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WDCNN-BASED FAULTDIAGNOSISMETHOD

FOR AGV ON CLOUDPLATFORM
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Abstract

Automated-guided vehicles (AGVs) are widely used in the

manufacturing and logistics industry, so it is crucial to meet

the demand for intelligent, efficient, and accurate fault diagnosis

of AGVs. This study proposes a fault diagnosis method based

on deep convolutional neural networks with a wide first-layer

kernel (WDCNN), which enables a more complete extraction of

fault features. A cloud platform trolley data acquisition system

and an experimental AGV platform are established. Compared

to traditional machine learning methods, WDCNN achieves more

accurate differentiation and localisation of faults in the same part and

obtains a higher diagnostic accuracy of over 99%. With the proposed

method, the results of cloud-based diagnosis exceed 98% accuracy,

micro-F1-scores surpass 0.98, and the prediction time is within

0.009 s. The proposed method is suitable for fault diagnosis of AGV

trolleys under remote and unmanned monitoring.
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1. Introduction

In the era of Industry 4.0, high-level information and
communication technologies, such as artificial intelli-
gence, the Internet of Things, big data, and cloud
systems, could become highly integrated with society.
As such, logistics and manufacturing industries are
booming, and factories are being increasingly auto-
mated. Automated-guided vehicles (AGVs) are poised
to become some of the most important types of
automation equipment [1], but their safety remains to be
optimised [2].

Currently, most studies on AGVs focus on path
planning [3], scheduling problems [4], and body system
design [5], and there are few articles on the fault
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diagnosis of AGVs [6], [7] proposed a virtual sensor-
based fault diagnosis method considering the cost and
battery capacity of AGVs. The method constructs a
compact dynamics model of the AGV cart without the
need to determine the cart tire model, generating residuals
with the output estimated by the virtual sensor. The
validity and precision of the diagnosis method were
experimentally demonstrated. [8] presents a dynamic
model that can predict the wheel speed of a robot and
use the residual signals of the predicted and measured
states to detect faults in mobile robots. [9] mathematically
modelled the AGV system, used multiple positioning
modules to obtain the position information of the AGV,
and implemented an extended Kalman filter to detect
errors.

However, fault diagnosis methods based on modelling
analysis still have drawbacks. For example, as the structure
of AGV trolleys becomes more complex, it becomes
more difficult to construct accurate and generalisable
AGV models [10]. Furthermore, the extraction of fault
features requires a priori knowledge, diagnostic experience,
or expertise accumulated over time [11]. Traditional
feature extraction methods can be quite complex, and
different features are suitable for different signals. Existing
methods may not be able to fully reflect fault features
or achieve real-time fault detection [12]. In [13], four
types of machine learning (RNN, SVM, RF, and ANN)
were used to detect faults in the actuators and sensors
of AGV.

Data-driven deep learning methods have attracted
much attention due to their intelligent and efficient modes
[14]–[16] For IMU deviation and drift faults, a dynamic
DBN model design with inexact LSA-GA-based weight
value optimisation for fault diagnosis was employed.
Ding et al. [17] used a decision tree model to preclassify
data into normal, abnormal, and uncertain states, and
then used long short-term memory (LSTM) networks
to perform fault diagnosis on the uncertain state data.
Wang et al. [18] transformed the vibration signals of AGV
core components into two-dimensional images and used
VGGNet for fault diagnosis. Ding et al. [19] constructed a
twin-tower model for fault detection, composed of attention
networks for learning key variables in sensor data and
LSTM networks for learning event dimensional features.
Miao et al. [20] proposed a novel channel-wise convolutional
neural network (CNN) with feature enhancement for
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fault diagnosis of wheeled mobile robots. Important
features were highlighted by adaptive weighting, and a
channel convolution mechanism was introduced to prevent
these features from being mixed [21]. A spatial–temporal
difference graph convolutional network (STDGCN) was
proposed for fault diagnosis of wheeled robots. It uses the
graph-structured data along with the association graph
as input. Experimental results demonstrate the excellent
performance of STDGCN [22]. A data fusion method based
on CNN (LeNet-5) was proposed. By performing Fourier
transform on the sound and vibration signals of the left
and right motors separately, frequency spectrograms were
obtained. After data fusion, they were fed into the LeNet-5
model. Compared to single-sensor input and dual-sensor
input, this method yielded better diagnosis results. These
studies have advanced data-driven fault diagnosis methods
in the field of AGVs, but the use of two-dimensional images
for fault diagnosis ignores the translational invariance of
the periodic signals and only locates faults to different
parts of the AGV in a general way without segmenting the
faults.

