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USING TWO-STAGE KALMAN FILTERS
AS OBSERVERS FOR SIMULTANEQOUS
TRAJECTORY TRACKING AND
UNKNOWN INPUT ESTIMATION

Hao Deng*

Abstract

Target tracking with an unknown bias is important in the fields
of navigation, trajectory determination, and so on. Kalman filter is
simple in principle and widely used, however, it has poor ability for
state estimation with unknown bias. To improve its performances,
robust two-stage Kalman filter (RTSKF) and optimal two-stage
Kalman filter (OTSKF) are adopted for target tracking and unknown
bias estimation and their behaviours are compared comprehensively
in this work. First, the feasibility of these filters is validated under
a low-noise environment. Then, the robustness to resist the noises is
investigated when the intensities of process noise and measurement
noise are changed from 0.01 to 0.50. Results demonstrate the
OTSKEF has stronger robustness than RTSKF. Finally, the types of
unknown bias are changed to test the flexibility and accuracy to

track manoeuvring target.
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1. Introduction

Target tracking and state estimation are important in the
fields of computer vision [1], navigation [2], attitude control
[3], satellite [4], track obstacles for autonomous underwater
vehicle [5] and so on. For the target tracking, the
accuracy is usually affected by variable factors, such as the
environment disturbing, tracking methods, measurement
technique, etc.

Target tracking is to detect the moving target and
estimate the state of the target by using measurement
information [6], and it usually relates to moving and
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multiple targets [7]. High-performance tracking can be used
for accurate control and for different goals [8], such as
trajectory planning [9]. For example, based on a Chebyshev
pseudospectral method, Vitali et al. [10] proposed a multi-
objective and multi-phase 4D trajectory optimisation tool
to choose the best solution of an aircraft. The results
obtained can satisfy the requirement of economic and
environmental factors. An event-triggered attitude tracking
controller was proposed by Qi et al. [11]. More accurate
control results could be obtained. Similarly, attitude
tracking synchronisation control of a space-moving target
is investigated in [12]. Ziadi and Njah [13] proposed PSO-
DVSF2 method to tracking moving targets for optimal
motion planning approach. Based on the density-based
spatial clustering of applications with noise (DBSCAN)
algorithm, De et al. [14] proposed an adaptive localisation
method for the mobile robot.

Early target tracking algorithms are mainly divided
into two categories: one is based on target model modelling,
and the other is based on search, such as Kalman filter [15],
Winner tracker [16], Meanshift algorithm and so on [17].
The first important thing for target tracking is the accurate
estimation of target state, which plays an important role
in target tracking performance. Target tracking is an
uncertain problem. Filtering algorithm is usually used to
eliminate the related uncertainty. In practical engineering
applications, the core of target tracking is filtering, and the
filtering estimation results affect the accuracy of a target
tracking system. Since the Kalman filter was proposed, it
has been widely used and investigated [15]. For a moving
target tracking, Kalman filter makes prediction based on
the current states and model of the system, then it takes the
measurement information to correct the estimated state.
Classical Kalman filter is suitable for linear systems [18].
In practical engineering, there are many nonlinear objects,
which restricts the application of Kalman filter. Therefore,
many nonlinear filtering methods were proposed, such
as extended Kalman filter [15], unscented Kalman filter
(UKF) [19], particle filtering [20], robust Kalman filter
[21] and so on. Additionally, these methods have also
been developed in the field of target tracking. To realise



