xj)) • dis (G (ti) , G (tj))
∣∣∣(7)

where dis (W,V ) denotes the cosine distance between
W = (w1, w2, . . . , wn) and V = (v1, v2, . . . , vn).

Identical modal data of different semantic categories
should also be separated in the common subspace. The
objective function is as follows:

L2 (i, j) =
∣∣dis

(
F
(
xi
)
, F
(
xj
))

−
√

dis (F (xi) , F (xj)) • dis (G (ti) , G (tj))
∣∣∣

+
∣∣dis

(
G
(
ti
)
, G
(
tj
))

−
√

dis (F (xi) , F (xj)) • dis (G (ti) , G (tj))
∣∣∣(8)

The total objective function for the different semantic
classes of distinguished blocks is defined as follows:

Ldis =

N∑
i,j=1

(L1 (i, j) + L2 (i, j)) (9)

The overall loss function is defined as follows:

Loss = αLAdv + βLhash + χLintra layer

+δLinter layer + φLdis (10)

where α, β, χ, δ and φ are hyperparameters.

3.5 Summary of Our Method

Our method is summarised in Algorithm 1. Our method
has four parameters that need to be trained and optimised,
which are network parameter Wf for extracting image
features, network parameter Wg for extracting text
features, and hash codes Dx and Dt. First, we randomly
select the mini-batch of image and text data from β(i).
Second, f

(
xi,Wf

)
and g

(
ti,Wg

)
are calculated using a

forward propagation network, and parameters Wf and Wg

are updated using the Adam gradient descent algorithm
in backward ropagation. Finally, the hash codes Dx and
Dt are updated using (3) in the hash code generation
block. The hyperparameters α, β, χ, δ, and φ are
given values by the grid search method to make the
model optimal. Our method will perform both feature
learning and hash code learning, enabling end-to-end
learning.

4. Experiment

4.1 Experimental Setting

We used two datasets with hierarchically supervised
information for cross-modal image and text retrieval: the
FashionVC dataset [28] and the Ssense dataset [11]. The
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Algorithm 1 Optimisation process of our algorithm.

Input Image-text Training set: β(i) = {(xi, ti) | i = 1, 2, . . . , N }, where xi denotes the image data and ti denotes the

text data. Label vectors: Se = {sei}
E
e=1. The length of the hash code: h. Batch size: mini-batch. Maximum

iterations: Tmax = dN/mini− batche. Hyperparameters: α, β, χ, δ, and φ.

Output Hash Codes Dx and Dt; parameters Wf of the image feature extraction network; parameters Wg of the text
feature extraction network.

1: Initialisation: Initialise all parameters in the model.

2: Repeat

3: for item = 1 to Tmax do

4: Randomly select the mini-batch of image data from β(i).

5: Calculate f
(
xi,Wf

)
using forward propagation.

6: Update the parameters using Adam gradient descent algorithm: Wf = Adam(∇Wf (f(xi,Wf )),Wf ).

7: Randomly select the mini-batch of text data from β(i).

8: Calculate g
(
ti,Wg

)
using forward propagation.

9: Update the parameters using Adam gradient descent algorithm: Wg = Adam(∇Wg(g(ti,Wg)),Wg).

10: end for

11: Calculate equation (3) updating hash codes Dx = sign
(
f
(
xi,Wf

))
and Dt = sign

(
g
(
ti,Wg

))
, where

sign(•) is a symbolic function [8].

12: until fixed number of iterations Tmax or achieved convergence.

Mean Average Precision (MAP) [29] and the Precision-
Recall curve (PR curve) were used to measure the
performance of the model.

4.2 Comparison of State-of-the-art Methods

Our method was compared on two retrieval tasks:
retrieving text by image (I2T) and retrieving image by
text (T2I) with four state-of-the-art methods, including
an unsupervised method: CCA [7], and three supervised
methods: DCMH [8], SSAH [9], and HiCHNet [11],
where HiCHNet is a labelling hierarchy-based approach.
There are two different variants of the method for
the three non-hierarchical label structures, depending
on the way the labels are entered. The first variant
combines the labels of all layers in the dataset to form
a complete label and is entered into the nonhierarchical
method with a suffix marked with “-a”. The second
variant is tagged with the second level tag only and
then entered into the nonhierarchical method with the
suffix “-s” tag.

Table 1 shows the MAP values of the proposed method
and the comparison method for different hash code lengths
on the FashionVC and Ssense datasets. Bolded fonts
are the best MAP values for the comparison methods,
and underlined are the second-best MAP values. The
conclusions are as follows.

