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PROPORTIONAL–INTEGRAL–DERIVATIVE

CONTROLLER FOR ARMED

MANIPULATOR ROBOTS

Alaeddin Malek∗ and Farideh Giv∗

Abstract

In this paper, torque controlling for one, two, and three

armed manipulator robots by proportional–integral–derivative (PID)

controller methods with different payloads are proposed. By giving

the initial and final conditions, we first directly solve the dynamical

system to determine the state containing position and velocity.

Secondly, the appropriate PID controller coefficients are determined.

Thirdly, the optimal torque by using PID controller coefficients is

computed. Then the related position and velocity trajectories based

on initial and final conditions are derived. Simulation for 100 work

examples with different payloads and a various number of arms are

considered. Numerical results for different types of armed robots

(R, RR, RRR) for different loads are given. The graphs for position,

velocity and optimal torque trajectories for 15 work examples and

different payloads are depicted.
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1. Introduction

Robot manipulators have many applications, such as
in manufacturing, aerospace and transportation[1]–[3].
Due to the highly coupled nonlinear dynamics and
model uncertainties and external disturbances, the design
of high-performance controlling robot manipulators is
challenging and has attracted much attention in recent
years [4]. Proportional–integral–derivative (PID) controller
has been used widely due to its simplicity [5]–[8]. The
integral control action in a PID controller is to achieve
asymptotic regulation and disturbance rejection. While the
derivative control action is to achieve a minimum rate
of error [9]. In light of the well-known internal model
principle, integral control can only effectively suppress
the constant disturbances to achieve the asymptotic
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stability of the closed-loop systems [10]. However, for the
system with model uncertainties and non-constant external
disturbances, there are always residual errors using the PID
controller, and asymptotic regulation cannot be achieved.
In this article, PID controllers (see Section 3), are used to
lift loads from 21.2 to 1000 g by armed robot manipulators
[11]. The paper is organised as follows: In Section 2, systems
dynamic for armed robots is proposed. The statement of the
optimal control input is proposed for applied torque to
the corresponding armed robots in Section 3. In Section 4,
the problem is described. In Section 5 corresponding
complicated systems of the differential equation for robot
type R, RR, RRR is given. Numerical simulation and
the corresponding results for 15 different examples are
discussed and graphs for the position, velocity, and optimal
torque are depicted. Concluding remarks are given in
Section 6.

2. Robot Dynamic System

Dynamic equations clearly explain the relationship between
force and motion. Considering motion equations is
important for robot design, simulation, robot motion
animation and control algorithms. To describe the
behaviour of dynamic systems, Euler–Lagrange equations
are introduced. To determine the Lagrangian Euler
equations, it is necessary to form the Lagrangian system,
which is the difference between kinetic energy and potential
energy [12].

Note that the kinetic energy of a rigid object is the
sum of the transient kinetic energy and the rotational
kinetic energy of the body around the center of mass. Also
in terms of rigid dynamics, the only source of energy is
gravity potential.

In this section, the Euler–Lagrange equations are
investigated in a special case where the following two
conditions are met. The first is that the kinetic energy is a
quadratic function of the vector q̇ and the second is that
the potential energy is independent of q̇. The arm robot
has the following dynamic system [12]

D(q)q̈ + C(q, q̇) + g(q) = τ (1)
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Figure 1. R robot manipulator: (a) without payload and
(b) with payload M.

Table 1
Physical Characteristics for One-armed Robot Without

Payload

Arm # l1 lc1 m1 I1

0.250 m 0.198 m 0.193 kg 1.15× 10−3 kg.m2

Table 2
Physical Characteristics of Two-armed Robot Without

Payload

Arms #i li lci mi Ii

0.250 m 0.198 m 0.193 kg 1.15× 10−3 kg.m2

0.234 m 0.143 m 0.115 kg 4.99× 10−4 kg.m2

where τ is the generalised force associated with q. The
variable q is also considered as generalised coordinates
(θ1, θ2, . . . , θn) that has n degrees of freedom. g(q) is the
gravity vector, C(q, q̇) is the Christopher matrix and D(q)
is the inertia matrix [12]. This system consists of a typical
second-order nonlinear differential equation (the number
of equations corresponds to the number of arms).

