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Abstract

Aiming at the problem that the state estimation of visual-
inertial-odometre (VIO) is affected by long-term trajectory drift
accumulation, a VIO compact coupling system based on optimisation
is proposed. To estimate all the initial state variables of the system
effectively, a method combining static initialisation and dynamic
initialisation is proposed. To realise the transformation between
local frames and local Cartesian coordinates coordinate system
(ENU) coordinates of the local Cartesian coordinates coordinate
system, local state and global navigation satellite system (GNSS)
measurement information are fused. A noise reestimation method
is used to ensure the simultaneity of inertial measurement unit
(IMU) and wheel speedometre. We evaluated the proposed system
on a public data set and tested it in a real-world scenario. The
experimental results show that the VIO tightly coupled system
based on the optimisation can present better positioning effect and
improve the precision of global fusion. The system can achieve

accurate attitude estimation in the outdoor environment.
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1. Introduction

Accurate state estimation is a prerequisite for autonomous
driving and multi-sensor fusion state estimation is a
hot research topic at present [1], [2]. The combination
of a camera and an inertial measurement unit (IMU)
can provide high-frequency and anomaly-free inertial
measurements, often achieving high accuracy and greater
robustness in complex environments [3], [4].

However, visual-inertial-odometres (VIO) are accom-
panied by significant cumulative drift over long-term
trajectories [5], [6]. While some applications will perform
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well in the face of such significant drift, efforts should
be made to minimise these effects, but it must also be
acknowledged that some degree of drift will be inevitable
in the absence of global measurements [7]. The integration
of global measurement and visual inertia has been proved
to eliminate the drift problem very well [8].

The integration of vision, IMU, and global navigation
satellite system (GNSS) can realise accurate global
positioning in complex urban scenes [9]. Visual inertial nav-
igation system (VINS) is usually divided into two types of
algorithms: 1) filtering-based method and 2) optimisation-
based method [10]. This classification naturally applies
to GPS assist methods as well. The filter-based method
estimates the probability distribution of states, including
attitude and signpost [11]. Based on the optimisation
method, a nonlinear least-squares minimisation problem
is established and solved by constraint adjustment [12].
The filter-based method is usually highly efficient [13].
However, the filter-based approach is very sensitive to
time synchronisation [13]. Any late measurement will cause
trouble because the state cannot propagate back during
the filtration process [14]. Therefore, special ordering
mechanisms are needed to ensure that all measurements
from multiple sensors are ordered [16]. In an optimisation-
based framework, many visual and inertial measurements
are kept together [15]. Compared with the filter-based
approach, the optimisation-based approach has advantages
in this respect [18], optimising the states associated with
the observation and measurement. One advantage of the
optimisation-based method over the EKF-based method is
that the state can be iteratively linearised to improve the
accuracy [8], [17].

From the perspective of fusion measurements, tight
coupling and loose-coupling methods can be distinguished
[19]. The loose-coupling method is used to estimate the
state of different sensors, and then the estimated results
of different sensors are fused [20]. On the contrary, the
tight coupling method combines the measured values from
different sensor modes for state estimation [21]. Because
the available information is not fully utilised in the loosely
coupled method, the loosely coupled method is not optimal
[22]. To address the significant cumulative drift associated
with VIO over long trajectories, for ground vehicles,
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Figure 1. The coordinates between different sensors and
external parameters.

[23] tightly-coupled wheel odometres act as compensation
sensors, making scale, roll, and pitch angle permanently
visible.

To reduce the drift phenomenon in state estimation,
more accurate global positioning can be achieved. In this
paper, we propose a multi-sensor fusion system based
on optimisation that tightly coupled the camera, IMUs,
and wheel odometre (VIWO) to achieve accurate state
estimation. The specific contributions of this paper are as
follows.

1. In the initialisation stage, static initialisation and
dynamic initialisation are combined to effectively
estimate all initial state variables.

2. A noise reestimation method is used to ensure the
simultaneity of IMU and wheel speedometre.

3. To combine GNSS data, vision-IMU-wheel odometre
(VIWO) data under the local framework is loosely
coupled with the global position information collected
in GNSS data, so as to achieve accurate pose estimation
in real time.

