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ROBOT GRASPING AND MANIPULATION
COMBINING VISION AND TOUCH

Zihao Ding,* Guodong Chen,* Zhenhua Wang,* and Lining Sun*

Abstract

Humans tend to instinctively integrate information from various
senses such as vision and touch to accomplish dynamic adjustments
when grasping and manipulating objects. The current robot
manipulation tasks largely depend on visual guidance, resulting in
the inability to cope with the contact activities demanding precise
control. Vision and touch are separate processes in recent fusion
methods, which are far from what happens in the human brain. The
fusion is also unable to solve the problem of damage to the objects
during initial contact. Therefore, a pre-grasp network based on the
fusion of visual detection and tactile prior knowledge is proposed in
this paper, which combines visual image and tactile experience to
reach fast pre-grasp for robots. Then, using the optimal self-search
of the time step, a tactile network is built to automatically adjust
the time step and output particular grasp hardness and grasping
state for the object. Finally, the dexterous robot hand can be
constantly controlled for steady grasping utilising the force/position
control algorithm. Experiments show that this method is useful for
the robot to complete the stable grasp and manipulation of different

objects.
Key Words

Robot grasping, neural network, tactile prior knowledge, visual-

tactile fusion, optimal self-search, force/position control
1. Introduction

As an important tool to improve the intelligent and
manipulative levels of the robot, the multi-sensory
dexterous robot hand has become one of the most
promising researches in the robot field [1]. Predicting
the grasping results of dexterous hands [2] is crucial to
realise robot manipulation [3], which can assist robots in
developing grasping strategies. Many studies have proposed
various methods to accomplish this task [4], [5]. Early
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studies focused on physical modeling of the grasping
objects, grippers, and environment, typically using visual
[6], [7] or depth observations [8]. The inclusion of tactile
input to this task, according to recent studies [9], [10],
might enhance prediction accuracy significantly. Li and
Adelson [11] demonstrated a vision-based tactile device
with GelSight material as a transparent elastomer in 2012.
Hai et al. [12] constitutes a tactile perception system
by fusing the electromyography signal controller of the
hand, the vibrotactile system, the torque sensor, and
the motor driver. The vibrotactile system can provide a
sense of grasping force to the subject. Using BioTacs,
Chebotar et al. [13] presented a framework for relearning
grasping behavior based on tactile data. Several works
[14]-[17] suggested the use of tactile sensors to assess
grip stability. Veiga et al. [18] extracted features from
tactile signals to detect/predict slip to adaptively adjust
the grasp force. Han et al. [19] designed a multi-modal
CNN model, which could obtain the hardness, thermal
conductivity, roughness, and texture features to modify
the grasping strategy. Li et al. [20] focused on finding
the appropriate pressure distribution to realise the stable
grasping operation of a variety of objects. James and
Lepora [21] demonstrated the slip detection capabilities of
robotic hands by using support vector machines.

However, we should not entirely isolate vision and
touch. Humans frequently integrate touch, vision, and
even hearing in manipulation tasks [22]. The study has
shown that the human brain utilises a multisensory model
[23]. Employing model-based techniques, researchers have
developed robotic systems that combine visual and tactile
information for grasping. Wallhoff et al. [24] introduced
a teachable hybrid assembly system that was capable
to process voice, gaze, and tactile interaction channels.
Wang et al. [25] proposed a novel paradigm that efficiently
perceives accurate 3D object shapes by incorporating
visual and tactile observations, as well as priorknowledge
of common object shapes learned from large-scale shape
repositories. Guo et al. [26] generated the initial grasp
rectangle by visual perception, and then evaluated the
grasp quality by tactile information and strain gauge.
Cui et al. [27] proposed a visual-tactile fusion learning
method based on the self-attention mechanism. Calandra
et al. [10] predicted grasp success probability based on
tactile readings, RGB image, and a regrasping action for a
two-fingered gripper. While the aforementioned method of



using both visual and tactile information simultaneously
can enhance perceptual abilities during a task, it fails to
take into account the inherent relationship between visual
and tactile information.

