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RESEARCH ON ROBOT NAVIGATION
TECHNOLOGY BASED ONLASER SLAM

Xiaoyang Hu,* Sairu Liu,* and Jie Zhao*

Abstract

Taking an indoor mobile robot as the object, laser SLAM and
navigation path planning as the main content, this paper aims to
improve the problems in the traditional laser SLAM algorithm and
navigation path-planning algorithm. The framework of an indoor
mobile robot navigation system is established, and the effectiveness
and practicability of the improved scheme are verified by simulation
and experiments. The experimental results show that the improved
laser SLAM algorithm can improve the mapping accuracy and
provide an accurate map for subsequent navigation. The improved
global path-planning algorithm can improve the path quality and
provide an optimal path for the robot to reach the target point
quickly and smoothly.
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1. Introduction

In a changing environment, robots should have the
functions, such as positioning, map construction, and
path trajectory planning, i.e., simultaneous localisation
and mapping (SLAM) technology and navigation path-
planning technology [1].

The main content of robot navigation is global path
planning and local path planning. Global path planning
can plan a feasible path from the starting point to the
endpoint, which is the main research content. Local path
planning can avoid obstacles and collisions in real time
[2]. In practical applications, environments are complex
and variable. The shapes and numbers of obstacles are
different, and it is necessary for robots to plan a smooth
path quickly and accurately [3]. Consequently, higher
requirements are put forward to the global path planning
of robots, such as increasing the planning speed of
the path-planning algorithm, shortening the length of
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the planned trajectory, and improving the smoothness
of the path, so that the robot can reach the target
point quickly and smoothly in complex environments, and
realise the efficient and autonomous navigation of the
robot [4], [5].

Traditional  path-planning  algorithms  include
intelligent bionics algorithm and graph search algorithm.
Sarmina and Khachaturov [6] improved these algorithms.
Nazarahari et al. [7] proposed an improved artificial
potential field algorithm under continuous navigation
path planning of mobile robots, which improved the
smoothness and safety of the path. Orozco-Rosas et al. [8]
studied a membrane evolution artificial potential
field method to solve the path-planning problem
of mobile robots. This method combines membrane
calculation with the artificial potential field method
to find appropriate parameters and generate feasible
safe path.

The above traditional path-planning algorithms [7], [§]
have the problem that the computation increases expo-
nentially in complex environments, and the algorithm
is prone to fall into local minima. To reduce the
complexity of the algorithm and improve the efficiency,
the reduction of the complexity of the algorithm is
necessary [9].

EKF-SLAM is the most representative laser SLAM.
Its representative algorithm is the Hector algorithm, which
can solve the nonlinearity problem, but with a large error.
Rao-Blackwellsied particle filter SLAM (RBPF-SLAM) is
the most generation based on particle filter SLAM table
sex [10]. For non-Gaussian and nonlinear systems, the most
representative of RBPF-SLAM is the Gmapping algorithm
[11]. It can solve the SLAM problem in nonlinear and
non-Gaussian systems. Any unevenness of the road surface
or wheel friction during the robot movement will affect
the accuracy of the odometer data, and it is poor at
map building in outdoor environments. The Karto-SLAM
graph optimisation algorithm proposed by Kiimmerle et al.
selects CSM front-end matching and G2o library for
optimisation. However, the Karto algorithm is slow in
loopback detection [12], which is easy to detect false closed
loops, and correctly identifies closed loops is a difficult
problem.

Zhang et al. [13] proposed a high-stiffness hybrid spray-
painting robot for touch-up painting in vehicle repair plant,
which investigates the center of mass distribution from a
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Figure 1. Robot coordinate system.

kinematic model, with no improvement in the algorithms.
Wu et al. [14] improved the multi-objective optimal design
of a novel 6-degree of freedom (DOF) hybrid spray-painting
robot, taking compactness, motion/force transmissibility,
and energy consumption as performance indices, with less
consideration given to the smoothness of the robot’s motion
path. Wu et al. [15] proposed an iterative learning method
to accurately design the industrial feed-forward controllers
and compensate for the external uncertain dynamic load of
robots, which require installation of additional sensors in
the processing system, but are difficult to widely implement
in actual industrial production processes and also lack
generalisability.