2. Method

We first define the coordinates and symbols associated with
the multi-sensor fusion framework. The ENU coordinate,
which is the northeast upper coordinate with symbol ()E,
is defined as the global coordinate system. Use the local
world coordinates of ()W to represent the pose in the
first IMU coordinate system, where the z-axis can be
aligned with gravity so that the roll and pitch angles
become observable. The absolute Z-axis direction in ENU
coordinates aligns with the direction of the local frame. ()C
is the camera frame. In contrast to fixed world coordinates,
the IMU coordinates using (-)" as the frame of the human
body describe the local time pose, changing constantly
with the state of motion. (-)° is the wheel coordinate
information with the origin at the centre of the wheels on
both sides. 77 said (-)" to (-)? coordinate system of the
external parameters, including ¢ and j said the arbitrary
coordinates, can be set up by Fig. 1.
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2.1 System Overview

We reserve the key frame pose in the local coordinate
system and the key frame pose in the ENU coordinate
system, respectively. To estimate the corresponding
external parameters, we need to convert the local frame to
ENU coordinates.

The whole system is divided into two parts, namely,
the multi-sensor fusion module and the semantic mapping
module. The system uses four sensors as sources of
environmental information perception: camera, IMU, wheel
speed encoder, and GNSS. First, the measurement data of
the camera, IMU, and wheel speed encoder are integrated
for system initialisation. After the system initialisation is
completed, several measurement data are coupled together
by the tight coupling optimisation algorithm to obtain the
real-time position and pose of the current vehicle, as shown
in Fig. 2.

Then, the GNSS measurement data is fused by
the loose-coupling optimisation method. The semantic
mapping module combines the real-time pose and GNSS
measurement results of the current vehicle to build a
globally consistent semantic map. The schematic diagram
of the global pose map structure is shown in Fig. 3. Each
attitude is a node in the attitude diagram, containing
the position and direction in the world coordinate
system.

Figure 3 shows an illustration of the global attitude
diagram structure. Each node represents an attitude in the
world frame, which contains location and direction. The
edge between two continuous nodes is a local constraint
derived from the locally estimated VIO tightly coupled
system (VIWO). The other edges are global constraints,
which come from global sensors. In addition, linear EKF
method was used to alleviate the abrupt impact of GNSS
rejection area to open area, and the error caused by drift
was evenly distributed to positions and poses at different
times to smooth the trajectory.

In this paper, the measurement data of tightly coupled
vision, IMU, and wheel speed metre are used to complete a
robust and high-precision positioning system by using their
complementary characteristics. To improve the tracking
algorithm of visual feature points, it is proposed to use the
measured value of IMU to predict the feature points with
depth inside the sliding window and provide an initial value
for the feature points in the next frame, and then carry out
optical flow tracking on the basis of this initial value, which
can effectively improve the tracking robustness of visual
feature points in the system and improve the accuracy of
the algorithm, as shown in Fig. 4.

2.2 Dynamic and Static Initialisation of
Visual-Inertial-Wheel Odometre

During the initialisation of the VINS, the pose estimated
by the monocular vision SFM will be affected by the scale
uncertainty of the single purpose. Therefore, there is a
proportional relationship between the pose estimated by
the sliding window and the actual motion state, which is
called the scale factor. Since autonomous vehicles are not
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as smooth as mobile robots when they start, IMUs are not
sufficiently motivated in this case. Due to the insufficient
excitation of IMUs, the single integration of the visual SFM
result and the pre-integration result of IMUs will lead to
the slow initialisation of the system and, more seriously, the
single-purpose scale factor estimation error. Therefore, the
pre-integral of the wheel speedometre is integrated during
initialisation to provide absolute mileage observation, and
the single-purpose scale factor can be estimated effectively.
Then, we can get the scaling factor X [24] by solving the
linear least-squares problem:

min g
X
keW

Where W indexes all frames in the window. Since the
acceleration measurement value of IMU is coupled with the
influence of gravity acceleration, the optimisation problem
of estimating acceleration zero bias is a sick problem when
the dynamic initialisation method aligns the visual SFM
result and the IMU pre-integral result. The zero bias of
the accelerometre cannot be estimated, and can only be
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estimated after the completion of system initialisation. As
a result, the zero bias estimation of the accelerometre
converges slowly, which affects the accuracy of the system.

Therefore, this study proposed a combination of
static initialisation and dynamic initialisation. Based on
static IMU measurements, the bias of accelerometre and
gyroscope was first estimated as the initial value of dynamic
initialisation. During dynamic initialisation, the zero bias of
accelerometre and gyroscope was optimised and adjusted,
which could effectively estimate all initial state variables
of the system. That is, initial position, velocity, gravity
direction, accelerometre bias, and gyroscope bias of the
system, as shown in Fig. 5.