Caporali et al. [28] presented the fusion method
between the shape estimation provided by the vision system
and the one provided by the tactile sensor to grasp the
cable. They investigated the complementary relationship
between haptics and vision under occlusion conditions.
However, the tactile sensors used were specific to the
grasping task of the cable and could not be applied to
other robotic tasks. Han et al. [29] proposed a transformer-
based robotic grasping framework for rigid grippers that
leverage tactile and visual information for safe object
grasping. Kanitkar et al. [30] used the tactile and vision
data obtained during grasping and moving the object to
the holding pose to predict whether the object is stable.
Matak and Hermans [31] proposed an approach to grasp
planning. The key to the method’s success is the use of
visual surface estimation for initial planning. The robot
then executes this plan using a tactile-feedback controller
that enables the robot to adapt to online estimates of the
object’s surface to correct for errors in the initial plan.

The visual grasping method is difficult to achieve
dynamic adjustment. The above grasping strategy of fusing
visual and tactile information depends on multiple trials
and errors, and the fusion methods are based on their
special hardware, which is not scalable. Furthermore, no
work has shown the ability to plan, adapt, and ensure
precision grasps for multi-fingered hands through joint
visual and tactile sensing in the real world [31]. On the one
hand, the initial force of the grasp cannot be set leading to
the damage of the object during contact. On the one hand,
the fusion approach is employed for object recognition
and slip detection, not for changing the robot’s grasping
state.

Therefore, we propose a new visual and tactile fusion
solution that overcomes the limitations of traditional
methods of applying hardware platforms and solves the
initial grasping problem before grasping and the dynamic
adjustment problem during grasping. Our primary contri-
butions are three-fold:

e A pre-grasp convolutional neuronal network based
on the fusion of visual detection and tactile prior
knowledge is proposed to accomplish fast and safe pre-
grasp for robots and solve the problem of loss due
to missing tactile information in the initial grasping
phase. And a new visual-tactile data set and fusion
model are established.

e A tactile long short-term memory (LSTM) network
based on optimal self-search of the time step
(OSLSTM) is built to assess the grasping state and the
grasp hardness for the object. And the force/position
control algorithm is used to adjust the grasping state
in real time based on the attributes of the object.

e The results of the experiments show that this approach
can avoid damage and solve the problem of unstable
grasping.

The rest parts of this paper are organised as follows.
Section 2 introduces the visual and tactile samples in the
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visual-haptic fusion, and expounds the structure of the
grasping network. Then, Section 3 describes the grasp state
evaluation model and adjustment mode. The experimental
results are shown in Sections 4, and 5 makes a conclusion
for this paper.

2. A Pre-Grasp Network based on the Fusion of
Visual Detection and Tactile Prior Knowledge

In the task of robot grasping, not only the location
information of the target is required, but also the
grasping position can be detected. Besides, different forces,
positions, and other strategies should be formulated
according to the different attributes of the object
materials. In current tactile-based grasping methods, the
robot continuously attempts and adjusts the force after
contacting objects with their gripper, which is time-
consuming. It is also easy to harm the target of the initial
touch if the initial force was not appropriately adjusted for
soft material targets.

Thus, this article develops a pre-grasp network based
on the fusion of visual detection and tactile prior knowledge
for the three-fingered dexterous hand, as shown in Fig. 1.
Firstly, a significant number of grasping experiments is
conducted on various objects, yielding visual and tactile
data sets. The grasp position and grasp force necessary for
a successful grasp task are determined using the grasping
outcomes. We build the connection between visual images
and grasp attributes using tactile information and the
visual network. By inputting the visual image into the
trained neural network, we can get grasp information,
object categories, and pre-grasp force. In this way, only
visual detection is required to successfully grasp the object
in the actual test.

2.1 An Optimised Data Set for Visual and Tactile
Fusion

2.1.1 Vision: Sample Labels based on Objects Material

‘We use the Cornell Grasp Dataset as the visual training set,
which are comprised of 885 images of 240 different objects.
Each image has multiple grasp rectangles marked as success
(positive) or failure (negative). There is a close correlation
between the material of an object and its grasping method,
which has been ignored in previous studies. The dataset
comprises samples from six categories, including the most
typical shapes of cuboid, cylinder, and sphere, each with
two unique properties of soft or hard, resulting in a
total of 48 different sample types. The diverse shapes
and materials necessitated different grasping techniques,
and this categorisation helped to better associate the
tactile data with the corresponding shape and material.
The examples of dataset classification are presented
in Fig. 2.