Taking an indoor mobile robot as the object, an
improved RBPF-SLAM laser algorithm and an improved
bidirectional rapidly-exploring random tree (BI-RRT)
global path-planning algorithm are proposed to solve
the mapping and navigation problems of robots. The
results show that the RBPF-SLAM algorithm can
improve the accuracy of map construction and provide
accurate maps for subsequent navigation. The improved
BI-RRT global path-planning algorithm can improve
the path quality and provide an optimal path for
the robot to reach the target point quickly and
smoothly.

2. Mathematical Description of Robot Motion
2.1 Robot Motion Model

The robot coordinate system follows the movement of the
robot, as shown in Fig. 1.

xl = 2" +alcosh, —ylsind,

1
w
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yw = yw +y’!’ Slne’f‘ +y'r’

The linear velocity and angular velocity of the robot
and the radius r satisfy:

r=|= 2)
v = wr (3)
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Figure 2. Laser data conversion.

Assuming that the initial pose of the robot is
21 = (z,y,0)T, the coordinates of the arc center point
can be expressed as:

(4)
(5)

v

T, = ¢ — —sinf
w
v

Yo = Yy + —cosb
w

After At time passes, the pose of the robot can be
obtained as:

x’ T, + 2 cos(f +w At)
Y| = | Yo+ 2sin(0 +wAt) (6)
0’ 0+wAt

2.2 Radar Observation Model

Laser triangulation has good ranging results indoors. The
laser data conversion process is shown in Fig. 2.

Through laser data conversion, the coordinates of the
probe point A can be obtained as follows:

xg = x+dcos(f — a)

(7)

ya = y+dsin(f — «)

B

arctan 44
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During the movement progress, the laser is subject
to external interference, resulting in certain errors in the
obtained model. It is thence necessary to add noise factors
to the laser observation model.

d;

| +E)
0

(8)

In (8), z denotes the laser observation; h denotes
the measurement function of the observation; s denotes
the system state value, and &£ denotes the interference
noise.
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Figure 3. Flowchart of improved RBPF-SLAM algorithm.

3. Principle and Simulation of Laser SLAM
Algorithm

3.1 RBPF-SLAM Algorithm

The main idea of RBPF-SLAM is to estimate the
posterior probability density function by using the radar
observation data and odometer data of robots [16]. Based
on particle filtering [17], SLAM is divided into two parts:
position and pose estimation, and map updating. The
position and pose of robots are estimated by particle
filtering, and the surrounding environment is estimated by
EKF. RBPF-SLAM implementation includes initialising
poses and maps, estimating positional and state poses
using radar data and a proposed distribution function [18],
updating particle weights, resampling based on valid
particles, and updating the global map based on local
maps and observations. The accuracy of the initial global
map is due to the high precision of the robot’s starting
poses.

3.2 Improved RBPF-SLAM Algorithm

It can be seen that the proposed distribution function
is important for an optimal position, and a good
proposed distribution function is the key point to improve
the positional accuracy [19]. Compared to the original
algorithm, improved RBPF-SLAM algorithm improves in
two ways, changing the original odometer data to the
laser data pose difference as the input of the proposed
distribution function and modifying the original proposed
distribution function. Reasons and advantages are as
follows, the numerical values obtained by laser radar are
more real time and accurate than odometers [20]. The laser
signal has unimodal characteristics and a smaller variance
coefficient, which is the most suitable input quantity for the
proposed distribution function. The proposed distribution
function analysis mode of the improved RBPF-SLAM is as
follows:

Sp—1 + hy (S¢,8i-1)

St — St—1

Q(5t|5t—17zt) =

he = (10)
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Figure 4. BI-RRT algorithm expansion.

where, s; denotes the robot’s pose at time t; z; denotes the
radar observation date, and h; denotes the robot’s front-
back position difference function at time ¢. The improved
RBPF-SLAM process is as follows:

(1) During initialisation, the radar scans the initial
position and poses of the robot, processes laser data,
and obtains the initial local map used as the global
map.

Input the position and pose difference of laser radar
data at adjacent times as the proposal distribution
instead of odometer data.

According to the proposed distribution, the weight of
the particles is obtained and normalised, and then the
desired particle position and pose are obtained by the
sum of the probability density function of the weighted
distribution. This is used as the state position and pose
at the current moment.

