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RESEARCH ON MOTOR LEARNING AND
CONTROL OF MULTI-DOF BIONIC
MANIPULATOR

Jianjun Lan*

Abstract

Motion planning of robotic systems needs to be engineered by
professionals, and how to quickly and simply adjust the motion of
the manipulator when external tasks change is of major importance
to us. We present an action planning method by only using magnetic
and inertial measurement unit (MIMU), the entire system consists of
a human arm attitude measurement unit and a bionic manipulator
control unit. Robotic manipulators can perform fast action learning
from the pose data of the operator’s arm instead of complex motion
redesigns. The Kalman filter algorithm is used in inertial sensor data
fusion, and the fusion of the values recorded from the inertial sensors
can be decomposed into the rotation angles of the servos using a
rigid body transformation using the Lie group theory. Evaluation
tests were performed separately in the LabVIEW platform and on
a real robotic system, and the results from the real-time tests show
that the method successfully reproduces the movements performed

by the operator.
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1. Introduction

Bionic manipulators could replace humans in a variety
of operational tasks, such as handling and welding. With
the change of tasks, the robot’s motion planning needs
to be redesigned by professionals [1], [2]. However, this
traditional approach is cumbersome and requires a high
level of skill. So many scholars have tried to use action
learning methods to plan the trajectory of a robotic
manipulator. In terms of action recognition, the main ways
include data gloves [3], tactile sensors [4], control panels
[5], visual images [6], and all kinds of wearable devices [7],
and the sensors used by most of the posture detection are
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vision and inertial sensors. The advantage of visual sensor
teleoperation is that it can make human limbs stretch
naturally [8], [9], and the virtual environment through
the depth camera to help the human body feel the real
tactile force, to realise teleoperation [10], [11]. However,
the advantage of wearable devices with multiple sensors
is more pronounced in terms of real-time convenience.
Many reports of the motion recognition accuracy are above
99.00% [12]-[14], and some simulations of motion tracking
based on multi-sensors were performed in MATLAB
[15], [16]. In terms of only using inertial sensors for motion
learning, Fu et al. [17] presented a method based on the
cubic spline to reduce the impact on the joint, and a
method to limit the drift of the gyroscope was proposed
in [18]. After the attitude is accurately measured, the
human movement trajectory can be mapped to a robotic
man manipulator using a mapping approach [18]. Though
several kinematic mapping methods have been proposed,
such as position mapping, joint angle mapping, pose
mapping, and so on [19]-[22], those methods take a long
time to compute. In [23], a method directly controlled
by the robotic articulation speed has been proposed and
achieved relatively good results.

This paper proposes a methodology for action learning
and control of robotic manipulators using only inertial
measurement units for real-time considerations and conve-
nience. Two 9-axis inertial sensors are attached separately
to the upper and lower arms of the human, and data
fusion of gyroscopes, accelerometers, and magnetometers
is performed using a Kalman filter fusion algorithm, which
can compensate for the accuracy of pose measurements
in the dynamics. After pose decomposition and mapping,
the servo angle parameters of the manipulator are
reconstructed using the Lie group algorithm. To verify
the effectiveness of this approach, a simulation test in
LabVIEW and a physical grasp test based on the KNOVA
manipulator system are separately demonstrated.

2. System Framework

The structure of the system consists mainly of two
parts: the arm pose detection unit and the manip-
ulator control unit. Figure 1 shows the diagram of
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Figure 1. The structure of the system.

the system structure. In particular, the arm pose
detection wunit consists of controllerl as the lower
computer, inertial sensors, and a USB communication
interface. Two inertial sensors integrated with accelerom-
eters, gyroscopes, and magnetometers are arranged
on the upper and lower arms for human arm pose
detection.

The manipulator control unit consists of controller2
as the upper computer and manipulator, which receives
data from the arm pose detection unit that has been
processed by controllerl into rotation angles for each
servo of the manipulator. Thus controller2 can control the
manipulator to mimic the movement of a human arm in
real time.