real-time target tracking, Jondhale and Deshpande [22]
introduced the Kalman filter and UKF into wireless
sensor networks with combination of generalised regression
neural network (GRNN)-based approach. They used these
methods to track a two-dimensional moving target under
the conditions of uncertain measurement noises. Simulation
results demonstrated the favourable tracking performance
of GRNN+UKF. Based on spatiotemporal context, Yang
et al. [23] proposed a visual tracking method using Kalman
filtering, which aims to improve the robustness of the
target tracking process. Jung et al. [24] proposed an
adaptive incremental backstepping controller for trajectory
tracking, and this method was feasible to deal with the
model uncertainties. Based on the random hypersurface
model, Ma et al. [25] used a modified adaptive extended
Kalman filter successfully to track the manoeuvring star-
convex extend target. The kinematic state and shape
estimation were simultaneously realised. Gu et al. [26]
proposed an adaptive UKF for target tracking. The fading
factor was adaptively changed to adjust the covariance
matrix which could improve the tracking accuracy and
address the divergence problem. Wang et al. [27] used an
adaptive UKF to track a two-dimensional moving target.
In this adaptive method, both the measurement noise
covariance and process noise covariance were adjusted. The
measurement noise covariance was adjusted by introducing
a fading factor while process noise covariance was adapted
by using both the innovation and the residual sequences.
Zhou and Hou [28] proposed a new adaptive high-order
UKF which was based on orthogonal principle and high-
order UT sampling strategy. This method could solve the
problem that there was obvious error using classical UKF
to capture dynamic target. Another adaptive tracking
method for relative state estimation of a non-cooperative
target was proposed by Yin et al. [29]. In this method, a
current statistical jerk model-based extended Kalman filter
was improved by interacting multiple model algorithm.
It can be used to track non-cooperative spacecraft with
continuous-thrust manoeuvres. Liang et al. [30] developed
a distributed Kalman filtering technique with trust-
based dynamic combination strategy, which can improve
resilience against cyber-attacks.

While there is an unknown bias as input, successful
estimation of the input estimation is useful for system
tracking and control. Simultaneous target tracking and
unknown bias estimation using Kalman filter have been
focused on in recent years. Though different methods based
on Kalman filter were developed, they mainly focused on
the state estimation, which was used for target tracking.
For the simultaneous estimation of state and unknown
input, Ji et al. [31] proposed an input estimation method,
which combined Kalman filter with recursive least-squares
algorithm, and they used this method to estimate the
thermal state and input of a thermal system. However,
there would be extreme fluctuation in the initial period
for the unknown input estimation [32]. This phenomenon
has been illustrated in the state estimation of thermal
systems [33]. Wang et al. introduced fuzzy inference into
this method and adaptively adjust the process noise
covariance in the heat source estimation of instantaneous
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heat transfer system [34] and state monitoring of absorber
tube [35]. Though this method improved the performances
of input estimation and state estimation, the membership
function and universe should be determined when the fuzzy
inference method is used. These two factors are depended
on the study object. And there is not a universal rule to
determine these factors. Another possible way is to regard
the unknown input bias as an augmented state in Kalman
filter. This increases the dimension of the state vector to the
total dimension of state and input. However, it leads to a
significant increase in the dimension of the state transform
matrix, making the calculation complex. To overcome this
problem, a two-stage Kalman filter method was proposed.
That is, one Kalman filter is used for state estimation
while another one is used for unknown input estimation.
To obtain optimal estimation of unknown input in the
mean square error sense, an optimal two-stage Kalman
filter (OTSKF) was derived [36]. And it has been applied
in cyber-attack detection [37]. In order to avoid the effect
of unknown inputs, the blending matrix and the bias
filter in OTSKF are modified to obtain a robust two-
stage Kalman filter (RTSKF) [38]. The OTSKF has been
used for simultaneous state and cyberattack estimation
in automatic generation control [39]. Related two-stage
Kalman filter has been widely developed for power system
state estimation [40].

Though the Kalman filter methods were proposed
for state estimation, there is a few work focussing on
the comparative investigation of different Kalman filter
methods, especially in the fields of manoeuvring target
tracking. As manoeuvring target has high uncertainty, its
trajectory tracking and state estimation are quite complex
problems. To investigate the comprehensively comparison
of the performances of RTSKF and OTSKF, the effects
of different noises and unknown inputs were studied to
test the abilities of target tracking and unknown bias
estimation. The comparison between the performances of
OTSKF and RTSKF for manoeuvring target tracking is
the main topic in this work, instead of the manoeuvring
target modelling. Results demonstrated the feasibilities of
these methods in the tracking of manoeuvring target and
gave a guide for the choosing of estimation methods under
different conditions.