For particle decay, the effective particle number Neff is
calculated to determine whether to resample.

Based on the position and pose of the current state,
the data obtained by laser scanning builds a local map
for updating.

The flowchart of improved RBPF-SLAM algorithm is
shown in Fig. 3.

(2)

4. Global Path-Planning Algorithm
4.1 BI-RRT Algorithm

BI-RRT algorithm searches with the starting point gi;; and
the endpoint ggoa1 as the beginning of the expansion tree.
The two expansion trees continuously generate random
points for expansion. The search ends when both tree
searches meet the threshold criteria. The two expansion
trees of the BI-RRT algorithm are shown in Fig. 4.

4.2 Improved BI-RRT Algorithm

BI-RRT algorithm samples and expands the bidirectional
spanning tree, which can save time, but cannot guarantee
the quality of the path [21], [22]. Aiming at the problem of
blind expansion, target bias sampling is proposed, so that
the random point has a certain probability in the direction
of the end. In view of the low generation path quality, the
optimal parent node selection method of spanning tree is
proposed to optimize the path quality.

4.2.1 Target Bias Sampling

To avoid the blind generation of random sampling points,
the target bias sampling is added to make the expansion



tree have a certain direction [23]. The expansion tree can
find the endpoint faster, and the target bias sampling is as
follows:

Geand = Ggoal, if Prand > Pbias (11>
SampleFree(), else
where, Ppas denotes the target bias threshold;

Piana denotes the random sampling probability, and
SampleFree() denotes the security status space. The
random sampling probability is in the range of (0, 1), and a
threshold is set to determine whether the random sampling
point is the endpoint. If the random sampling probability is
greater than the threshold, the endpoint is selected as the
random sampling point; otherwise, a randomly generated
node is selected as the random sampling point.

Adding target bias cannot only preserve the global
expansion characteristics of the RRT algorithm, ensure
its probabilistic completeness, and enable the expansion
of nodes to be spread throughout the state space, but
also has local characteristics with a certain probability
of convergence towards the end point [24]. The threshold
selection of the target bias is a key issue, because when the
threshold values are set on the large side, the probability
of expanding to the endpoint is too small and has no
significant effect on the expansion speed of the endpoint.
When the threshold values on the small side are selected,
the opportunity to expand to the endpoint is too large. In
the environment with many obstacles, it is easy to fall into
the local minimum and cannot find the endpoint. As such,
a reasonable threshold value should be selected to allow
the algorithm to have a higher efficiency, expanding the
search to the endpoint [25]. The new node is expanded as
follows:

Gnew (T,Y) = @near(z +€cosl,y + csinb) (12)
0 = a]:‘Ctan((]rand (y) — Qnear (y)a Qrand(x)
—(near (33)) (13)

where, ¢uew is the result of the nearest node expansion
(near, and 0 is the expansion direction of the new node.

4.2.2 Optimal Parent Node Selection

To reduce tortuous nodes and unnecessary travel, the
optimal parent node selection is added. After planning
the path through the BI-RRT algorithm, all nodes of the
path are optimally selected and subsequent child nodes
are traversed from the starting point to determine whether
a child node can be reached directly without obstacle
collision. If there are child nodes, this new local path is
selected to replace the original path. This node is then
used to traverse the remaining child nodes and iterate
continuously to find the endpoint. In this way, many
unnecessary process nodes can be skipped and several key
nodes can be used to represent the path, thereby improving
the quality of the path and reducing the traveling process
for robot navigation.
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Figure 5. Mapping effect of the four algorithms in the
environment of Experiment I: (a) Gmapping algorithm; (b)
Hector algorithm; (c) Karto algorithm; and (d) Improved
algorithm.

5. Robot Laser SLAM and Navigation Experiment
5.1 Laser SLAM Experiment

The following is SLAM Experiment 1. The environment
of Experiment 1 is an indoor room with an overall size
of 4.5 x 4.5 m, containing the obstacles, such as tables,
cabinets, refrigerators, and more.

Figure 5 shows the overall mapping effect of the four
algorithms in Experiment 1. The overall accuracy of the
Gmapping algorithm is low, and burr noise points appear at
the edge of obstacles, but no ghosting occurs in the overall
map construction. The Hector algorithm can build a rough
outline in a small environment, and ghosting is serious. The
Karto algorithm can build a complete map, but ghosting
appears on the right edge. The proposed improved RBPF-
SLAM algorithm has the best overall mapping effect among
the four algorithms, without ghosting and fewer rough
edges at the edge of the obstacle.