The grasping labels are represented by six-dimensional
data Q(t,s) = M 'In(t +1) + A n(s; + 1),
with Q(t,s) = M0 'In(t +1) + A0 (s + 1)
corresponding to the center coordinate of the grasp
rectangle, Q(f,5) = A3 In (£ + 1)+ A3 In(s; 4 1)
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Figure 1. Pre-grasp process of visual-tactile fusion.
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Figure 2. Examples of visual training samples.

corresponding to the distance between the opposite
fingers before grasping, Q(t,s) = )\tZ;ZI In(t; +1) +
)\32?1 In(s; +1) corresponding to the width of
the contact position between the fingers and the
target, Q(t,5) = Ao In(t; 4+ 1) + A0 n(s; 4+ 1)
corresponding to the direction of the grasp rectangle
relative  to the Thorizontal axis, and Q(¢,s) =
AT It +1) + A In(s; +1)  corresponding
to one of the six categories corresponding to the
target. The examples of visual labels are shown
in Fig. 3.

2.1.2 Touch: a Grasp Quality Fvaluation Method and
Grasp Stiffness Were Proposed

The distribution of the tactile sensors is shown in Fig. 4.
There are 10 tactile sensors, which are respectively located:
left fingertip (F-L), middle fingertip (F-M), right fingertip
(F-R), left finger center (C-L), middle finger center (C-
M), right finger center (C-R), left finger bottom (B-L),
middle finger bottom (B-M), right finger bottom (B-R),
and palm (P).

Grab Tactile Move

Hard sphere

Figure 3. Examples of visual labels.

For obtaining the tactile sample data, we select four
representative objects from each class of visual images.
Then, we control the robot to repeatedly grasp each object
and recorded the tactile data in the process of grasping.
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Figure 4. The distribution of tactile sensors.

We use (1) to define the grasping state.

Q(t, S) = )\ti In (tl + 1) + )\Siln (Si + 1) (1)

i=1

Where n is the number of fingers, ¢; and s; are the
tactile average reading and motor current reading of the
i-th finger respectively. \; and A, are the scale factors of
tactile and strain perception, respectively, which are used
to adjust the weight of each mode. They satisfy the relation
in (2).

|
N —
¢ kth’l(tm—f—l),
| 11
A= — LI e
oI (5 & 1) n(kt + k) @)

Where, t,, and s,, are the maximum value of tactile
value and current value when grasping, respectively, while
ki and ks are the weights.

The @ value represents the gripping tightness of the
robot. The higher the @ value, the tighter the grip. Due to
the different materials and shapes of different objects, the
gripping tightness varies greatly. For example, the @) value
of the soft material is small but this does not mean that
the clamping fails. Therefore, we use the @)-value difference
to represent the degree of change of the robot’s grasping
state. The larger the @-value difference, the more unstable
the robot grasps and the greater the possibility of failure.
When the @Q-value difference is less than the set threshold,
the grasping is considered stable. The calculation formula
is shown in (3).

Q1 — Q2| <7 (3)

During the tactile data collection process, the robot is
taught to grasp the position and the grasping pattern by
humans. The robot is then asked to repeat the teaching
actions to obtain more data. Firstly, the robot is taken a
firm grasp on the object by recording the grasping state
value Q1. The fingers are then lifted and swung to test the
state. This is to verify the stability of the robot on the one
hand and to collect more failure samples on the other hand.
If the object fell or slipped, it would be judged as a failure.
If not, the grasping state value @2 would be recalculated
after the swing process. The grasp is marked as successful
when the difference between the two evaluations is less

left finger center (C-L)

left fingertip (F-L)
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right finger center (C-R) right fingertip (F-R)

than the threshold value (n is set to 1.0) and there is
no damage on the object’s surface. Otherwise, it would
be recorded as a failure. Combined with the vulnerability
of the target and the output current of the finger in
the successful grasping experiment, the grasp hardness is
defined for each type of object as shown in Table 1. There
are a total of 12,000 tactile data sets collected, including
8,400 successful samples and 3,600 unsuccessful samples
(the collected visual samples are only used to test the visual
grasping network, not as a training set).

The tactile data are shown in Fig. 5. The tactile data
are the contact force values when the tactile sensor is in
contact with the object, and the feedback period is 10 ms.
Our tactile samples are composed of the data continuously
collected by the tactile sensor array. Each row of data is
collected by each sensor at the same time. And each column
is collected by a single sensor at different times. There are
two tactile labels, the grasp hardness K and the grasping
outcome (1 for success and 0 for failure).