2. Model of a Manoeuvring Target

In the modern control theory, a dynamic system can be
described by the state-space model, which contains the
state equation and observation equation. Consider the
linear discrete stochastic system with unknown bias in
the following form,

Tht1 = Arzr + Epdy + wi
diy1 = di +wf

yr = Hpxp + 5

where, 23, € R" is the state vector of the system; dy, € RY is
the unknown bias which is the input of this linear discrete
system; y is the measurement vector. Ay, Ey and Hy are
state transform matrix, input matrix and measurement



Table 1

Acceleration Sequence in this Section

Time (s) | 1-30 | 31-45 | 46-55 | 56-80

81-98

99-119 | 120-139 | 140-150 | 151-160

laz, ay]) | [0,0] | [8,22] | [12], [27] | [0,0]

[15,2]

[—2,9] | [0,—1] | [28,-1] [0,0]

matrix, respectively. The wy, w{ and 7, are independent
noise sequence with the covariances: E{wiw;} = Qp,
E{nn}} = R, and E{wl(w)'} = Q%. Equation (1) is the
state equation and (2) describes the input information of
the linear discrete system. Equation (3) is the observation
equation.

Manoeuvre estimation is a significant problem in target
tracking, especially with an unknown bias. It is quite
a difficult problem due to its high uncertainty. In the
kinematic model, a manoeuvre is always modelled using
its acceleration variations, which has a similar form with
a linear discrete stochastic system model. A manoeuvring
target model on (z, y) coordinate plane is described as
follows:

Th4+1 = Amk + E(ak +Ek)
2z, = Hxp + v

(4)
()

where, z = [z,V,,y,V,]7 is the state vector consisting
of position coordinate and velocity in each direction;
a = [agz,a,]T is the acceleration vector, which is an
unknown bias. @ and v are independent acceleration and
measurement noise vectors, which consists of Gaussian
white noise. Equation (4) is the state equation and (5) is
the observation equation used in this work. The covariance
matrixes of @ and v are @ and R. According to the
movement equation,

1700 T2/2 0

0100 T 0 1000
A= JE = JH =

001T 0 T%/2 0010

0001 0 T

where, T is a discrete time step.

As a term in state equation, the term a is the input
of the system, which is also the acceleration vector. In this
paper, the input data a is referenced from the literature
[41], which was used to test the feasibility of a target
tracking method. The acceleration vector, namely, the
input data a consists of two elements, which are the
acceleration components in z and y directions. In this work,
the initial position is set on the (0,0) and the initial velocity
is zero. The acceleration vector is chosen as Table 1.

It is seen that the input data series serves to evaluate
algorithms’ peak errors, steady-state errors, and response
times.

3. Methodology of Two-stage Kalman Filters
There have been many works focussing on the state

estimation of two-dimensional moving object using Kalman

filter [42]. In this work, the OTSKF and RTSKF are used
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to track a manoeuvring target which moves on a two-
dimensional plane. The main objective of this work is
to compare the performances of OTSKF and RTSKF for
manoeuvring target tracking. As these two methods have
been derived in previous works, they are clearly given in
this section.

3.1 Robust Two-stage Kalman Filter

Hsieh [38] proposed an RTSKF, which can be used to
estimate the state of linear system without effects by
unknown inputs. The RTSKF for simultaneous estimation
of unknown input and state can be described by the
following equations [38]:

(6)
(7)

is the optimal estimation of the system

Tr/k + ch/l\k/k
P+ Vs B Vi i

Ty =
P, if//c =
where, 2/,
state, namely the posterior estimation; dj, ;. is the optimal
estimation result of the unknown input; Vi is the gain

matrix to obtain the optimal state; P/ is the estimation
error covariance of the state. The Ty, is given by

T /-1 = Ap—1Tp_1/k—1 (8
Tk = Trjp—1 + Ki (Y — HiTpjp—1) )
ﬁi/m = A1 Py ko1 Ak + Qe

Kki = ?z/qul/cC/;l (11
Fi/k = (- kaﬂk)?:/kq

where, K7 is the gain matrix to correct the state
estimation; I is a unit matrix; and y; is the observation
result.