2.1 One-armed Robot (R-type)

The physical characteristics for an R-type armed robot
without payload are given in Table 1 [13]. For i = 1, 2, 3, li
is the length of the i-th arm, lci is the i-th center of mass,
mi is the mass of the i-th arm and Ii is the i-th inertial
torque.

According to (1) the dynamic system for one arm robot
(see Fig. 1(a)) is

τ1 = (m1l
2
c1 + I1)θ̈1 +m1glc1 cos(θ1) (2)

in which τ1 is the corresponding torque for one-armed
robot.

2.2 Two-armed Robots (RR-type)

The physical characteristics for RR-type robots without
payload are given in Table 2 [13].

Figure 2. RR robot manipulator: (a) without payload and
(b) with payload M.

Table 3
Physical Characteristics for Three-armed Robot Without

Payload

Arms #i li lci mi Ii

0.250 m 0.198 m 0.193 kg 1.15× 10−3 kg.m2

0.234 m 0.143 m 0.115 kg 4.99× 10−4 kg.m2

0.218 m 0.109 m 0.100 kg 6.58× 10−4 kg.m2

Form (1), the dynamic system for RR-type robot (see
Fig. 2(a)) in matrix form is as follows [12]τ1

τ2

 =

d11 d12
d21 d22

θ̈1
θ̈2


+

 hθ̇2 hθ̇1 + hθ̇2

−hθ̇1 0

θ̇1
θ̇2

+

g1
g2

 (3)

where

d11 = m1 l
2
c1 +m2 (l21 + l2c2 + 2 l1 l

2
c1 + 2 l1 lc2 cos(θ2))

+I1 + I20.1 cm

d12 = d21 = m2 (l2c2 + l1 lc2 cos(θ2)) + I20.1 cm

d22 = m2 l
2
c2 + I20.1 cm

c121 = c211 =
1

2

(
δd11
δθ2

)
= −m2 l1 lc2 sin(θ2) = h0.1 cm

c221 =

(
δd12
δθ2

)
− 1

2

(
δd22
δθ1

)
= h0.1 cm

c112 =

(
δd21
δθ1

)
− 1

2

(
δd11
δθ2

)
= −h0.1 cm

g1 = (m1 lc1 +m2 l1) g cos(θ1)

+m2 g lc2 cos(θ1 + θ2)0.1 cm

g2 = m2 g lc2 cos(θ1 + θ2).

2.3 Three-armed Robots (RRR-type)

As it is shown in Fig. 3, the physical characteristics of
RRR-type robots without payload are given in Table 3.
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Figure 3. RRR robot manipulator: (a) without payload
and (b) with payload M.

Figure 4. Block diagram of open-loop system without
control.

According to (1) the dynamic system for RRR-type
robot similar to (2) and (3) yields

τ1

τ2

τ3

 =


d11 d12 d13

d21 d22 d23

d31 d32 d33



θ̈1

θ̈2

θ̈3



+


c11 c12 c13

c21 c22 c23

c31 c32 c33



θ̇1

θ̇2

θ̇3

+


g1

g2

g3

 (4)

where appropriate cij and dij, i, j = 1, 2, 3 and gi, i = 1, 2, 3
can be derived similar to the coefficients of RRR-type
robot (see [14]). The block diagram of open-loop dynamical
system corresponding to (2)–(4) is shown in Fig. 4.

3. Proportional–Integral–Derivative (PID)
Controller

PID controller is a control system based on feedback,
the main purpose of which is to bring the final result
for the process closer to the desired value. Simply put,
the whole concern of a PID controller is to steer the
system towards a level, position, or whatever value we
specify. In the PID controller, two definitions of error and
setpoint are important. Setpoint here means the target
point (level, position, quantity or whatever we want to
reach in the control system) and on the other hand,
the error is the amount of deviation (difference) between
the target point and the final output value. The lower the
error, the better, which means that we have been able
to match the final value of the system exactly to our

intended value. To achieve this desired point (error = zero,
system output value = setpoint) PID controller system of
three operators uses; Proportional (P), Integral (I), and
Derivative (D) concepts. These three bases P, I and D
are variable in the proposed PID controller to achieve the
optimal response (torque). In practice, each of them takes
the error signal ((e1 = desired position − position) and
(e2 = desired velocity − velocity)) as input and performs
an operation on it, and finally, their output is aggregated.
As a torque (see Fig. 6), the output of this set, which is
the output of the PID controller, is given to the feedback
system to correct the error (see Fig. 5).