2.2 The Deep Learning Network for Grasp
Position Detection

To realise the direct mapping from the image to the stable
grasping instruction, this paper presents a visual-tactile
fusion grasp planning model, which includes two stages: the
grasp position detection and the grasp force distribution
generation. The grasp position detection is completed by
the CNN network as shown in Fig. 6. The network takes
512 x 512 x three color images as input, including six
convolution layers, and two fully connected layers. Each
convolution layer is followed by an activation function, a
pooling layer. The last layer is a classification layer. The
output of the network includes the coordinate (z,y) of the
grasp center, w and h of the grasp area, 6 of the grasp
angle, the class C' of the target, and the corresponding
probability P. In order to associate the target category
with the grasp box to get a more accurate grasp position,
we have modified the loss function.

The loss function of the network output layer is divided
into two parts, as shown in (4): the classification loss
function for the category and the regression loss function
for the position. The first part makes judgments on the
target categories and uses a softmax classifier to judge the
probability of each category, and the grasping rectangle
box corresponding to the category with a low score will



Table 1
Examples of the Grasp Hardness

Shape/hardness Object Grasp hardness | Shape/hardness Object Grasp hardness
cuboid-hard scissors 10 cuboid-soft packing box 4
calculator 8 book 6
stapler 10 milk carton 4
camera 7 remote control 6
cylinder-hard | ceramic cup 8 cylinder-soft banana 2
screwdriver 10 paper cup 1
club 9 pop can 4
glass cup 7 adhesive tape 4
sphere-hard mouse 9 sphere-soft apple 6
ceramic bowl 7 pear 5
potato 7 orange 3
lamp 6 rubber ball 2
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Figure 5. Examples of tactile samples.

be directly excluded. The second part is a regression loss
function for the predicted geometric offset parameter of
the grasping rectangular box to the reference rectangular
box.
eu
L(u,v) = —Alog —5——

u
s:le s

2.

te{z,y,w,h,0,n.}

+n smoot hy (vt — ﬁt)

(4)

Where, n. is the number of categories, u is the softmax
input corresponding to the correct class. v is the target
location parameter obtained by network regression, v is
the actual target location parameter, A is the coefficient of
classification loss function, and 7 is the coefficient of the
regression loss function. smooth; is a smooth function of
L1 loss function, as shown in (5).

0.522,
|z| — 0.5,

lz] <1

smoot hy; ()

()

otherwise

Furthermore, the depth information is obtained by
depth camera.
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2.3 Pre-Grasp based on Tactile Prior Knowledge

As the convolutional neural network is unable to output the
material of the object, it cannot determine how much grasp
force the robot’s finger should apply. If the gripper force was
too strong, the object would be deformed and damaged.
The insufficient forces may cause a slide. This paper
establishes a tactile prior knowledge base to determine the
pre-grasp force. We obtain a considerable amount of tactile
data through the sampling process shown in Fig. 2. The
distribution of the tactile data is shown in (6).

., Fs10] (6)

Then, we use (7) to establish the tactile experience
value.

Fsg = [Fs1,Fsa,..

t
21?21 FC;: 7
=N ™

Where N is the total number of successful samples,

C _
FSi*

t

FC; is the force corresponding to the successful grasp of
the target in the tth sampling, F’ S; is the standard value
of ith sensor for class C.
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Figure 6.

Then, combined with the detection results of the deep
learning network, we can get the pre-grasp force by (8).

N
Fri=» FSPoi=1,2...10
c=1

(®)

Where N is the total number of output categories, C'
is the output class of the detection network, Po is the
confidence, F(;i is the corresponding standard force value
of the class, n is the number of all possible categories
detected, and Fg; is the pre-grasp force of the target.

Because the tactile experience value has been
completed in the preparatory work, we can obtain all of the
information about the pre-grasp task from a single visual
image in the actual detection. Furthermore, we eliminate
probable collisions and damage in the traditional tactile
exploration process. By using tactile previous knowledge,
we increase the safety and stability of grasping.

3. Robot Force/Position Control based on
OSLSTM

3.1 OSLSTM
After successfully grasping the object, the robot will move

the object to complete the assembly and other tasks.
The grasping strategy should be adjusted in real time in

192 <

S
Pool4

The network structure of grasp position detection.
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response to changes of the object state while the robot
is moving. In this paper, the improved OSLSTM neural
network is used to identify the grasp hardness and the
grasping state of the object. The network [32], [33] is a
type of time recursive neural network that is suitable for
predicting events with a relatively long interval in time
series. While LSTM overcomes the problem of long-term
reliance, it does have a limit [34].