The optimal estimation result of the unknown input
dyk, can be obtained using the following equations:

Jk/k = K (ye — HiTr 1) (13)
Ki = Py B H G (14)
Py = {EB HLCy  Hy By 1} (15)

where, K ,‘j is the gain matrix to obtain the optimal
estimation of the input vector. Vi and Cj, are obtained as
follows,

Vi = (I — KT Hp)Ej—1
Cy = HiPy_ 1 Hj + Ry,

(16)
(17)
3.2 Optimal Two-stage Kalman Filter

As for the linear discrete model described by (1)—(3), the
dy . is an optimal filter of the unknown inputs in the mean
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Figure 1. Manoeuvring target tracking results using OTSKF and RTSKF: (a) trajectory of manoeuvring target and (b)

velocity estimation result.

square error sense. The optimal estimation equation for
state and its estimation error covariance matrix should be
as follows:

(18)

Try1/k+1 = Th1/kr1 t Brr1/kr1dkt1/k11

B b

PI§+1/I<+1 = PI§+1/k+1 + 5k+1/k+lpk+1/k+1ﬂl/c+1/k+1 (19)
where, Zjy1/k41 and gk+1/k+1 are the optimal estimation
results of state and unknown input; P , k1 is the
estimation error covariance of the state; ﬁkﬂ/kﬂ is the
coupling term in the following coupling equation.

The optimal estimation of state vector is obtained
by updating the state estimation result without input
formation using the estimated optimal input. The state

estimator is solved using the following equations:

Trst /b1 = Thpasn + KipiAen (20)
]Sl?+1/k+1 = - I?If+1Hk)ﬁlcx+1/k (21)
Kityy = Pl Hi(Grgn) ™! (22)
Gryr = HePlyy Hi + Ry (23)
Ve+1 = Ykt1 — HeTpp1k (24)
5k+1/k =A kfk/k + ngc/l\k/k - ﬁk+1/kgl\k+1/k (25)
Priyjp = AP A + Qr + 9k P05,
~Br1/kPhar i Brs1 sk (26)

where, Ty 1,41 is the posterior state estimation corrected
by measurement information; Ty, is the priori state
estimation; oy is the coupling equation described in
the following part. dj/ is obtained using the following
equations:

i1k = dip + Kb (27)

Biiem = (U= KR Ligayi) Prya (28)
KIngl = PI?+1/I€L;€+1/IC

(Liyr/w Pl i Ly + Gre1)™t (29)

Vi1 = Vst — Liyryndign (30)
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Pli]+1/k = Plg/k"_Qg (31)

where, P,g 1k is the priori estimation error covariance

of the input; P,i’ 1k is the posterior estimation error
covariance of the input. And the coupling equations
Br41/k+1, Vg, and Ly pare given as follows:

Breisii1 = Btk — Kiy1 Ly

(

L1k = HeBrg1/k (33
Btk = OuP i (Prya )" (
VU = ArBrsx + Ex (

4. Performance Evaluation of RTSKF and OTSKF

In this section, abovementioned two methods, namely,
RTSKF and OTSKF are applied to track a manoeuvring
target and estimate the unknown bias simultaneously.

4.1 Feasibility of RTSKF and OTSKF for Target
Tracking and Unknown Bias Estimation

To validate the feasibility of RTSKF and OTSKF, the
model in Section 3 is chosen as the manoeuvring target.
Initial guesses of state vector and unknown bias are
assumed as zero vectors. When @ and R are set as 0.0011
and 0.0011, the manoeuvring target results are shown in
Fig. 1.

The target position changes over time. It is seen
that during this process the trajectory of this target has
variable curvature in different periods. During the first 30
s, the position keeps as (0, 0) due to zero acceleration.
At the final second, the true position of the target is
(49,673.37 m, 81,616.12 m) while the tracked ones using
OTSKF and RTSKF are (49,673.33 m, 81,615.94 m) and
(49,673.37 m, 81,616.11 m). The tracking error is very
low and the tracked trajectory of this manoeuvring target
using OTSKF or RTSKF agrees with the true trajectory
accurately. The estimated velocity vectors and true velocity
vector are (776.00 m/s, 794.00 m/s). And the estimated
velocity change curves in Fig. 1(b) coincide with the true
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Figure 3. Effects of measurement noise on acceleration estimation: (a) RTSKF and (b) OTSKF.

value. Therefore, both the RTSKF and OTSKF can be
used for the state estimation of the manoeuvring target.
The estimation results of the unknown bias, namely the
acceleration sequence, are shown in Fig. 2.