3. Arm Attitude Measurements
3.1 Construction of Coordinate System

The essence of human arm attitude measurement is to
construct a set of strap-down inertial navigation systems
on a human arm to obtain the arm posture, position,
and velocity information of the arm. Usually, the attitude
information is described by the carrier coordinate system
and the position information is described by the navigation
coordinate system. In this study, the ENU coordinate
system is selected as the navigation coordinate system
(n system), and the carrier coordinate system is the
b system. The b system is rotated around its Z-axis by an
angle of ¢, and then the new X-axis around the b system
by an angle of #. Finally, rotate the angle v around the
new Y-axis of the b system to obtain a new attitude. The
schematic diagram of the rotation relationship is shown in
Fig. 2 and (1).
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Where C? is a rotation matrix in which each element
is a directional cosine.
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Figure 2. Schematic diagram of the rotation of two
coordinate systems.

3.2 Attitude Solution

Quaternion methods are widely used for pose solutions due
to their low computational cost and high accuracy. The
pose solution process consists of three main parts: quater-
nion initialisation, quaternion update, and quaternion
conversion output. The whole procedure is implemented by
solving differential equations to continuously obtain new
poses, and the steps are as follows:

Step 1: Quaternion initialisation

Equation (2) shows the calculation formula for the initial
value of the quaternion. The initial attitude data of the
human arm is needed for initialisation. Because it is
impossible to ensure that the posture of the human arm is
at the same position when initialised each time, the usual
method is to measure a static attitude (¢, 8, v) as the initial
attitude data.

Under static conditions, the accelerometer is only
affected by gravity, the yaw ¢ cannot be measured by the
accelerometer, but only by the magnetometer, the formula
is shown in (3):

qo = coslcosecosf —sinzsingsinf
2 2 2 2 2 2
q1 = coslsingcosf —simlcosfsinf
2 2 2 2 2 2
¢o = sin 2 cos Q cos b + cosl sin Q sin 4
2 2 2 2 2 2
0 0
q3 = cos % €08 5 sin % + sing sin 5 cos % (2)
¢ = arctan (my) (3)
My

Where m, and m, are the magnetic intensity
components of the magnetometer on the X and Y axes.

When pitch 6 and roll v were only measured by the
accelerometer, the attitude conversion matrix C% can be
simplified. Using the trigonometric function relationship,
the solution results of the angle are shown in (4).

al —gsiny cosf (et
# = arcsin ?y
ag = gsinf = \ (4)
= —arctan (a—’”)
a’ gcosy cosf 7 a

Where af, af, and a? are the components on the three
axes of the accelerometer, and ¢ is the acceleration due to
gravity.



| Gy Gy, G H Infegration |—-| Adjll)sflgmt|
Gyroscope l
| Pitch
Roll

Circular
A @y Az Function

Accelerometer

Kalman
Filter

Angle

Magnetometer

Figure 3. The principle of data fusion.

Step 2: Quaternion update

After obtaining the initial value of the quaternion, the
quaternion needs to be updated continuously to obtain
a continuous attitude solution. By solving differential
equations of angular velocity, the solution of quaternions
can be converted by (5).

qo 0 —wy —wy —w:| |qo
G1 _ 1 |wa 0 Wy —wy | @1 5)
42 2wy, —w. 0 we | |42
q3 Wy Wy —Wg 0 q3

Where w;, wy, and w, are the angular velocity
components of the gyroscope, qo,q1,¢2, and ¢3 are the
quaternion.

Step 3: Quaternion conversion output

Although quaternion has an advantage over Euler angle
in attitude calculation, it is not intuitive in attitude
description, so the output angle is expressed in the form of
an Euler angle [24], the transformation relationship of the
two is shown in (6).