The LSTM network takes a tactile sequence as input
which has two dimensions. The horizontal dimension is that
we collect data from 10 tactile sensors at the same time. The
width is 10. The vertical dimension is the number of times
we collect, which is the time step of the LSTM. It is variable
as an important parameter of the LSTM. The training
process for the model would generate noticeable oscillation
and the training period would be protracted if the time step
was too large. Furthermore, in the actual test, real-time
performance is poor and gripping efficiency is low. On the
contrary, if the time step was set too tiny, the continuity
for the grasping process would be quickly lost, resulting
in low accuracy. In the experiment, it was discovered that
the ideal step size for different sorts of objects differed.
Aiming at the problem of the length of time step in the
LSTM, this paper designs a tactile OSLSTM network.
Through the time step self-search algorithm, the optimal
time step will be determined by the change of sensor data
and adjusted in real time, allowing the network to achieve
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Figure 8. The force/position control process.

higher performance. The tactile network structure is shown
in Fig. 7.

The optimal time step self-search algorithm is shown in
(9) to (15). The search direction and increment of step size
are determined according to the change of loss function.
The algorithm iterates until the loss function fulfills the
requirements. Then, the step size is the optimal step
size.

D) = 20\ d® (9)

Where z(®) is the time step of the kth search, A, is the
step increment of the kth search, d is the search direction,
the initial value: () = 15,d = 1,\ = 5. And the loss
function is as shown in (10).

o(z) = knt(z) + kgﬁ

(10)

Where ¢(z) is the objective loss function, ¢(x) is the
function of time varying with the time step, p(x) is the
function of network accuracy varying with the time step.
k1 and ko are the weights.

The purpose of the algorithm is to find the time step
that minimises the objective loss function. The iterative
method is shown in (11).

dyt1 = sign (or(7) — pr-1(2)) (11)
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Where, sign («) is the value function, as shown in (12).

1, a>0
sign(a) = (12)
-1, a<0
Moy dpy1 =1
Ny = ks dit1 (13)
[Ak/2],dg1 = —1
p(r) < e (14)
x = arg min ¢(x) (15)

The iterative of A value is shown in (13) and the
threshold condition is shown in (14). The optimal step is
shown in (15).

3.2 The Force/Position Control Algorithm based
on the OSLSTM

After obtaining the grasp hardness and state of the target
by the OSLSTM network, we can adjust the grasp force and
position according to the force/position control algorithm
when the unstable grasp state is detected. Firstly, the force
sensors are used to obtain the deviation between the actual
force and the expected force when the robot contacted the
target. Secondly, the force deviation is converted into the
position by the grasp hardness. Finally, the robot moves
from its current position to the desired position to complete
the force control tasks. The force/position control process
is shown in Fig. 8.



The force position control algorithm is as (16) to (19).

X = (z1,29,...,%10) (16)
Xr = (%1, T2, Tr3) (17)
X = k x KelFu—Fi) (18)
7 = Bbeptes
e (19)
Tpg = m7+z3s+19

Where, X is the adjustment required for each tactile
sensor point, and Xp is the offset required for each finger,

FtRi is the current force of tactile sensors, and Fg; is
the empirical force value in the stable state. K is the
grasp hardness, which has different values for different
categories. We measure the grasping hardness of only some
of the objects in our experiments and then input them
to the network for training to establish the relationship
between haptic distribution and grasping stiffness. k is the
transformation ratio between position and grasping force
in mm/N, which is 1.5 as measured by the experiments.

As each finger of three is driven by a motor, we get
the corresponding offset of each finger from (19). We are
able to obtain the movements of the fingers based on the
object’s grasp hardness using the OSLSTM network. The
robot is adjusted constantly until the network’s output
condition is stable.

4. Experiments

The experiment platform included a three-fingered robot
hand, array of tactile sensors, a Kinect2 camera, and the
URD robot arm, as shown in Fig. 9. The URS5 robot arm
stands at the left of the table, upon which we assemble
the three-fingered robot hand with 10 tactile sensors. The
dexterous hand is the JQ3-5 of the JODELL company. The
tactile sensors utilised in this research are flexible thin-film
piezoresistive sensors with an impressive response time of
less than 1ms and a data feedback period of less than 5
ms. A Kinect2 camera is at the right of the scene to record
the view of grasping. The PC was configured with a 2.7
GHz frequency and16 GB of memory. It was equipped with
an NVIDIA GeForce2080Ti with a computing capability
of 7.5.