In the initial period, there is no difference between
the true value and the estimated value due to the reason
that initial guess value is the same as the true acceleration
sequence. When there is a change of a, or a,, the estimated
result can quickly track the true value. It is clearly
exhibited that after the moment of sudden change, there
is a slight overshoot of the estimated bias using OTSKF.
However, it disappears in a very short period. For the
RTSKF, the estimated bias matches with the changes of
true value. In some periods, estimated results are slightly
higher than true value. The accuracy of these tracking
methods is high enough for the unknown bias estimation.
Comprehensively considering the state and bias estimation,
the OTSKF and RTSKF are feasible for target tracking
and unknown bias estimation.

4.2 Effects of Variable R on RTSKF and OTSKF

It is unavoidable that there are noises in observation,
which is affected by environmental noise, sensor and so on.
When the covariance of measurement noises is changed as
0.011, 0.051, 0.101 and 0.501, the estimation results of the
unknown acceleration sequence using RTSKF and OTSKF
are shown in Fig. 3. In these cases, the @ keeps constant
as 0.001L
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When the unknown bias is zero, there is no difference
between the estimation results using RTSKF and OTSKF.
Once the acceleration changes, an obvious error occurs
in the estimation error of a, or a, no matter whether
the RTSKF or OTSKF is used for bias estimation. For
RTSKF, when R = 0.011, the sudden changes of estimation
error can be eliminated in 2~3 s. With the increase of
intensity of measurement noise, the time to high-accuracy
estimation becomes longer. When R rises to 0.501, the
estimation error of unknown a, or a, cannot reach zero. It
can only reflect the changing trend of the acceleration bias,
which means the estimation of unknown bias failed under
this condition. For OTSKF, it is similar to RTSKF that
there is an error when acceleration changes sharply. The
error of OTSKF is of same level as that of RI'SKF at the
same moment. The difference is that the time to recover
zero is very short for OTSKF. It is seen that the time to
recover zero becomes longer when the R increases, which
is similar to RTSKF. Due to its fast-tracking ability, the
error can be eliminated in a short period even R = 0.501.
Therefore, the estimation ability for unknown bias using
OTSKF can resist the higher intensity of measurement
noise than RTSKF. The state estimation results are shown
in Fig. 4.

The tracking error of trajectory mainly occurs at the
moment of acceleration change. And it recovers to zero due
to the tracking ability of the two methods. The tracking
error becomes larger when the intensity of measurement
noise increases. For RTSKF, when R increases from 0.011
to 0.501, the estimation errors of z vary in the ranges of
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Figure 4. Effects of measurement noise on state estimation results: (a) error of trajectory using RTSKF; (b) error of trajectory
using OTSKF; (c) error of velocity using RTSKF; and (d) error of velocity using OTSKF.

[—0.26 m, 0.25 m], [~1.31 m, 1.26 m], [~2.31 m, 2.64 m|
and [—5.32 m, 12.20 m] while the estimation error of y
distribute in the ranges of [—0.24 m, 0.19 m], [-1.24 m,
1.00 m], [-2.47 m, 2.09 m| and [-7.44 m, 9.86 m]. The
maximum error of the z position occurs near 140 s due
to the large variation of a,. The maximum error of the y
position occurs after the 30 s. Except for the condition of
R = 0.501, the estimation error of trajectory can recover
to zero after a sudden change of acceleration. For OTSKF,
the estimation error of trajectory is different from that of
RTSKF under the same condition. when R increases from
0.011 to 0.501, the estimation errors of z vary in the ranges
of [-1.10 m, 1.10 m], [-1.91 m, 1.89 m], [-2.40 m, 2.41
m] and [—4.16 m, 4.10 m] while the estimation error of y
distributes in the ranges of [—1.06 m, 0.86 m], [—1.84 m,
1.49 m], [—2.34 m, 1.88 m] and [—4.07 m, 3.12 m]. It is seen
that when R is less than 0.101, the trajectory estimation
error range of RTSKF is narrower than that of OTSKF.
They have similar accuracy when the R = 0.10I. When
the intensity of measurement noise increases further, the
OTSKEF has a more favourable performance than RTSKF.
However, it should be noted that the OTSKF has faster
tracking ability, which can eliminate the estimation error
quickly. For this reason, the global error of OTSKF is
lower than that of RTSKF under all conditions. As for
the estimation of the velocity of the manoeuvring target,
the performance is similar with the estimation results of
position. The estimation error increases with the climbing
of measurement noise. And OTSKF shows more favourable
performance than RTSKF in all conditions due to the
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reason that OTSKF shows fast tracking ability and strong
robustness to resist the measurement noise.