3.1 PID Definitions

The standard PID formula is as follows

output(t) = kp

(
e(t) +

1

Ti

∫ t

0

e(α) dα+ Td
de

dt

)
(5)

where e stands for error, Ti is an integration time and Td is
a derivative time. Therefore, the conversion function G(s)
for the PID controller is [9]

G(s) = kP +
kI
s

+ kD s, (6)

in which s is the complex frequency. Proportional sentence
“coefficient kP ” increases system speed and reduces
“but does not zero” the permanent state differences to
some extent. Adding an integral sentence “coefficient kI”
vanishes the permanent state differences, but adds a lot
of overshoot to the transient response. The derivative
sentence “coefficient kD” attenuates the transient response
fluctuations and brings the step response closer to the ideal
desired [15].

3.2 Parallel PID

As it is stated in (6), the PID controller is called parallel
since each action (P, I, and D) occurs in separate terms
with the combined effect being a simple sum [16]. In the
parallel equation, each action parameter (kP , kD, kI) is
independent of the others. Here, it is assumed that the gain
parameter affects all three control actions.

4. Problem Description

The problem here is defined as the determination of
the best possible control strategy (optimal control torque
vector τ̂), which minimises a performance index as the
difference between of desired position and initial position
for the top of the last arm. The last arm has a payload
of mass M and the goal is to transport the mass M
from the initial position into the desired position. The
robot dynamic system under control is described in
Section 2.

Observe that, this problem is not the minimum time
control problem since the terminal time is fixed, here τ̂ ,
in which components of τ̂ depend on three different types
of robots. This problem can be called a fixed endpoint for
a fixed time problem. Since the nonlinear problem here
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Figure 5. Block diagram for robot dynamic system using PID controller with feedback output.

Figure 6. Block diagram of parallel PID controller for armed robot dynamic system.

is far too difficult to solve, the PID proposed controller
(see Figs. 5 and 6) is used to minimise differences between
the initial position and velocity and the desired ones
before the given fixed time. The following explains how to
combine different types of robot dynamic systems and PID
controllers.

5. Combination of Robot Dynamic System and
PID Controller

Considering (1) we will have

q̈ = D−1(q)[−C(q, q̇)− g(q)] + τ̂ (7)
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Table 4
Masses M that Added to the Last Arm in Grams (g)

M (g) 21.2 31.2 51.8 100.6 121.9 130.7 150.5 200 500 1000

where the n-vector τ̂ is

τ̂ = D−1(q) τ (8)

and the error or difference is considered as

e(θi) = θ̃i − θi , i = 1, . . . , n (9)

in which θ̃i is the final position and θi is the initial position
of each joint for the arm robot in radians.

From (5) and (6), the matrix form of the PID controller
of each conversion function vector input τ̂ is

τ̂ = kP e+ kD ė+ kI

∫
e dt (10)

According to (10), we solve the complete system of
differential equation (7) with MATLAB ode45 solver.

To determine the PID coefficients, the values kPi
, kDi

and kIi were manually adjusted according to the conditions
defined on the robot dynamic system. These coefficients
are fixed according to the increase of the robot arms in
each step. In the computations here, we used

kPi
= 30, kDi

= 10, kIi = 50, i = 1, 2, 3 (11)

5.1 One-armed Robot Formulation

Now, from (7) and (10), combination for PID and dynamic
system yields in

θ̈1 =
−m1glc1 cos(θ1)

m1l2c1 + I1
+ kP1

(θ̃1 − θ1) + kD1
θ̇1

+kI1

∫
e(θ1) dt (12)

The robot dynamic system with the initial condition
for position θ1 = −π

84 and the final position θ̃1 = π
84 radian

with zero initial velocity for the time interval [0, 10] s is
considered.