2q1¢2
v = arctan2 | ———5———5
1—2q¢5 — 2¢3

0 = arcsin (2qoq2 — 2q1¢3)

» = arctan? 24243 + 2q0q1
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3.3 Data Fusion and Filter

In inertial measurements, it is important to fuse the data
from accelerometers, gyroscopes, and magnetometers to
ensure the accuracy of the angular measurement. The
Kalman filter is used as the general algorithm in this
study, and Fig. 3 shows the principle of data fusion. The
gyroscope is used for a prior estimate of all attitude
angles, while the magnetometer is used only for yaw
and the accelerometer for pitch and roll in the posterior
estimate.

Firstly, the equations of linear stochastic differential
and systematic observation are set up as shown in (7).

xp = Axp_1 + Bug_1 +wi—
2z = Hxp + vy (7>

Where z;, is the state value of the system at time £,
A is the system transition matrix, B is the control input
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matrix, ug_1 is the input of the system at k—1, and wy_1
is the system process noise.

The optimal value estimation for the Kalman filter
is a recursive filter that includes systematic predictions
and measurement corrections. In the system prediction, it
needs to use the posterior estimated state value Tp_q at
time k—1 to calculate the prior state estimated value Zy
at time k, then calculate the prior estimated covariance
Pr. In the correction, it is necessary to dynamically adjust
the Kalman gain to solve the optimal estimate with the
smallest mean squared error, see Fig. 4 for the software
flowchart.

4. Manipulator control
4.1 Attitude Mapping

The key to robotic arm learning from human arm motion
is pose mapping, where the servos act as pivots and
hinges of the manipulator, and the goal is to convert the
pose data of the human arm into the rotation angle of
the servos. Fig. 5 shows a schematic of the structure of
the designed arm, with servos numbers 1 and 2 for the
2-DOF simulation of the upper arm, 3, 4, and 5 for the
3-DOF simulation of the lower arm, and 6 for the grasping
simulation.

4.2 Attitude Decomposition and Mapping

The movement of the lower arm not only includes its own
but also the driving of the upper arm. During the attitude
mapping, it is necessary to construct a coordinate system
for the lower arm and upper arm separately. Take the
yaw for example, Fig. 6 shows the projection of the yaw
on the X-Y plane. J; is the upper arm of the robot,
Jo is the lower arm, x9—y9 is the upper arm coordinate
system (the global coordinate system), and z'-4' is the
lower arm coordinate system (the local coordinate system).
1 is the yaw of the human upper arm in the global
coordinate system, and (5 is the yaw of the human lower
arm in the global coordinate system. According to the
projection transformation relationship, the yaw of the
human lower arm in its local coordinate system can be
calculated as ! = o — 1, which is the rotation angle of
the servo.

5. System Modelling and Testing
5.1 Manipulator Modelling

The 3D model diagram of the manipulator is shown
in Fig. 7, which consists of six servos (named num-
ber 1 to number 6) and relevant mechanical fasten-
ers. The modelling process includes component sketch
drawing, feature addition of the component graph-
ics, setting up the component constraint and compo-
nent assembly, and the whole process was done in
SoildWorks.
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Figure 4. Flowchart of Kalman filter.

5.2 Static Data Testing

During the static test, the human arm was replaced by
a manipulator because the arm could not be maintained
accurately at a particular angle. The MPU9250 is fixed
to the manipulator, and the servos are controlled by
a single-chip microcomputer to rotate in the triaxial
directions. The rotation range is 0-60°, the step is 5°.
The actual angles are provided by the servo’s angle which
can be obtained by the conversion of the pulse width of
the pulse width modulation (PWM) signal and record the
measured value of the MPU9250. The test data error curve
is shown in Fig. 8, and the measurement error is less
than 1.5°.