4.3 Effects of Variable Q on RTSKF and OTSKF

In the movement of a manoeuvring target, the model error
or bias noise is always reflected by the variable @ in the
state-space equation. When the R keeps constant as 0.0011,
the covariance of bias noises @ is changed as 0.011, 0.051,
0.10I and 0.501. Under these conditions, the estimation
results of unknown acceleration sequences using RTSKF
and OTSKF are shown in Fig. 5.

For RTSKF, the estimation error of unknown bias
increases with the climbing of Q. The estimation result
of RTSKF under the condition of @ = 0.501I is definitely
unbelievable. Under other conditions, the estimation error
of acceleration can reflect the variations of true value and
the estimation error tends to recover after the sudden
changes in acceleration sequence. However, due to its poor
tracking ability, the estimation performance deteriorates
when @ = 0.10I. Under the conditions of @ = 0.011
and 0.051, the estimation error can reach zero in most of
the periods. The maximum error is always related to the
sharp change of acceleration. Different from RTSKF, the
estimation of acceleration using OTSKF is of high accuracy.
Though there is error at the moment of a sudden change
of unknown bias, the error can be zero in next several
steps. This is much better than that of RTSKF. Compared
with previous results, it can be found that the higher @
can accelerate the tracking process of unknown bias. This
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Figure 6. Effects of @ on state estimation results: (a) error of trajectory using RTSKF; (b) error of trajectory using OTSKF;
(¢) error of velocity using RT'SKF; and (d) error of velocity using OTSKF.

is also demonstrated in Fig. 5(b). The estimation error
can reach zero earlier when @ is larger. The reason for
this phenomenon is that @ plays an important role to
determine the gain Kb which is used to adjust the bias
estimation. When @ increases, the Kb also increases to a
relatively stable value within a shorter period. Therefore,
proper increasing of @ can improve the tracking ability
of OTSKF. On the contrary, increasing @ leads to the
decrease in gain for correcting bias estimation in RTSKF,
which deteriorates the estimation result. In these cases,
the state estimation results using RTSKF and OTSKF are
shown in Fig. 6.

What differs from the unknown bias estimation results
is that the position estimation result using RTSKF is quite
favourable. It is seen that under different conditions, the
estimation error of coordinate of the manoeuvring target
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is lower than 0.05 m while RTSKF is employed. When
there is a sudden change in acceleration sequence, the
position estimation can keep an accurate performance with
slight fluctuation. While the @ increases, the estimation
error of coordinate becomes lower. For OTSKF, it also
shows good performance for the trajectory tracking. There
is only a small fluctuation at the moment when the
acceleration changes. Its recovery time is shorter than that
of RTSKF. Additionally, it can be found in Fig. 6(b) that
the fluctuation intensity at the sudden change moment
of acceleration becomes lower when @ rises to a higher
level. This is similar to the trajectory tracking result
using RTSKF. However, for the velocity estimation, the
RTSKF shows unsatisfactory accuracy. when @ increases
from 0.011 to 0.501, the estimation errors of V, vary in
the ranges of [—5.30 m/s, 4.66 m/s], [—15.80 m/s, 15.32
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Figure 7. Estimation results of different types of unknown acceleration using OTSKF: (a) sinusoidal and (b) triangle.

m/s|, [-14.72 m/s, 21.37 m/s] and [—4.05 m/s, 25.97 m/s]
while the estimation error of V,, distributes in the ranges of
[-5.11 m/s, 3.66 m/s], [-15.38 m/s, 12.03 m/s], [-18.50
m/s, 16.78 m/s] and [—3.96 m/s, 25.26 m/s]. And the error
lasts for a relatively long time in each case. For OTSKF, its
estimation results for velocity under different conditions are
accurate. The estimation error only occurs at the moments
when the acceleration changes. It can quickly reach zero.
With the increase of @, the estimation error of velocity
becomes lower, which is similar to the trajectory tracking
and bias estimation results.