To eliminate these shortcomings, this paper proposes
an AGV fault diagnosis method based on a cloud platform
and deep CNNs with a wide first-layer kernel (WDCNN).
Without human intervention, the AGV uploads sensor
data to the cloud platform, and the trained WDCNN
uses the cloud platform data as input for trolley fault
diagnosis. Several sets of comparative experiments are
conducted based on the fault diagnosis dataset recorded by
the Mecanum wheel AGV. In addition, t-SNE technology
[23], [24] is used to visually demonstrate the ability
of different networks in fault feature learning and
classification. It maximises the similarity of adjacent data
points to preserve the relative relationships between the
data, providing a new method for better visualisation. It
can help us discover hidden structures and clusters in the
data set, facilitating more in-depth analysis of the data.
The results demonstrate that WDCNN can extract fault
features autonomously, and the wide convolution kernel
mechanism enables the network to get a larger perceptual
field to better extract fault features for satisfactory
diagnostic performance. The main contributions of this
study are summarised as follows.
(1) Introducing a wide convolutional kernel mechanism

into the 1DCNN network expands the perceptual field
of the convolutional kernel and enables the network to
extract more complete fault feature information.

(2) Introducing a cloud platform solves the contradic-
tion between the limited computation and storage
resources of AGV trolley ontology and the high
computation and memory capacity requirements
of complex fault diagnosis algorithms, which can
reduce the cost and promote the industrialisation of
AGV trolleys.

(3) Experimental results show that the proposed network
with WDCNN and cloud platform can realise the
online fault diagnosis of AGV trolleys and meet
the intelligence and safety requirements of future
manufacturing and logistics industries.

2. Basic Architecture of WDCNN

2.1 Convolutional Layer

The CNN (ConvNet) is a deep feedforward neural
network with weight sharing and local connectivity
features [25]. The network in this paper uses a broad
convolutional kernel [26] with the following convolutional
expression:

yl+1,m (n) = wl,m ∗ xl (n) + bl,m, (1)

where wl,m is the weight matrix of the lth filter in the mth
layer; bl,m is the bias term; xl (n) is the nth input; and
yl+1 (n) is the nth output after convolution with the mth
filter.

2.2 Activation Layer

The activation layer improves the nonlinearity of the
output after convolution, thus enhancing the feature
expression of the model. This paper uses ReLU as
the activation function to accelerate the convergence of
CNN while improving the sparsity of the network and
effectively avoiding the overfitting problem, and it is
expressed as:

al+1,m (n) = f (yl+1,m (n)) = max {0 , yl+1,m (n)} , (2)

where al+1,m (n) is the output value after yl+1,m (n)
activation, and f (·) is the activation function.

2.3 Pooling Layer

The role of pooling is to reduce dimensionality. When the
input data are slightly skewed, the pooling returns the
same output as before regardless of the slight deviation, so
it is robust to the input data and can prevent overfitting.
This paper uses Max Pooling, which can better reflect
the periodic characteristics of the fault. It is expressed as
follows:

pl+1,m (n) = max
(n−1)H+1≤i≤nH

{ql,m (i)} , (3)

where ql,m (i) is the value of the lth neuron in the mth filter
in the ith layer, i ∈ [(n− 1)H + 1,nH], H is the width of
the pooling area, and pl+1,m (n) is the output value after
the pooling operation.