The detail accuracy of the mapping effect in
Experiment 1 is measured, and the feature position is
selected to compare with the error of the actual accuracy.
Since the Hector algorithm cannot construct a complete
map, the comparison is not involved, as shown in Table 1
and Fig. 6.

It can be seen from Table 1 and Fig. 6 that
the errors of the Gmapping algorithm and the Karto
algorithm at different feature positions are different. The
feature position error of the proposed improved RBPF-
SLAM algorithm is smaller than that of the previous
two algorithms, and the mapping accuracy is the highest.

Next, SLAM Experiment 2 is carried out. Experiment 2
is an indoor corner corridor environment, with a total
length of 15 m and a width of 1-3 m. The obstacles
include regular wooden doors, irregular walls, corner walls,



Table 1
Error of Experiment I

Algorithm Gmapping Karto Improved
Feature Actual Measured | Absolute | Measured | Absolute | Measured | Absolute
Points | Value/cm | Value/cm | Error/cm | Value/em | Error/cm | Value/cm | Error/cm
1 42 45.3 3.3 45.48 3.48 46.92 2.5
2 41 47.11 6.11 50.94 9.94 46.92 4.92
3 50 48.92 1.08 49.12 0.88 50.55 0.55
4 112 108.72 3.28 110.98 1.02 111.89 0.11
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12
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Figure 6. Error histogram of Experiment I.

(d

Figure 7. Drawing effect of the four algorithms in Exper-
iment II: (a) Gmapping algorithm; (b) Hector algorithm;
(c) Karto algorithm; and (d) Improved algorithm.

and more. The robot is controlled to scan and construct
a map.

Figure 7 shows the mapping effect of the four algo-
rithms in the corner corridor environment of Experiment 2.
The red circle is a matter of detail in the mapping. The
Gmapping algorithm cannot detect wall obstacles at the
red circle and has burrs in the overall details, so that
its mapping accuracy is average. The Hector algorithm
has the same effect as the simulation, and only using
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Figure 8. Error histogram of Experiment II.

laser data will result in a large mapping bias and a
complete map cannot be built. The Karto algorithm has
low accuracy in the upper right corner of the red circle,
and there is ghosting in the lower right corner of it. To
solve these problems, many loops are needed with a lot
of time. Compared with the previous three algorithms,
the improved RBPF-SLAM algorithm has higher mapping
accuracy, less burrs, no ghosting, and accurate obstacle
contour recognition. The mapping effect of Experiment 2 is
measured with accuracy, and the selected feature position
is compared with the actual accuracy, as shown in Table 2
and Fig. 8.

It can be seen from Table 2 and Fig. 8 that, except
for feature position 3, the error of other details of the
Gmapping algorithm is the largest in the three algorithms.
The maximum error is feature position 1, with 12 cm.
The overall detail error of the Karto algorithm is better
than that of the Gmapping algorithm, and the maximum
error is the feature position 5, with 8.5 cm. Compared
with the previous two algorithms, the error of the proposed
improved RBPF-SLAM algorithm is the smallest at all
feature positions, and the maximum error is the feature
position 1, with 7.5 cm.

Experiment 3 is an indoor conference room, with an
area of m, including tables, chairs, uneven walls, and
monitor stands. It is an environment with relatively dense
obstacles, and the environment for Experiment 3 is shown
in Fig. 9.

Figure 10 shows the mapping effect of the four
algorithms in Experiment 3. There are many obstacles
in the conference room, which requires high mapping
details of the algorithm. The Gmapping algorithm has



Table 2
Errors of Experiment IT

Algorithm Gmapping Karto Improved

Feature Actual Measured | Absolute | Measured | Absolute | Measured | Absolute
Points | Value/cm | Value/cm | Error/cm | Value/em | Error/cm | Value/cm | Error/cm