The experimental results show that our method
significantly outperforms other compared methods on
both the FashionVC dataset and Ssense dataset for two
retrieval tasks with different hash code lengths. For

example, comparing the state-of-the-art method with the
proposed method in the I2T tasks on the FashionVC
dataset, the MAP improved by 14.5%, 11.5%, 8.2%, and
8.8% for hash code lengths of 16, 32, 64, and 128 bits,
respectively.

Both our method and HiCHNet are designed for
hierarchical labelling and perform better than other
compared methods. The importance of considering label
hierarchies in supervised cross-modal hash retrieval is fully
confirmed.

The MAP values for methods using all labels are
mostly lower than for methods using only a second layer
of labels. The possible reasons are that the method
using all labels simply combines all labels and ignores
the hierarchical relationship of the labels. The second
level of labels is a more refined supervised representation
of the modal data and so corresponds to a higher
MAP value.

With an increasing number of hash code bits, other
methods also obtained excellent MAP values. The possible
reason is that the smaller number of hash code bits loses
some of the semantic information and thus makes lower
retrieval results.

In addition, we show the PR curves of various methods
for two retrieval tasks with 16 and 128 bits on the
two datasets, as shown in Fig. 2. The experimental
results show that our method outperforms the four
comparison methods in terms of precision and recall for
two retrieval tasks on two datasets. Note that CCA,
DCMH, and SSAH only use the second layer of label
markings.
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Table 1
Performance Comparison Between Our Method and Other State-of-the-art Methods in Terms of MAP Values on the

FashionVC and Ssense Datasets

Method FashionVC Ssense

I2T T2I I2T T2I

16 bit 32 bit 64 bit 128 bit 16 bit 32 bit 64 bit 128 bit 16 bit 32 bit 64 bit 128 bit 16 bit 32 bit 64 bit 128 bit

CCA-s [7] 0.248 0.237 0.224 0.175 0.257 0.251 0.249 0.229 0.462 0.498 0.402 0.393 0.527 0.574 0.475 0.396

CCA-a [7] 0.226 0.213 0.208 0.169 0.238 0.229 0.217 0.211 0.457 0.493 0.391 0.311 0.512 0.561 0.462 0.351

DCMH-s [8] 0.509 0.629 0.637 0.667 0.632 0.685 0.701 0.729 0.648 0.687 0.698 0.736 0.642 0.657 0.712 0.748

DCMH-a [8] 0.503 0.587 0.612 0.631 0.607 0.657 0.691 0.708 0.613 0.651 0.676 0.721 0.609 0.632 0.684 0.729

SSAH-s [9] 0.621 0.698 0.702 0.426 0.723 0.782 0.797 0.433 0.447 0.456 0.307 0.274 0.442 0.367 0.236 0.127

SSAH-a [9] 0.610 0.663 0.693 0.398 0.729 0.805 0.816 0.472 0.546 0.604 0.639 0.387 0.457 0.465 0.329 0.278

HiCHNet [11] 0.613 0.689 0.720 0.719 0.820 0.874 0.884 0.886 0.703 0.822 0.880 0.892 0.685 0.838 0.874 0.916

Our 0.711 0.778 0.779 0.782 0.905 0.936 0.941 0.947 0.915 0.942 0.945 0.943 0.937 0.956 0.959 0.961

Figure 2. PR curves for the different methods with 16 and 128 bits on the two datasets.

We also report the actual display results for the
proposed method and HiCHNet in Fig. 3, from which
we can see that the proposed algorithm obtained a
high retrieval accuracy than HiCHNet. Incorrect retrieval
results of the HiCHNet caused by the fact that images of
different categories are less distinguishable. For example,
in the I2T task, the query label is ”Outerwear>Jacket”,
but the error retrieval result of the HiCHNet is labelled
”Outerwear>Coat”. Extensive actual display results show
that the proposed algorithm is most effective.

4.3 Further Analysis

To verify the effectiveness of our approach, we designed two
variants. Var-1 based on our method to remove MSFSM
and different semantic categories distinguish blocks. Var-
2 is based on our approach of only removing different
semantic categories distinguish blocks. Table 2 shows the
MAP values for our method and the variant method on

the FashionVC and Ssense datasets. Bolded fonts are the
best MAP values and underlined are the second best MAP
values. The conclusions are as follows.

The main reason why Var-2 significantly outperforms
Var-1 is that MSFSM effectively extracts features from
low to high level and stacks them, greatly enriching the
proposed features, and is a text feature extraction method
that considers the semantics of the text.