2.4 Training of the WDCNN

For training in WDCNN, the loss function is chosen to be
categorical cross-entropy with the following expression:

Loss = − 1

S

S∑
s=1

[y ln a+ (1− y) ln (1− a)] + L2, (4)

where S is the number of samples, y is the true label
of the corresponding sample, and a is the true output of
the neuron. L2 is the regularisation term, which is used
to prevent the overfitting problem, and its expression is
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as follows:

L2 =
λ

2S

L∑
l=1

∥∥wl
∥∥2,∥∥wl

∥∥2 =

Nl∑
j=1

Nl+1∑
k=1

(
wl

k,j

)2
, (5)

where wl
k,j is the lth layer weight of the network, which

connects the kth and jth neurons of the latter layer, and
λ is the regularisation factor.

The weights and biases of the network are updated
using the Adam optimiser. The method calculates the
adaptive learning rate for different parameters from the
budget of the first moment mt and the second moment rt
of the gradient. The updating process can be expressed as
follows:

mt = β1mt−1 + (1− β1) gt, rt = β2vt−1 + (1− β2) g2t , (6)

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

, (7)

θt = θt−1 −
m̂t√
v̂t + δ

lr, (8)

where gt is the gradient, β1 and β2 are the decay rates, δ is
a constant that can be ignored, and lr is the learning rate.

2.5 Hyperparameter Preselection

The core idea of hyperparameter preselection is to select
a large perceptual field to capture more fault information
and extract less invalid information.

Given that a wheel rotates periodically and the phase
value of each input signal is different, to avoid CNN
learning, the unit neuron in the final pooling layer of the
network is expected to extract at least one cycle of the
wheel speed signal. Therefore, the following equation must
be satisfied:

f · 60

r
≤ V 0 ≤ L, (9)

where V 0 is the receptive field of the neurons in the
final pooling layer, f is the sampling frequency, r is the
minimum wheel speed, and L is the length of the input
sample sampling points. In the experiments of this paper,
the minimum wheel speed is 40 rpm and the sampling
frequency is 100 Hz, so the sensory field of the first
convolutional layer should be larger than 150 sampling
points.

The relationship between the nth pooling layer and
the n− 1th pooling layer in the network can be expressed
as follows:

V (l−1) = Sl
(
P l · V l − 1

)
+ wl, (10)

where Sl represents the step size of the lth convolutional
layer, wlrepresents the convolutional kernel width of the
lth convolutional layer, and P lrepresents the pooling kernel
width of the lth pooling layer; in the pre-defined model
structure, when l > 1, Sl = 1, W l = 3, and P l = 2.
Therefore, (10) can be rewritten as follows:

V l−1 = 2V l + 2. (11)

Figure 1. System architecture diagram.

The formula for mapping the final pooling layer, that
is, the nth pooling layer unit neuron sensory field, to the
first pooling layer is

V 1 = 2n−1 × 3− 2. (12)

Substituting (12) into (11) yields the receptive field
expression for the final layer unit neuron on the input
signal:

V 0 = S1
(
P l ·

(
2n−1 × 3− 2

)
− 1
)

+ w1 = S1 (2n × 3− 4)

+w1 − 1. (13)

According to the two prerequisites that f · 60r ≤ V
0 ≤ L

and S1 need to be divisible by L, in the case of convolution
by five layers, the step size of the first convolution layer can
only be 2, 4, 8, or 16. When reducing the stride, the number
of trainable neurons in the network will increase, which
can improve the network’s ability to learn fault features.
However, it also increases the risk of model overfitting and
the training time required for the network. Therefore, the
first convolutional layer is selected with a stride of 16 and
a kernel size of 64, with the specific parameters shown in
Table 1.

3. Cloud Platform Construction and AGV Fault
Diagnosis Process

3.1 Overall System Architecture

The system is built on IoT and industrial cloud
platform technologies, mainly consisting of three parts:
the AGV data collection and transmission platform,
the gateway data forwarding, and the cloud data
processing. The architecture of the system is shown in
Fig. 1.