Static initialisation refers to the need for a static state
at the beginning of the video sequence. Systems use IMU
data at rest to estimate gravity orientation, accelerometre
gyroscopic biases. Static initialisation needs to detect the
bouncing process of the IMU, which includes two states:
1) static state and 2) bouncing state, as shown in Fig. 6.

A threshold (IMU excite threshold) is set to determine
if the IMU is excited enough, and the IMU initialisation
parameter is estimated from the IMU measured at rest
before the motion excitation is obtained.

First, we need to compute the initial rotation matrix.
Set the accelerometre mean of window w2 to a and the
gyroscope mean of window w2 to b. Because, under the
world system, the acceleration measured at rest is (0,0,g).
Divide a of window w2 by its modulus length to obtain the
direction of the average acceleration (unit vector), which
is the projection of the direction of the Z-axis of the world
system on the IMU coordinate system:

z
=" 2
Z.norm(-) @
After determining the direction of z-axis, the unit coor-
dinate system is constructed by Schmidt orthogonalisation.
Suppose p; is the unit direction vector corresponding to
X'-axis of IMU system:

e1 = (1,0,0)" (3)

Project the X7-axis onto the Z* — X plane and find
the direction vector of the X%-axis in the IMU coordinate
system:

e1 — (21er)z
€1

r= — > (4)

ernorm(-)

ey =

The Y-axis direction is obtained by the cross product
of the z and z axes:

y=1[2] = (5)

Through the above steps, the initial rotation
R" = [X,Y,Z] from the Cosmological system w to the
IMU coordinate system is obtained. Then, the gyroscope
bias is calculated. The ideal measurement value (angular
velocity) of the gyroscope at the static moment should
be zero, so the bias of the gyroscope can be calculated,
that is, the average value avgyn, of the gyroscope data in
window w2:
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Finally, calculate the accelerometre bias, assuming M.
Accelerometre bias at rest is the difference between the
average acceleration and the actual acceleration due to
gravity:

M = avgwym — Ry (7)

Where g is the acceleration of gravity in the world
system, and R is the rotation matrix obtained in the first
step, projecting the gravity vector from the world system
into the IMU coordinate system.

The initialisation of IMU here is to obtain the relative
rotation of RZ-axis (0,0,1) from the world coordinate
system W to the IMU coordinate system based on the
principle that the measured value of the accelerometre at
rest is in the same direction as the gravity vector.

In other commonly used VIO systems, the first frame
of vision is usually taken as the world system. Since the
relative relationship between the camera and the IMU is
known, it is easy to get the pose of the camera system
with respect to the world system, and the pose of the IMU
system with respect to the world system.

If the platform is not static, then we use dynamic
initialisation to try to restore the initial state. It solves the
initialisation problem by first creating a linear system for
recovering velocity, gravity, and feature position. After the
initial recovery, a full optimisation is performed to allow
covariance recovery.

2.3 Tight Coupling Optimisation of
Visual-Inertial-Wheel Odometre

After system initialisation, several measurement data are
coupled together by optimisation algorithm to obtain the
real-time position and pose of the current vehicle. To
provide more robust and accurate state estimation, a
tightly-coupled VIWO based on optimisation is adopted.
This paper makes full use of the reliable observation
characteristics of linear velocity [26], and takes the velocity
along the X-axis into consideration in the construction
of the pre-integral. Therefore, we obtained the wheel pre-
integral by means of discrete median integral:

~0 ~O = = 0 ~ 0 ~
a;f = a;* +004,0; = (@i *5-Vi+ @iy -5 Vig1] (8)

~ 1 = 'l/U\z + @i
e e %5 ,wi:(72+1) —by (9)
5

20k
Vi1

After the IMU and wheel pre-integral are obtained,
the noise reestimation method is proposed to adjust
the commensurable noise by adjusting the consistency of
the variance of each predicted position [26]. Field tests
found that the additional frequency produced greater noise
during inertial measurement, which required amplification
of 50 ~ 100 times. To balance this, set the repropagation
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parameter to 10. In this paper, the optimal ratio of IMU
to wheel pre-integral is 1. If the ratio is less than 1, it
indicates that the wheel measurement is abnormal, and
then the set wheel noise will be multiplied by the reciprocal
of the ratio and the measurement parameters. If the value
is greater than 1, the IMU measured value is considered to
have a problem. In this case, the IMU parameter set will be
multiplied by the ratio and noise parameter. Finally, the
IMU noise caused by motor vibration is taken into account,
and the nonlinear optimisation is expressed as:

2
. 2
min{llyp — HpX|* + 3 |z, X)|
keB

+ 3 o D + X lheE X (o)

keO (i,5)eC

In the above equation, X is the state variable, and
the four residuals correspond to the prior information of
marginalisation, IMU measurement, wheel measurement,
and reprojection error between adjacent frames. Using the
Ceres Solver, we can solve this problem and get the attitude
of the local view frame.