4.4 Target Tracking and Bias Estimation Using
OTSKF with Different Types of Bias

Previous results demonstrate that under the low-noise
condition, both the RTSKF and OTSKF can be used
for the manoeuvring target tracking and its unknown
bias estimation. When the noises increase, the OTSKF
can resist the noises exhibiting high performance for
simultaneous target tracking and bias estimation. In this
section, different types of unknown bias are employed to
investigate the flexibility of OT'SKF in noisy environments.
All initial guess values of state and bias are set as zero. To
test the robustness, both the @ and R are set as 0.10I.
The unknown acceleration sequences are set as sinusoidal
and triangle with different initial values. The true values
and estimation results of unknown acceleration are shown
in Fig. 7.

For a sinusoidal unknown acceleration sequence, the
initial values of true a, and a, are 0 and 20 m/s®>. Due
to the reason that initial estimated value of them is set
as zero, the estimated a, quickly increases from zero to
a high value near 20 m/s2. In the following process, it is
seen that estimated results can match the true value with
a certain level of fluctuation which is caused by noises. It is
an interesting phenomenon that the fluctuation intensity
of estimated acceleration at 20 m/s? is slightly higher than
that in other zones. This is caused by the changes in the true
value herein. It is found that though the noise intensities
are higher than in previous sections, the estimated results
are still of high accuracy.

As for the triangle unknown acceleration sequence, the
true values of a, and a, at the initial moment are 20
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m/s? and —20 m/s?, respectively. As the initial guess of
estimated acceleration is zero, the estimated result quickly
increases or decreases to 20 m/s? or —20 m/s? from
zero. This tracking lasts for a very short period. Then,
the estimated unknown bias agrees highly with the true
acceleration.

Considering the previous sections, the OTSKF is
demonstrated to have high performances to estimate
different types of unknown bias. The state tracking results
using OTSKF are shown in Fig. 8.

From the tracking results illustrated in Fig. 8, it
is seen that the OTSKF can track the instantaneous
movement of the manoeuvring target whatever the bias
type is. The estimated velocity using OTSKF also highly
coincided with the true velocity calculated from the model.
To further demonstrate the accuracy, the estimation error
distributions of the state are given as Fig. 9.

It is seen that the more than 99% tracking error of
position is in the range from —0.1 m to 0.1 m. The tracking
results of the y coordinate with triangle acceleration
variation and the z coordinate with sinusoidal acceleration
variation are higher than the other two. 99.999% error
of them are in the aforementioned range. Compared with
their coordinate of true position, the relative error is very
small. As for the velocity estimation result, the V5 ginusoidal
and Vj, triangle are of higher accuracy, whose tracking errors
are distributed in the range from —1 m/s to 1 m/s. For
Vy sinusoidal and Vi triangle, though there is some error of
quite large values, more than 98.5% of them are in the
range of [—1 m/s, 1 m/s]. That demonstrates the OTSKF
can track the moving state of a manoeuvring target with
different unknown accelerations.

5. Conclusion

The performances of RTSKF and OTSKF are compared for
simultaneous target tracking and unknown bias estimation.
The effects of different noisy parameters on the tracking
performances are investigated. Additionally, the tracking
results with different types of acceleration are obtained
using OTSKF. Results demonstrate the RTSKF and
OTSKF are feasible for the simultaneous estimation of
the target state and unknown acceleration in a low-noise
environment. When the intensity of measurement noises
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Figure 9. Tracking error distribution: (a) coordinate and (b) velocity.

increases, the estimation results of unknown bias and the
state becomes worse whatever the RTSKF or OTSKF is
used. The global error of OTSKF is lower than that of
RTSKF under all conditions while RT'SKF failed to track
the target when R = 0.501. When the noise of acceleration
increases, the estimation errors of acceleration and velocity
using RTSKF become worse while the trajectory tracking
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results have high accuracy. Under these conditions, OTSKF
can be used to track the state and acceleration accurately.
Increasing @ can improve the estimation precision due to
the role of @ to modify the gain. OTSKF is demonstrated
to have the high performance to estimate the moving state
and track the trajectory with different types of unknown
bias.
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