The AGV data collection platform uses a built-
in wireless WiFi module to upload data from various
sensors. The gateway data forwarding is centered on
an intelligent gateway that uses lightweight network
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Table 1
Network Topology

Network Structure Kernel Size Strides Filters Output Padding

Convolutional layer 64 16 16 128*16 Same

Pooling layer 2 1 16 64*16 Valid

Convolutional layer 3 32 32 64*32 Same

Pooling layer 2 1 32 32*32 Valid

Convolutional layer 3 64 64 32*64 Same

Pooling layer 2 1 64 16*64 Valid

Convolutional layer 3 64 64 16*64 Same

Pooling layer 2 1 64 8*64 Valid

Convolutional layer 3 64 64 6*64 Same

Pooling layer 2 1 64 3*64 Same

Dense – – – 192 –

Softmax – – – 8 –

Table 2
Advantages and Disadvantages of Different Protocols

Protocol Type Advantages Disadvantages

HTTP HTTP protocol is widely used in the Internet, and its
technology is mature and easy to develop.

HTTP protocol is one-way and cannot
passively receive commands from the
network.

CoAP CoAP protocol is an application layer protocol built on top of
UDP protocol, mainly used in lightweight M2M
communication.

The security of data cannot be
guaranteed.

NB-IoT NB-IoT protocol is built and operated on cellular networks,
consumes low bandwidth, and can be directly deployed on
existing GSM or LTE networks.

Low data transmission and high
communication costs.

LoRaWAN LoRaWAN protocol has the characteristics of long-distance
use and low power consumption.

The security of data cannot be
guaranteed and is susceptible to attacks.

management to enable communication between the robot,
scheduling system, and cloud. Additionally, to ensure
the correctness and security of data exchange between
the gateway and the cloud, communication protocols
need to be established between devices. Common IoT
communication protocols include HTTP, MQTT, CoAP,
NB-IoT, and LoRaWAN, and their advantages and
disadvantages are compared in Table 2. The MQTT
protocol, based on a publish/subscribe model, has a higher
tolerance for unstable networks and faster response times
and larger throughput than other protocols, making it
ideal for cloud data interaction. Cloud data processing
leverages the high virtualisation and powerful computing
capabilities of cloud platforms to replace traditional
fault platforms embedded with upper computer software,
effectively improving the real time and convenience of fault
diagnosis.

Remote AGV status monitoring and online fault
diagnosis are completed by extracting the data from the
database. The fault diagnosis process can be divided
into two parts: model training and online diagnosis. The
detailed flowchart of AGV fault diagnosis is shown in
Fig. 2.

In the model training part, the trolley is made to
upload fault data by artificially creating faults. After
collecting a sufficient amount of AGV faulty wheel
speed signals, the fault dataset is constructed using the
sliding-window method [27]. The network is trained using
the training set, so the CNN layer achieves feature
information and updates the model parameters using the
backpropagation algorithm. After completing the model
training, the online diagnosis part can be performed. The
model diagnoses the status of the AGV using the sensor
data uploaded in real time. The result of the diagnosis is
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Figure 2. AGVs fault diagnosis flowchart.

fed back to the cloud database, and the intelligent gateway
judges the fault level and decides the next action of the
AGV, ensuring the safety of the AGV while improving the
efficiency of the plant.

4. Experimental Demonstration

4.1 Introduction of the Experimental Platform

To verify the effectiveness of the proposed method for
the diagnosis of AGV cart faults, an AGV is built as an
experimental platform, and its hardware structure diagram
is shown in Fig. 3. The cart realises the navigation and
positioning of the AGV through the magnetic navigation
sensor and the RFID reader. The AGV is also controlled
by STM32 with four Mecanum wheels, and equipped with
a DJI RM35 DC motor, an incremental encoder, and a
nine-axis gyroscope (IMU).

The CPU model of the computer used for the
experiments was Intel(R) Core(TM) i3-7100 CPU@
3.90GHz with 16GB of RAM. The programming language
was Python, using the TensorFlow framework developed
by the Google Brain team, version 2.3.0, and keras
version 2.4.3. To eliminate the effect of randomness on
the experimental results, each round of experiments was
carried out ten times and the average value was calculated.