We build a visual and tactile grasp dataset that
included a variety of characteristics, such as shape, size,
weight, and grasp style. The visual samples included the
Cornell Grasp Dataset and our own objects images. The
objects in the dataset contain different sizes of cuboids,
cylinders, and spheres.

4.1 Grasp Position Detection Experiment

We evaluate our approach on the Cornell Grasp Dataset
and utilised five-fold cross validation for our experimental
data to compare it to other gripping methods. For 48
objects we have a total of about 200 visual samples. The
dataset is split in two different ways:

1) Image-wise split: Splits images randomly.
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Figure 9. The experiment platform.

2) Object-wise split: Object-wise splitting randomly
separates all object instances and all images of an object
are grouped in a single validation set. This is helpful to
test how well did the network generalise to novel objects.

As the rectangle metric is better at discriminating
between “good” and “bad” grasping positions, we use this
metric for our experiments. The rectangle metric considers
a grasp to becorrect if both:

1) The grasp angle is within 30° of the ground truth
grasp.

2) The Jaccard index of the predicted grasp and the
ground truth is greater than 25 percent.

Where the Jaccard index is given by (20). The formula
shows the overlap between the two regions, which is an
important indicator to evaluate the quality of the detection.

~ Sns
7(5.8) = :§u S:

(20)

where S is the predicted grasp rectangular boxes and S is
the ground truth grasp rectangular boxes.

The experimental results are shown in Table 2. The
experiment is divided into two steps: detection and
grasping. The grasping experiment is to grasp the target
after successfully detecting it. In this paper, the success rate
of the non-destructive grasp is used to evaluate the quality
of initial grasping. The initial grasp should ensure that
there are no scratches or destructive deformations on the
object’s surface. Otherwise, the grasp is failed. This paper
incorporates the tactile prior knowledge after detection.
While other detection methods use a set uniform size force
of 10 N because of no tactile experience. Therefore, in the
grasping experiments, other detection methods are used as
a group to compare with this paper’s method. This group
of experiments is only to verify that the inclusion of tactile
information can improve the quality of grasping. For each
type of object, we performed 10 sets of grasping tests. A
total of 480 sets of grasping experiments were performed.

We categorise objects into six groups based on their
shapes and materials. These characteristics are linked to
the method by which they are grasped. According to the
experiments, our method obtains an accuracy of 85.9% for
image-wise split and 88.3% for object-wise split, which is
slightly poorer than other methods. However, we especially
outperform in the object-wise split. Although we do not



Table 2

Comparison of Object Detection Algorithms

Detection algorithm Accuracy Time/ms
Image-wise split | Object-wise split Non-destructive grasp
(after successful detection)

Jiang et al. [35] 0.605 0.583 0.754 5000
Lenz et al. [4] 0.739 0.756 1350
Redmon and Angelova [36] 0.880 0.871 76
Kumra and Kanan [37] 0.848 0.845 103
Morrison et al. [38] 0.730 0.690 19
Karaoguz and Jensfelt [39] 0.887 / 200
OURS 0.859 0.883 0.912 6

directly include tactile information in the visual training,
we classify the targets into six categories based on the
material and shape properties of the objects, and such
classification is closely related to the tactile features.
After recognising these attributes of the target, the neural
network can quickly determine the best grasping box.
We don’t perform particularly well in terms of visual
inspection performance, but our structure is simple and
our computation time is the fastest.

In addition, while the performance of our method is
worse than the methods of the Redmon and Karaoguz in
image-wise split, our method has a significant improvement
in the success rate of non-destructive grasp. For some
very fragile objects, damage has been caused during the
initial grasp. Consequently, the non-destructive grasp’s
success rate was still only 75.4%. In our method, we added
the fusion of visual detection and tactile prior knowledge
based on visual-tactile fusion. According to the visual
detection results, the pre-grasp force was obtained through
the established tactile prior knowledge, which approached
the force value of stable grasp in advance. To a certain
extent, damage caused by improper force setting was
avoided. Finally, the success rate of the non-destructive
grasp was increased to 91.2%. The experiment showed that
our method could effectively detect the grasp position.

The core of the algorithm in this paper lies in
the integration of visual information and tactile prior
knowledge to improve the success rate of damage-free
grasping. And there was no in-depth study and comparison
of visual detection networks. Actually, the visual network
in this method could be replaced by the currently available
neural networks with better results.