5.2 Two-armed Robots Formulation

From differential equations of (3) and (7), we haveθ̈1
θ̈2

 =

d11 d12

d21 d22

−1 −
 h θ̇2 h θ̇1 + h θ̇2

−h θ̇1 0

θ̇1
θ̇2

−

g1
g2


+

τ̂1
τ̂2

 (13)

by placing (10) in (13) we will haveθ̈1
θ̈2

 =

d11 d12

d21 d22

−1 −
 h θ̇2 h θ̇1 + h θ̇2

−h θ̇1 0

θ̇1
θ̇2

−

g1
g2


+

kP1
(θ̃1 − θ1) + kD1

θ̇1 + kI1
∫
e(θ1) dt

kP2
(θ̃2 − θ2) + kD2

θ̇2 + kI2
∫
e(θ2) dt

 (14)

For a period [0, 10] s there is no velocity in the
beginning time. Initial and final positions are [θ1, θ2] =

[−π84 ,
π
84 ] and [θ̃1, θ̃2] = [ π84 ,

−π
84 ] radian, respectively.

5.3 Three-armed Robots Formulation

The system of differential equations for (4) and (7) yields
in

θ̈1

θ̈2

θ̈3

 =


d11 d12 d13

d21 d22 d23

d31 d32 d33


−1 −


c11 c12 c13

c21 c22 c23

c31 c32 c33



θ̇1

θ̇2

θ̇3

−


g1

g2

g3




+


τ̂1

τ̂2

τ̂3

 (15)

by placing the (10) in (15) we will have
θ̈1

θ̈2

θ̈3

 =


d11 d12 d13

d21 d22 d23

d31 d32 d33


−1 −


c11 c12 c13

c21 c22 c23

c31 c32 c33



θ̇1

θ̇2

θ̇3

−


g1

g2

g3




+


kP1

(θ̃1 − θ1) + kD1
θ̇1 + kI1

∫
e(θ1) dt

kP2
(θ̃2 − θ2) + kD2

θ̇2 + kI2
∫
e(θ2) dt

kP3
(θ̃3 − θ3) + kD3

θ̇3 + kI3
∫
e(θ3) dt

 (16)

Robot dynamic system with initial condition for
position [θ1, θ2, θ3] = [−π84 ,

π
84 ,

−π
84 ] and final position

[θ̃1, θ̃2, θ̃3] = [ π84 ,
−π
84 ,

−π
84 ] radian with zero initial velocity

for interval [0, 10] s is considered.

5.4 Additional Mass M as a Weight

Now additional masses M will be added to the last arm as
it is given in Table 4, (see also Figs. 1(b), 2(b) and 3(b)).
Note that if one change the load mi into mi +M , li stays
fixed, Ii and lci will change correspondingly. Experiments
are done for different masses in Table 4, for R, RR and
RRR-type manipulator robots.

6. Numerical Results

To show the effect of torque control vector τ̂ in the problem
described in Section 4, we proposed the following three
Workexamples.

As the first Workexample, we solve the two-armed
robot dynamic system (3) directly, where [τ1, τ2] =
[0.55, 0.2], with added mass of M = 100.6 g, t ∈ [0, 10],
subject to zero initial velocity and initial position [θ1, θ2] =
[−π84 ,

π
84 ].

The results in Fig. 7 are computed from solving the
dynamic system of the two-armed robot by determining
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Figure 7. First Workexample; Plot of two-armed robot with payload 100.6 g: (a) plot of XY; f(b) plot of position; (c) plot of
velocity; and (d) plot of torque.

Figure 8. Second Workexample; Plots of dynamical system (3) for two-armed robot with payload 100.6 g with initial positions
[θ1, θ2] = [−π84 ,

π
84 ] and final positions [θ1f , θ2f ] = [ π84 ,

−π
84 ]: (a) plot of position and (b) plot of velocity.

the initial conditions on the system of equations for the
robot’s motion. It is shown that we have lots of fluctuations
in position, velocity and torque. Thus the robot’s motion
in the XY plane is not reasonable (see Fig. 6).

Second Workexample; if in addition to the initial
conditions [θ1, θ2] = [−π84 ,

π
84 ], we add the final conditions

[θ1f , θ2f ] = [ π84 ,
−π
84 ] to the two-armed robot dynamic

system (3), still we have lots of fluctuations for position and
velocity (see Fig. 8), thus in practice the robot’s motion is
complicated.

Solving directly the first and second above Workex-
amples show oscillated solutions that are not usable in
real-world applications. This is the motivation to write the
problem described in Section 4 in the form of the following
optimal control problem, third Workexamples (see (7) and
(10)).