4.2 Data Collection and Processing

Assuming that the trolley is running in a straight line,
mechanical and operational faults of the trolley wheels
are created by manual simulation. For the power system

Figure 3. Magnetically-guided AGVs with Mecanum
wheels.

failure, the setup is as shown in Fig. 4. In Fig. 4(a), the
red circle shows that tape is wrapped around one of the
small wheels in the Mecanum wheel, limiting the wheel’s
rotation, to simulate a possible wheel locking failure that
may occur (state code 06, 07). In Fig. 4(b), the red circle
shows that one of the small wheels in the Mecanum wheel
is removed to simulate a wheel broken failure (state code
00). In Fig. 4(c), the axes of the motor and the wheel are
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Table 3
AGV Failure Dataset Division

Code AGV Status Sample size

Training Set Validation Set Test Set

00 Left front wheel broken 2100 600 300

01 Motor fault 2100 600 300

02 Encoder fault 2100 600 300

03 Left front wheel normal 2100 600 300

04 IMU normal 2100 600 300

05 IMU fault 2100 600 300

06 Left front wheel locked 2100 600 300

07 Right rear wheel locked 2100 600 300

Figure 4. Manually set faults: (a) wheel lock; (b) wheel
breakage; and (c) motor fault.

not perpendicular to the cross-section of the wheel as they
should be, simulating a motor shaft offset failure caused
by collision (state code 01). It is difficult to display sensor
failures (state codes 02, 04, 05) in pictures and they are
not listed here.

The wheel speed signal of the AGV is collected by the
encoder with a sampling frequency of 100 Hz. The datasets
are described in Table 3. Because a large amount of data is
required to train a deep-learning network, this paper uses
sliding window sampling to prevent overfitting. There are
two parameters for the sliding window sampling method:
window size and sliding window steps. The window size
determines the number of points sampled in each sample.
A change in the sliding window step size affects the fault
features contained in the samples and may affect the fault
diagnosis of the model. In this paper, we choose a window
size of 2048 and a sliding window step size of 50. Due to the
use of sliding window sampling, there are duplicate data
between adjacent samples. To avoid leakage of the test set
during model training, The training set has no intersection
with other sets.

4.3 Validation Setup

The evaluation metrics are based on the confusion matrix
made up of the model diagnosis results and the true labels.
Samples can be classified into four discriminatory results:
true positive (TP), false positive (FP), true negative (TN),

and false negative (FN). The metrics used in this paper
are precision (P), recall (R), F1-score, and accuracy (A),
which are defined as follows:

P = TP/ (TP + FP )× 100%, (14)

R = TP/ (TP + FN)× 100%, (15)


micro− P = TP

TP+FP

micro−R = TP
TP+FN

micro− F1 = 2×micro−P×micro−R
micro−P+micro−R × 100%

, (16)

A =
TP + TN

TP + TN + FP + FN
× 100%.(17)

4.4 Comparison With Other Approaches

To verify the superiority of the proposed model for the
diagnosis of AGV cartwheel failures, it is compared with
other traditional machine learning algorithm models. Using
Keras framework, the models of RNN [28], BiLSTM [29],
GRU [30], LeNet [31], AlexNet, and ResNet are built
and validated under the same dataset Table 3, and the
experimental results of each model are shown in Table 4.

As can be seen in Table 4, the F1-scores of the
RNN and LeNet networks are only 0.9068 and 0.9288,
respectively. Due to their simple structures and insufficient
network depth, these two networks are difficult to accu-
rately diagnose faults. The F1-score of BiLSTM is 0.9599,
which introduces gate mechanisms and has the ability to
remember long-term and short-term information, enabling
it to better capture bidirectional feature dependencies and
effectively solve the problems of gradient disappearance
and explosion in RNN, but its ability to capture fault
feature information is still weak. GRU also introduces
gate mechanisms, has fewer parameters, faster convergence
speed, and less time consumption, accelerating the iteration
process. Its F1-score is 0.9687. By increasing the number
of network layers, the F1-score of AlexNet is 0.9815, and
that of ResNet is 0.9683, which is significantly improved
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Figure 5. Release of features after t-SNE dimensionality reduction: (a) distribution of original fault characteristics; (b) RNN
t-SNE; (c) BiLSTM t-SNE; and (d) GRU t-SNE.