Our method significantly outperforms other variants
on both the FashionVC dataset and Ssense dataset for
two retrieval tasks with different hash code lengths.
For example, comparing the Var-2 with our method
in the I2T tasks on the FashionVC dataset, the MAP
improved by 1.0%, 0.6%, 0.6%, and 0.4% for hash code
lengths of 16, 32, 64, and 128 bits, respectively. This
demonstrates the need to consider the separation of
different semantic categories of data and also confirms
the contribution of MSFSM to cross-modal retrieval
results.
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Figure 3. Example of cross-modal image and text retrieval by the proposed method and HiCHNet. Green boxes indicate
correct retrieval results, and red boxes represent incorrect retrieval results.

Table 2
MAP Comparison Between Our Method and Variants on the FashionVC and Ssense Datasets

Method FashionVC Ssense

I2T T2I I2T T2I

16 bit 32 bit 64 bit 128 bit 16 bit 32 bit 64 bit 128 bit 16 bit 32 bit 64 bit 128 bit 16 bit 32 bit 64 bit 128 bit

Var-1 0.679 0.754 0.759 0.761 0.850 0.912 0.923 0.929 0.734 0.837 0.896 0.897 0.742 0.857 0.882 0.918

Var-2 0.704 0.773 0.774 0.779 0.897 0.932 0.936 0.941 0.825 0.898 0.921 0.927 0.826 0.909 0.920 0.934

Our 0.711 0.778 0.779 0.782 0.905 0.936 0.941 0.947 0.915 0.942 0.945 0.943 0.937 0.956 0.959 0.961

Figure 4. Plots of the MAP values for confidence degrees and hyperparameters of the proposed algorithm.

4.4 Sensitivity of the Parameters

We explored the effect of confidence degrees and five
hyperparameters on the MAP of two retrieval tasks in

cross-modal retrieval on the FashionVC dataset with a
hash code of 128 bits. The FashionVC dataset has only two
levels of class supervision information and

∑E−1
e=1 ηe = 1,

so η1 = 1. Fig. 4 shows a plot of the MAP values for
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confidence degrees and hyperparameters. The FashionVC
dataset has two layers of label supervision information
(K = 2) and ζ1+ζ2 = 1. The highest MAP values for
both the I2T and T2I tasks were achieved when ζ1 in
the range [0.2, 0.4]. The reason why ζ2 is greater than
ζ1’s the effect on MAP values, meaning that the second
layer of labels is more important to retrieval accuracy
than the first layer of labels, is that the second layer of
labels is a more refined supervised representation of the
modal data.

In addition, the optimal values for the five hyperpa-
rameters α, β, χ, δ, and φ are searched by a grid search
method. When any of the five hyperparameters equals
0, their MAP values are low, which fully illustrates the
necessity of considering modal adversarial block loss, cross-
modal hash loss, intra-label layer similarity loss, label
cross-layer correlation loss, and different semantic category
differentiation loss.

5. Conclusion

In this paper, we proposed an adversarial and deep hashing-
based hierarchical supervised cross-modal image and text
retrieval method that enables the robot to automatically
understand and correlate key elements between different
modal data, and to achieve relatively accurate cross-
matching. Modal adversarial networks are introduced to
reduce the distance between different modalities with
the same semantics in a shared subspace. Intra-label
similarity loss and inter-label correlation loss are also
introduced to fully exploit the intrinsic similarity of each
label layer and the inter-label correlation. Furthermore,
an objective function for different semantic data is
redesigned to keep the modal of different semantics
at a certain distance from each other in the common
space. Experimental results on two cross-modal retrieval
datasets with hierarchical supervised information show
that our method improves the MAP by 10.75%/14.48%
and 7.70%/16.38% on average compared to the optimal
comparison method on two tasks (I2T/I2T), which
fully demonstrates its effectiveness in large-scale cross-
modal retrieval with hierarchical supervised information.
Meanwhile, the proposed algorithm outperforms the state-
of-the-art methods significantly on the actual display
results further verifying the effectiveness of the proposed
algorithm.

In future work, a unified deep model that can learn
multiple modals (e.g., video, audio, and 3D models)
simultaneously needs to be further investigated for
intelligent robots. Furthermore, the proposed algorithm
will be deployed on the clothing guide robot. The
customer simply enters visual or textual information into
the robot window and the robot retrieves the clothing
information using the proposed algorithm and presents
it to the customer. The proposed algorithm was trained
on the fashion domain and we are collecting clothing
image-text cross-modal data from clothing shops to
further improve the generalisation of the algorithm, which
will then be refined for deployment on clothing guide
robots.
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