5.3 Dynamic Simulation

The 3D model of the manipulator designed in SolidWorks
can be imported into LabVIEW for dynamic simulation,
as long as it was derived in the WRL file format. Various
operations on 3D objects are supported in LabVIEW,
such as relative rotation, translation, and scaling, but
the independent rotation of components is not supported.
Therefore, an approach that constrains the relational
setting of each servo by inserting a connection point where
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Figure 5. Structure of simulator arm.
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Figure 6. Yaw angle XY plane projection.

Figure 7. The 3D model diagram of the manipulator.

the rotation of the upper servo can drive the rotation of
the subordinate servo is feasible for both individual and
common rotations of the servos. After the design of the
program panel, the VISA interface in LabVIEW is used
to collect pose data of the human arm so that the robot
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Figure 8. Absolute error curve of static test data.

Figure 9. Dynamic motion effect of manipulator.

manipulator and the human arm can interact dynam-
ically and synchronously, the dynamic effect is shown
in Fig. 9.

6. System Implementation

We validated the presented method on an experimental
platform of a KNOVA manipulator with 6-DOF. Two
inertial sensors MPU9250 were used for the attitude
detection of the human arm, a rheostat-type grasping
control glove was used for grasping control signal
detection, and a STM32 microcomputer (MCU) as the
lower computer was used for the signal processing
and data communication between human arm attitude
detection system and KNOVA manipulator system. The
experimental devices are shown in Figs. 10 and 11 which
show the correspondence between the degrees of freedom
of the real manipulator and the simulated manipulators in
LabVIEW.

To test the effectiveness of the actual robot arm in
learning human arm movements, we designed a benchmark
test plane trajectory as shown in Fig. 12. The human
arm moved along the plane trajectory of A-B—C such that
the robot arm repeats the trajectory of the human arm.
Two MPU9250 sensors were used to record the end angle
changes in the X, Y, and Z-directions for the human arm
and the robot arm, respectively, and the curves of the
end angle changes for both arms are given in Fig. 13.
The red curve is the angle change curve at the end
of the human arm and the corresponding blue curve is
the angle change curve at the end of the robot arm.
Regardless of the need for high-precision imitation, the
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Figure 10. The relevant experimental devices: (a) KNOVA
manipulator with 6-DOF; (b) grasping control glove;
(¢) MCU development board; and (d) MPU 9250.

Figure 11. The corresponding relationship of the degrees
of freedom between the simulated manipulator and the real
manipulator.

robot arm can better reproduce the movements of the
human arm.

Further, to test the effect of learning of the robot arm
motion in three dimensions, we placed a plastic bottle in
the workspace of the KNOVA manipulator as the grasp
task target, and the glove was able to detect the degree
of bending of each finger. When a grasping motion is
generated, the digital signal from the MPU9250 sensor
and the analog signal from the rheostat sensor can
be sent to the STM32 for A/D conversion and other
processing.

Figure 14 shows the entire process of grasping an
object in the system. The operator continuously adjusts
the posture of the real manipulator through the arm
posture. After locking onto the object, the grasping action
is achieved by clenching the palm and then raising the
arm. Finally, the manipulator is controlled to put down
the target.
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Figure 12. The benchmark test plane trajectory.
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Figure 13. The comparison curve of the end angle changes.
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Figure 14. Grabbing object process: (a) locking the object;
(b) crawl the object; (c) raise arm; and (d) put down the
object.

7. Conclusion

The goal of this study is to provide an action learning
method for manipulators that can quickly perform action
planning using only inertial sensors. In this work,
we introduce the implementation of data fusion, pose
solution, and gesture mapping. This approach is cheaper
than comparable methods due to its low cost and
operator simplicity. We present results that demonstrate
the tractability and feasibility of the proposed method
for motion learning through simulation and real-world
manipulation, respectively. However, the initial goal was
a simple validation experiment, so the method requires
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further improvements, such as consideration of the length
relation between the human arm and the manipulator,
as well as the attitude detection and feedback of the
manipulator. Subsequent research will be devoted to
the improvement of the above problems and practical
applications in dangerous places where robotic arms replace
human arms.
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