Figure 6. Release of features after t-SNE dimensionality reduction: (a) LeNet t-SNE; (b) AlexNet t-SNE; and (c) ResNet
t-SNE.

Table 4
Fault Classification Results of Different Models

Model Precision Recall F1-score Accuracy

RNN 0.9113 0.9079 0.9068 0.9068

BiLSTM 0.9608 0.9592 0.9599 0.9593

GRU 0.9694 0.9688 0.9687 0.9688

LeNet 0.9332 0.9283 0.9288 0.9283

AlexNet 0.9817 0.9817 0.9816 0.9817

ResNet 0.9711 0.9683 0.9683 0.9683

WDCNN 0.9983 0.9983 0.9983 0.9983

compared to LeNet. However, the network topology
structure with small convolution kernels and multiple
convolution channels still has limited capability to extract
features from periodic signals. The proposed WDCNN
network has the best diagnostic performance, with the
highest scores in all diagnostic criteria, and the F1-score is
at least 0.11 higher than other methods.

By using t-SNE technology, high-dimensional data
can be transformed into two-dimensional features for
visualisation. By visualising the original fault features
and the features of the last layer of RNN, BiLSTM, and
GRU networks trained on sequence data, we can reflect
whether the network has learned to separate fault features.
Fig. 5(a) shows the distribution of original fault data
samples in two-dimensional space. It can be seen that the
unclassified samples are disorderly and difficult to follow.
Fig. 5(b) shows the distribution of fault features classified
by RNN, and the features classified by RNN are still mixed
and overlapped, and the classification effect is not ideal. In

Figure 7. Confusion matrices of: (a) AlexNet and (b)
WDCNN.

Fig. 5(c) and 5(d), BiLSTM and GRU can classify some
of the fault feature signals, and the performance is better
than that of RNN, but there are still some overlapping and
crossing phenomena.

The t-SNE visualisations of the classification results
of the LeNet, AlexNet, and ResNet models constructed
based on CNNs are shown in Fig. 6. Comparing with
Fig. 5, it can be seen that the convolutional architecture
is more conducive to extract AGV fault features than
using sequence data as input. Among them, AlexNet
with a deeper architecture has better classification
effect than LeNet, with tighter clustering of each fault.
ResNet, using residual structure and deeper architecture
without the problem of gradient disappearance, has the
best classification effect. However, there are still some
overlapping and crossing phenomena in some fault features.

To further analyse the diagnostic ability of the
networks, the diagnostic results of the AlexNet and
WDCNN networks on the test set are plotted as a
confusion matrix, as shown in Fig. 7. The horizontal
axis in the figure represents the predicted AGV state by
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Figure 8. Results of different: (a) 1DCNN and (b) WDCNN networks.

Figure 9. Characteristic output of each convolution layer after dimension reduction by t-SNE.

the model, and the vertical axis represents the actual
state of the AGV. The darker the color in the bar
chart on the right side, the more samples were correctly
classified.

From Fig. 7(a), it can be seen that AlexNet can
roughly locate and classify faults accurately, and four
types of faults are correctly identified with 100% accuracy.
However, due to its insufficient fault feature extraction
ability, six motor failure samples (state code 01) were
predicted as IMU failure (state code 05) and 13 IMU
failure samples (state code 05) were predicted as wheel
1 locking (state code 06). It is difficult to classify faults
accurately among different parts. From Fig. 7(b), it can
be seen that six states are correctly classified with 100%
accuracy. Only two samples of wheel 1 locking (state code
06) were diagnosed as wheel damage, and six encoder
failure samples (state code 02) were diagnosed as wheel
damage (state code 00) and motor failure (state code 01)
respectively. This may be because these three types of fault
features are all included in one wheel encoder. The overall
accuracy of WDCNN reached 99.83%, and the diagnostic

effect was good, and the precision requirements were
also met.