Minτ J =
∫ tf
t0

e(θ, τ, t) dt, subject to

Manipulator robot dynamic system

for a given initial and final state vector θ

(17)

In the following subsections, three types of
third Workexamples are solved successfully, using the

combination of R, RR and RRR type robot dynamic
systems and PID controller. As it is shown in Figs. 9–17,
there is no serious oscillation for the position, torque and
velocity, and the system rest before 5 s. Thus in practice,
the authors recommend using the torque controlling
strategy proposed by the third Workexamples.

6.1 Position Discussion for Third Workexamples

6.1.1 Robot with One Arm

According to the XY diagram (see Fig. 9), starting from
a mass of 21.2 g, the amount of vertical changes is from
−0.17 to −0.01 m and the horizontal changes are from
0.192 to 0.26 m, when one increases mass to 31.2 and 51.8
g, the vertical changes are still constant, but the horizontal
changes shift to the right of approximately 0.002 m. With
the increase of mass to 100.6 g, the vertical changes from
−0.15 to 0.02 m and the horizontal changes are still shifted
to the right and from 0.2495 to 0.285 m. This procedure is
the same with increasing mass to 121.9, 130.7, 150.5 and
200 g, i.e., the vertical changes are almost constant but it
is still shifting to the right. In the masses of 500 and 1000
g, the vertical changes are from −0.1 to about 0.05 m.
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Figure 9. Plot of XY, position and position error for robot with one arm: (a) payload 21.2 g; (b) payload 100.6 g; (c) payload
150.5 g; (d) payload 500 g; and (e) payload 1000 g.

Figure 10. Plot of XY, position and position error for robot with two arms: (a) payload 21.2 g; (b) payload 100.6 g; (c) payload
150.5 g; (d) payload 500 g; (e) payload 1000 g.

The amount of horizontal changes in the mass of 200 g is
approximately from 0.335 to 0.35 m. For the mass of 1000
g horizontal changes from 0.735 to 0.75 m. In masses below
100 g, the amount of vertical changes is 0.2 m and for other
masses is about 0.1 m. In the position charts, it is shown
that the position reaches the desired position in about 3 s.
With increasing mass from 21.2 to 1000 g, the minimum
position in terms of radians changes from −0.73 to −0.2
rad. The position error is also depicted in Fig. 9.

6.1.2 Robot with Two Arms

According to the XY diagram (see Fig. 10), the movement
of the first arm does not change significantly when one
increases the mass. The movement of the second arm
increases with increasing the mass, i.e., the range of
horizontal and vertical changes is greater than the first
arm. In the position chart, the first arm oscillates less than
the second arm. In less than 1 s, the first arm has the lowest
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Figure 11. Plot of XY, position and position error for robot with three arms: (a) payload 21.2 g; (b) payload 100.6 g;
(c) payload 150.5 g; (d) payload 500 g; (e) payload 1000 g.

Figure 12. Plot of torque for robot with one arm: (a) payload 21.2 g; (b) payload 100.6 g; (c) payload 150.5 g; (d) payload
500 g; and (e) payload 1000 g.

Figure 13. Plot of torque for robot with two arms: (a) payload 21.2 g; (b) payload 100.6 g; (c) payload 150.5 g; (d) payload
500 g; and (e) payload 1000 g.
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Figure 14. Plot of torque for robot with three arms: (a) payload 21.2 g; (b) payload 100.6 g; (c) payload 150.5 g; (d) payload
500 g; and (e) payload 1000 g.

Figure 15. Velocity plots for robot with one arm: (a) payload 21.2 g; (b) payload 100.6 g; (c) payload 150.5 g; (d) payload
500 g; and AC payload 1000 g.

position and the second arm is at its highest position. The
first and second arms achieve the rest in almost 5 s. The
range of motion changes does not change significantly with
increasing mass.

6.1.3 Robot with Three Arms

According to the XY chart (see Fig. 11), the amount of
movement of the first arm is very low and has a small range
of motion. The change in motion in the horizontal direction
is about 0.001 m and in the vertical direction is about 0.02
m. The range of motion for second arm is in the range
between 0.44 to 0.48 m in the horizontal direction and from
−0.12 to 0.03 m in the vertical direction. Not very much,
but the third arm has a greater range of motion in the
horizontal and vertical directions than the first two arms.
From the mass of 21.2 to 200 g, the amount of horizontal
and vertical changes is small, but for the mass of 500 and
1000 g, the range of motion from the horizontal direction
varies from 0.6 to 0.08 m. In the position diagram, the first,
second and third arms have no more than one oscillation
before going the rest for t = 4 s.