4.2 Performance Tests of the OSLSTM Network
4.2.1 Optimal Self-Search of the Time Step

In the experiment, different shape samples were used to
test LSTM performance under different time steps, and
the influence of different shape samples on the network
was analysed. The training loss of the network for different

189

&9 —=— Cylinder
20]%e —— Cubic
0151 & X
— % ®
— N -
(0] LN N
051 e
o
*9 e 0%
1 :
PV moom w01

15 20 25 30 35 40 45 50
Time step

10

Figure 10. The training loss of the LSTM for different
shapes at different time steps.

shapes at different time steps is shown in Fig. 10. Under
the condition of the same training sample size, the network
training time of different time steps is shown in Fig. 11.
Then, according to the experimental results, three groups
of proper network steps were compared with the OSLSTM
algorithm. The impact of the fixed step and self-search step
on network performance was analysed. The experimental
results are shown in Table 3. The training sample size is
9,600 and the testing sample size is 2,400.

As shown in Fig. 10, under varied shape samples,
the effect trend of step size on network performance is
essentially the same. With the increase in step length,
the training loss is smaller, but the training time is also
increased. And after the loss had reached a certain level,
increasing the step size has no obvious effect on the network
loss. It indicates that there is overfitting. However, as
shown in Fig. 11, the training time rises dramatically. The
longer the sequence length is, the more noise data may
be contained, which will lead to low accuracy. It is worth
noting that the critical value of the step size of different
shapes is not the same, corresponding to 22, 30, and 42
respectively.



The Results of the LSTM Algorithm Comparison Experiment for All Samples

Table 3

Groups

Time step

Training time (h)

Training loss

Testing time (ms)

Testing loss

Accuracy

LSTM-22

22

3.1

0.601

26.2

0.748

0.727

LSTM-30

30

6.0

0.364

43.8

0.591

0.850

LSTM-42

42

25

0.122

70.4

0.153

0.941

OSLSTM

15-35

3.5

0.109

38.7

0.127

0.965
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Figure 11. The training time of the LSTM for different
time steps.

Considering the previous experimental foundation and
the complexity of the actual verification operation, we
selected steps 22, 30, and 42 as the LSTM steps to train and
test the total sample, and compared them to the self-search
algorithm created in our method. The experimental results
are shown in Table 3. The OSLSTM network differed
from the standard LSTM network in that the network
step is optimised based on the detection samples. The
experimental results indicate that the network step in our
method changed in the range of 15-35. Compared with the
fixed step, our algorithm obtains higher accuracy when the
average step size is lower. Compared with the first group
of experiments, the average step size of our algorithm is
larger, but the training time does not increase significantly.
Compared with the third group of experiments, in the case
of a small average step, the training loss and accuracy
are better. Although the greater the step size for a single
sample, the stronger the effect, the optimal step size of
each type of sample is not the same. When the step size is
too large in the total sample, the model training produces
an obvious oscillation phenomenon, resulting in a decrease
in accuracy. Therefore, to improve network performance,
the LSTM network is required to find the appropriate step
size based on the target’s properties.

4.2.2 Recognition of the OSLSTM Network

In the experiment, it is also discovered that there are some
variations in the contact area and the effective unit of the
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tactile sensor array in the process of grasping the target
for different objects. When grasping a cylindrical object,
the fingertip will not touch the object. The data of the
three sensors F-L, F-M, and F-R on the fingertip are all
zero, as shown in (al) and (a2) in Fig. 12. On the contrary,
when grasping a square object, the robot relies heavily on
its fingertips for grasping. As shown in (bl) and (b2), only
the values of the fingertip sensors change. For spherical
objects, the contact area is greater and almost every sensor
has a numerical change.

Generally, for objects of the same shape with different
materials, because the contact area of the dexterous hand
between the rigid object is smaller than that between the
soft object, the number of effective units of the tactile
sensor array is less and the tactile data is sparser than
that of soft objects. (c1) and (c2) in Fig. 12 show that the
dexterous hand is used to grasp the hard ball and the soft
leather ball respectively. It can be seen from the (cl) that
when the dexterous hand grasps the hard ball, the effective
unit number of the tactile sensor array is less. While its
tactile feedback force is large. And the tactile data rapidly
reaches its highest value. On the contrary, for the soft ball
shown in (c2), the tactile sensor array has more effective
units and less tactile feedback force. And the soft ball
deforms progressively under the dexterous hand’s pressure,
resulting in a steady increase in feedback force that finally
reaches its highest value. And the number of tactile sensors
contacted also increases gradually.