4.5 Ablation Experiments

To study the influence of network depth and verify the
effectiveness of the wide convolution kernel mechanism,
eight deep learning networks are established, namely,
1DCNN-2, 1DCNN-3, 1DCNN-4, 1DCNN-5, WDCNN-
2, WDCNN-3, WDCNN-4, and WDCNN-5. In addition
to the width of the convolution kernel, the hyperpa-
rameter settings of each network are the same. The
average diagnosis results of the models are shown in
Fig. 8.

According to Fig. 8, it can be seen that when the
network layer is shallow, the performance of WDCNN
is similar to that of 1DCNN. However, as the network
layer increases, the performance of WDCNN on the four
indicators of Precision, Recall, F1-score, and Accuracy
far exceeds that of 1DCNN with the same number of
layers. In addition, the diagnostic results of 1DCNN
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Table 5
Cloud Diagnostic Results at Different Sliding Window

Step Sizes

Sliding Window
Steps

Loss Acc Diagnosis
Time (s)

F1-score

100 0.0409 0.9875 1.13 0.9875

200 0.028 1 1.96 1

300 0.041 0.9937 1.33 0.9938

400 0.047 0.9875 1.96 0.9875

at different layers fluctuate significantly, and increasing
the depth of the network model does not necessarily
improve its accuracy. This suggests that the approach of
reducing the training parameters of the network while
improving the feature extraction ability by repeating
and stacking small filters, which is suitable for the
field of machine vision, is not applicable to AGV fault
diagnosis. With the introduction of wide convolution
kernel mechanism, the network extracts more fault feature
information. As the network layer deepens, the model’s
expressive power is further enhanced, and the accuracy is
improved.

Next, t-SNE technology is used to observe the output of
WDCNN convolutions at different depths. Fig. 9 shows the
output of the second, third, fourth, and fifth convolutional
layers of WDCNN. It can be seen that as the network
layer increases, the same fault features are more tightly
clustered. Compared with the classification results of
LeNet, AlexNet, and ResNet in Fig. 6, which are also CNN
architectures, the different fault features are separated
from each other, and the effect of learning fault features is
better.

4.6 Case Study

While changing the load of the AGV trolley, the trained
model is used to diagnose the fault data uploaded to the
SQL cloud database.

To verify the robustness of the model and simulate
the randomness when faults occur, experiments are
carried out in different sliding window steps, the fault
characteristics contained in different steps are different,
and step sizes of 100, 200, 300, and 400 are tested.
Twenty sets of data for each state are collected to ensure
the accuracy of the experiment. The cloud diagnostic
results for each sliding window step size are shown in
Table 5.

The experiments prove that the proposed fault
diagnosis model based on the cloud platform can accurately
identify different faults while changing the load and sliding
window step size. The model’s overall accuracy rate is
above 98%, time to diagnose 180 sets of data is around
1.6 s, and F1-scores are all above 0.98. The robustness,
accuracy, and real-time operation of the fault diagnosis
method are verified.

5. Conclusions

Compared to other methods, the proposed one-dimensional
wide-convolutional kernel neural network was superior
in extracting fault features, establishing diagnoses from
fault data, and diagnosing different faults of the same
component, with an overall accuracy rate of 99%. The
accuracy of online diagnosis surpassed 98% while changing
the load and sliding window step, and the micro-F1-scores
were all above 0.98.

The network was trained with few parameters and the
online diagnosis time was short, with an average diagnosis
time of 1.6 s for 180 data sets. The cloud-based fault
diagnosis method showed great potential to achieve real-
time, intelligent, and unmanned monitoring in the cloud,
while guaranteeing the safety of AGVs and improving
factory efficiency. The real-time fault diagnosis of the cloud
platform was affected by the network conditions, and we
expect the growing popularity of 5G technology to provide
a solution.
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