1 139 151 12 149.6 8.3 146.5 7.5

2 115 126.4 114 124.35 7.35 121 6

3 84 92.6 5.6 93 3.2 89.4 2.4

4 104 114.8 10.8 112.9 5.7 111.2 5.1

5 115 131.3 7.8 127.7 8.5 118.6 3.6

6 57 63.1 6.1 60.2 3.2 58.4 14

Figure 9. Real environment of SLAM Experiment III.

low accuracy in the construction of the two red circles.
The construction of the wall is incomplete, and the
support legs of many chairs are not identified. The overall
mapping effect of the Hector algorithm is poor, with
large areas of ghosting, and the support frame of the
chair is basically not recognised. The Karto algorithm
can identify the surrounding walls, but ghosting appears
in the red circle with low mapping accuracy. Compared
with the previous three algorithms, the proposed improved
RBPF-SLAM algorithm can completely scan the wall
contour in the complex meeting room. It has high
recognition rate for the supporting legs of chairs, no
ghosting, and has high precision for building details
[26]. The accuracy of the mapping effect in Experiment
3 is measured, and the feature position is selected to
compare with the actual accuracy, as shown in Table 3
and Fig. 11.

Table 3 and Fig. 11 represent a visual comparison of
the accuracy of the graph construction details of the three
algorithms in a complex conference room. Although the
Gmapping algorithm can roughly build the map outline,
there is a large error in some obstacle details, and the
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Figure 10. Mapping effect of the four algorithms in
Experiment III: : (a) Gmapping algorithm; (b) Hector

algorithm; (c) Karto algorithm; and (d) Improved
algorithm.
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Figure 11. Error histogram of Experiment III.

overall error is larger than that of the Karto algorithm
and the improved RBPF-SLAM algorithm. The Karto
algorithm has ghosting in construction, but it is better
than the Gmapping algorithm in the error of details.



Table 3
Errors of Experiment I11

Algorithm Gmapping Karto Improved
Feature Actual Measured | Absolute | Measured | Absolute | Measured | Absolute
Points | Value/cm | Value/cm | Error/cm | Value/em | Error/cm | Value/cm | Error/cm
1 57 64.3 5.3 53.6 3.4 59.1 2.1
2 41 47.8 6.8 45.6 7.6 42.5 1.5
3 370 382.9 12.9 379.8 9.8 378.7 5.2
4 43 46.5 3.5 39.9 3.1 44.8 1.8
5 39 42.2 5.2 43.5 4.5 42.1 3.1
°
x endpoint
starting point = r
°
A Smaas

Figure 12. Local path planning of DWA algorithm.

Compared with the previous two algorithms, the improved
RBPF-SLAM algorithm has small overall error, high
accuracy of map building, and can well detect the overall
state of the environment.

5.2 Robot Navigation Experiment
5.2.1 Experiment of Local Path-Planning DWA Algorithm

In this navigation experiment, the local path-planning
algorithm is the DWA algorithm.

In Fig. 12, the purple area is a local cost map where
the robot samples multiple sets of speeds. The velocity
sampled is the green segment in the plot that moves in the
direction of the highest scoring velocity trajectory when it
is sampled.

5.2.2 Experiment of Global Path-Planning Algorithm

Global path-planning experiments are performed on three
maps obtained after the improved RBPF-SLAM laser
SLAM experiments. The path-planning effect of the RRT
algorithm, BI-RRT algorithm, and improved BI-RRT
algorithm on these three maps are compared to summarise
the data recording. Figures 13-15 are the three maps
obtained by laser SLAM experiment. The starting point
and end point of path planning are selected, respectively.
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Figure 13. Global path planning of Experiment I map.

Tables 4-6 show the route planning experiment data
of the three algorithms on three maps. Each algorithm
obtains average data values after 20 experiments on
each map.

In Experiment 1, the map is an indoor room. Table 4
shows that in global path planning, the RRT algorithm
takes the most time and has the longest path length. This is
because the path planned by the RRT algorithm makes the
robot rotate an average of 2.65 times during its movement,
resulting in the increase in time and length. Due to the
high number of folds, the BI-RRT algorithm also has an
increase in time and length, with an average of 2.6 folds
per turn. The improved BI-RRT algorithm can increase
the selection of optimal nodes, make the path smooth and
reduce the number of turns, with an average of 0.45 times
each time, thereby reducing time and shortening the path
length.