6.2 Torque Commentation for Third
Workexamples

6.2.1 Robot with One Arm

In the torque diagram (see Fig. 12), it is shown that one
does not need any torque after almost 4 s. After 1 s, torque
peaks and reaches 0.4 Nm for a mass of 21.2 g, and this
value increases to 0.5 Nm for a mass of 200 g; for a mass
of 500 and 1000 g it increases to point 0.7 and 3 Nm,
respectively. Torque decreases after nearly 3 s until it rises
again in 4 s and then stabilises.

6.2.2 Robot with Two Arms

In the torque diagram (see Fig. 13), the amplitude of
changes for first arm is greater than the second arm. For
masses below 100 g, the maximum arm torque is between
1 and 1.1 Nm, and for masses up to 200 g, this value
increases to 2 Nm, for masses of 500 g, it is about 3.5 Nm,
and for masses of 1000 g, this value is 9 Nm. Up to 1 s the
torque is constant and the maximum value occurs between
1 and 2 s and is stable from 3 s onwards. The torque of
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Figure 16. Plot of velocity for robot with two arms: (a) payload 21.2 g; (b) payload 100.6 g; (c) payload 150.5 g; (d) payload
500 g; and (e) payload 1000 g.

Figure 17. Plot of velocity for robot with three arms: (a) payload 21.2 g; (b) payload 100.6 g; (c) payload 150.5 g; (d) payload
500 g; and (e) payload 1000 g.

the second arm for mass less than 100 g is at a maximum
value of about 0.125 Nm and with increasing mass this
value increases to 0.5 Nm and for mass 500 and 1000 g is 1
and 5 Nm. For both arms, the maximum amount of torque
occurs between 1 and 2 s. The system takes a rest after
almost 4 s.

6.2.3 Robot with Three Arms

In the torque diagram (see Fig. 14), the first and third
arms have the highest and lowest torque amounts. In all
experiments, torque rests before 5 s. For the mass of 1000
g, one needs more torque amount but less time to take the
rest. For masses below 100 g, the maximum torque of the
first arm is about 1.5 Nm and with increasing mass up to

200 g it becomes about 2.5 Nm. For a mass of 500 g, it
is 4.5 Nm and for a mass of 1000 g, it is about 10.1 Nm.
Regarding the torque values, the behaviour pattern states
the same for three different arms. More payloads need more
torques as expected.

6.3 Velocity Dissection for Third Workexamples

6.3.1 Robot with One Arm

As it is shown in Fig. 15, velocity is in a steady state after
about 3 s. For a mass of 21.2 g in 0.1 s lowest velocity −2.3
rad
s and highest velocity 0.8 rad

s in 0.7 s happens. As the
mass increases, the velocity changes amplitude decreases.
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6.3.2 Robot with Two Arms

In the velocity diagram (see Fig. 16), velocity changes
amplitude for both arms are almost in the same range.
The velocity takes the rest before 10 s for all payloads.
According to the initial and final positions defined in the
problem, the first arm has a negative velocity and the
second arm has a positive velocity. Thus, in 0.1 s, the first
arm has the lowest speed and the second arm has the
highest value. Then the first arm reaches its maximum
again in 0.7 s and the second arm in 0.8 s has its maximum.
Both arms move together again until they take a rest in 4
s. In the period of 0.3 to 4 s, the speed of the first arm is
faster than the second arm.

6.3.3 Robot with Three Arms

As it is shown in the velocity diagram (see Fig. 17), there
is no motion after almost 4 s. For a mass of 1000 g, this
happens sooner in almost 3 s. The first arm has the lowest
speed range and the third arm has the highest speed range.
For a mass of 1000 g, the speed changes range is less than
the other payloads while the speed is higher.

7. Conclusion

Direct solving the dynamical system (3) (see first and
second Workexamples, Figs. 7 and 8, respectively) of
transporting some payloads from the initial position to
the final position gives a very oscillated solution that
is not usable in real-world applications. We have shown
that by combining PID controller and dynamic system for
manipulator robots of different types and different weights,
we will be able to solve the problem in the type of optimal
control problem successfully (see third Workexamples,
Figs. 9–17). This concludes that optimal torque control has
a great effect on the well-done operation for this kind of
payload transportation.
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