In different grasping stages of the same object, the
values and distribution of tactile data are inconsistent, as
shown in (a) and (b) in Fig. 13(a) shows the moving process
of the robot. Its tactile data is unevenly distributed and
the values are smaller. It is a chaotic noise signal. This is
frequently followed by the phenomenon of slipping in the
experiment. In the stable state of grasping shown in Fig.
B, there are fewer fluctuations among tactile sensors’ data
and the data values are bigger. The OSLSTM network
can predict the different states of the same object based
on these differences, then determines the stable grasping
experience value based on the current movement attributes,
and ultimately adjusts the gripper by the force/position
control algorithm to assure the stability for grasping.

4.3 Visual-Tactile Fusion Grasping Experiment

Three groups were designed, including the vision, tradi-
tional visual-tactile fusion, and the proposed in this study.
We controlled the robot to accelerate and rotate after
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grasping objects for testing the stability in each group. The
detailed flow is shown in Fig. 14. The experimental results
are shown in Table 4.

Vision: The visual detection algorithm was used to get
the grasping posture. The robot grasped without tactile
sense.

Fusion of Unadjusted Grasping: First, the target
category and grasping posture were obtained by visual
detection. Then, the object was grasped by the robot
according to the pre-grasp force.

Fusion of Adjusted Grasping: The previous steps are
the same as the fusion of unadjusted grasping. However,
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during the grasping process, the robot was regulated by
the OSLSTM.

For each type of object, we performed 20 sets of
grasping tests, and each set of experiments contained
540 grasping results. For the non-invasive grasping
experiments, both unadjusted grasping and adjusted
grasping were used based on the tactile prior knowledge
of grasping. The grasping results were combined and
calculated. In the mobile grasping process, both the visual
method and the unconditioned method do not have a
conditioning mechanism. Similarly, the grasping results
were combined and computed.



Visual

Figure 14. The process of different grasping strategies.

Tactile prior knowledge

Tactile

Table 4
Comparison of Different Grasping Methods
Algorithm The success rate of non-destructive The success rate of mobile grasp
grasp (after successful grasp)
Vision 0.713 0.759
Fusion of unadjusted grasping 0.822 0.757
Fusion of adjusted grasping 0.828 0.930

The process of the dexterous hand successfully
grasping the target object was divided into two stages:
grasping the object without damage and grasping the
object stably in the moving process. First, the experiment
further confirms that the grasping method with the tactile
experience database can reduce the damage to the object
compared with direct grasping. In addition, the mobile
grasping success rate of the first and second group methods
without force/position control is only 75.9% and 75.7%,
respectively. With the object in motion, the grasping
position changes. The vision can not perceive the force
change, resulting in the object sliding. The third group of
experiments increases the mobile grasping success rate to
93.0% after adding the force/position control algorithm.
By detecting the grasping state of the object, the robot
can change the grasping strategy in real time until the
grasping is stable. In the experiments, this paper finds
that the grasping parameters of the dexterous hand change
when the pose and appearance of the object change.
Therefore, only by detecting the grasping state in real
time, a more reasonable robot finger displacement can be
calculated.

5. Conclusion

The use of the integration of visual detection and tactile
perception to robotic grasp and manipulation tasks is
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discussed in this study. We discover a link between visual
and tactile information. Safe and effective pre-grasping are
achieved by the combination of visual identification and
tactile prior knowledge. In addition, we build detecting
network of the grasp position and enhance the LSTM
network’s performance. We address the difficulty of the
unstable grasp phenomena caused by the robot’s movement
by combining the grasp hardness and the force/position
control algorithm, laying the foundation for the robot’s
compliant manipulation.

However, the pre-grasp network and the force/position
control algorithm are heavily dependent on tactile experi-
ence, necessitating more tactile sample data gathering. It
requires a huge number of training samples. Furthermore,
this paper does not deeply study the potential relationship
between visual data and tactile data. In fact, the
association between visual and haptic information is much
closer than we know. In the future, fusion at the data
level can be further investigated to analyse its impact on
robot manipulation. For example, a new fusion network
of visual and tactile data could be created, taking raw
visual and tactile information as input and outputting
corresponding robot actions to establish an end-to-end
relationship between fused data and robot control. The
haptic sensor can also be improved to increase the number
of tactile sensing units, thus obtaining richer tactile
information.
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