The map of Experiment 2 is a corner corridor, and the
overall environment is longer and has corners. The number
of global path folding for the three algorithms increases.
The RRT algorithm averages 7.55 folds per turn, takes up
to 31.25 s, and has a path length of 18.14 m. In general,
the BI-RRT algorithm is slightly better than the RRT
algorithm, which can reduce the number of folds by 0.35,
save 1.35 s of time, and reduce the path length by 0.83
m. Compared with the first two algorithms, the improved
BI-RRT algorithm can reduce the average number of folds



Table 4

Global Path Planning Data of Experiment I Map

Path-Planning Algorithms Time (s) Length (m) Number of Folds
RRT algorithms 6.95 5.97 2.65
BI-RRT algorithms 6.9 5.96 2.5
Improved algorithms 4.55 5.24 0.45
Table 5
Global Path-Planning Data of Experiment II Map

Path-Planning Algorithms Time (s) Length (m) Number of Folds
RRT algorithms 31.25 18.14 7.55
BI-RRT algorithms 29.9 17.31 7.2
Improved algorithms 26.15 16.42 4.75

haniing.

® starting point

Figure 14. Global path planning of Experiment II map.

Figure 15. Experiment III map.

to 4.75, save 26.15 s, and has a path length of 16.42 m,
which is the best in the three algorithms.

The map of Experiment 3 is a conference room with
many obstacles, which tests the planning ability of the
algorithm under multiple obstacles. The RRT algorithm
and the BI-RRT algorithm have poor planning results, with
more number of folds, more time consumption, and longer
paths. Compared with the previous two algorithms, the
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Figure 16. Initial position and pose of the navigation robot.

improved BI-RRT algorithm has advantages in all aspects,
with less folding, less time, and shorter paths.

5.2.8 Robot Navigation Process

The effectiveness and practicability of the improved
BI-RRT algorithm are proved by path-planning experi-
ments. Next, the autonomous navigation process of the
robot is carried out in a known map built by laser SLAM.

As shown in Fig. 16, the lower left corner is the
position and pose of the robot in the actual environment.
The red circle in the top menu bar is 2DPoseEstimate,
which determines the initial position and pose of the robot.
The red circle in the map is the determined initial position
and pose, and the shaded square around the robot is the
local cost map, which is the scope of local path planning.
The navigation endpoint in the upper right corner of
the map is selected for the robot to operate autonomous
navigation.

Figures 17 and 18 show the initial position of the robot
and the planning information during the movement. The
yellow line segment in front of the robot is the trajectory
of the local path-planning DWA algorithm, if the robot is
too close to an obstacle during the movement, the DWA
algorithm will avoid the obstacle. Fig. 19 below shows
that the robot navigates to the endpoint and completes the
navigation process.



Table 6

Global Path-Planning Data of Experiment 11T Map

Path-Planning Algorithms Time (s) Length (m) Number of folds
RRT algorithms 17.95 11.29 4.85
BI-RRT algorithms 17.7 11.05 4.7
Improved algorithms 14.55 8.7 2.5

Figure 17. Initial planning information.
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Figure 19. Position and pose of the end point.
6. Conclusion
Three sets of experiments are carried out for laser

SLAM. The mapping effect and detail accuracy of the
Gmapping algorithm, Hector algorithm, Karto algorithm,
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and improved RBPF-SLAM algorithm are compared in
each set of experiments. The results show that the improved
RBPF-SLAM algorithm has the advantages of less rough
edges, no double image, and less precision error. The main
content of navigation is divided into local path planning
and global path planning. Local path planning uses the
DWA algorithm to achieve local obstacle avoidance in
navigation to keep the robot away from obstacles. The
global path planning compares the planning effects of
the RRT algorithm, BI-RRT algorithm, and the improved
BI-RRT algorithm. Experiments are carried out on three
maps, and each algorithm takes the average value of data
after 20 experiments on each map. The data comparison
verifies that the improved BI-RRT algorithm has significant
advantages in the number of folds, path length, and time
consumption. Finally, the specific process of navigation
is introduced, which is achieved by command control of
the SSH-connected robot on the computer. The results
show that compared with the RRT algorithm and BI-RRT
algorithm, the improved algorithm has faster planning
speed, fewer path nodes, and improved path smoothness,
which can quickly provide an optimal path for robot
navigation.
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