2.4 Inertial-Wheel Odometre

To improve computing efficiency, we designed a special
module for calculating and publishing raw data of IMUs
and odometre. It is worth noting that because the data
is acquired at different positions, there is a tangential
acceleration applied to the rigid connection position during
rotation. We also remove the error caused by the raw
data received by the gyroscope during attitude estimation.
The accelerometre is used to approximate the gyroscope
deviation.

Real-time updates of rotation matrix and deviation can
be realised by using EKF [27]. Since we have obtained the
attitude Angle, we can calculate the left Jacobian matrix
relative to the translational decomposition:

. . 1 s
J = %]3”(3 + (1 — Si;le) aa® + 7;m9(f (11)

Where 0 represents the rotation angle, a is the rotation
axis represented by the unit vector, and (-)"is the skew-
symmetric matrix. We convert the linear and additional
wheel speeds into IMU frames:

ol = RIO - wop X tIO + RIO - (12)

Where wpr is the angular velocity generated by the
rigid connection. The amount of translation in SE (3) is
obtained by multiplying the left Jacobian, the velocity, and
the nearest time interval.

2.5 Multi-sensor Fusion Positioning
As mentioned earlier, we maintain two key frame poses

in the system, one from the local coordinate system and
one from the absolute coordinate system UNU. Our goal



is to estimate the corresponding external parameters. The
specific idea is to achieve relative pose constraints on
VIWO and IWO by converting local frames to ENU frames.
Since there is no truth reference, coordinate transformation
of factor graph is not considered. We subdivide the
graph optimisation into three stages: initialisation, external
calibration, and positioning.

The initialisation stage is mainly for external param-
eter estimation. Our setup is that when the vehicle has
completed enough movement in the previous node, we
select a new key frame. The key frame is inserted into
the factor graph by means of attitude interpolation, and
time alignment can be carried out in this way. The way to
determine the initialisation is successful is after we have
collected 15 key frame nodes.

To solve the coordinate system transformation relation
accurately, we construct the ternary edge. Specifically, the
state of the key frame is constrained in two frames of
images and external parameters. We use the resulting ENU
coordinates for the Angle constraint. Every global node has
an absolute translation constraint. The number of ternary
edge constraints is limited to 52. We believe that if the
optimised posture in VIWO does not appear in adjacent
key frames, it is complementary to the posture in IWO.

The optimisation variance represented by SE (3) is
defined as:

X ={X" X7, x"} (13)
The corresponding question can be expressed as:
arg min  (X) = Log((X” - XN~ xE) (14)

Where 7 is defined as the mapping of resists from SE
(3) to se (3), the initial guess of which is given by XF
aligned with the track of the first 15 nodes.

The following is a detailed explanation of our approach
and purpose. The ternary edge is introduced to accurately
calibrate the external parameters between two frames and
optimise the posture under different frames. To simplify
the multi-sensor fusion process, the calibrated external
parameters were removed from the variables to be adjusted.
In high-frequency positioning, based on the optimised
attitude of the previous node, the system will accumulate
the attitude information provided by the IWO relative to
the current attitude. In addition, linear EKF method was
used to alleviate the abrupt impact of GNSS rejection area
to open area, and the error caused by drift was evenly
distributed to positions and poses at different times to
smooth the trajectory.

3. Experiment

Multi-sensor fusion localisation algorithm was tested based
on KAIST open data set and outdoor data set collected
in the field. The outdoor data set collected in the field
was recorded by a homemade path acquisition cart fitted
with a camera, IMU, wheel odometre, and GNSS receiver.
The dataset was run on a 16 GHz 6-core NVIDIA Carmel
ARM®)v8.2 64-bit CPU. Wheel encoder (100 Hz), and
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Table 1
RMSE in KAIST Data Sets and Outdoor Experiments [m]
Sequence|Length [m] RMSE [m]
VINS-Fusion [8]|Proposed

KAIST-32| 7100 5.54 0.57
KAIST-33| 7600 10.68 0.79
Outdoor 1 72.03 0.24 0.12
Outdoor 2 98.83 0.20 0.12
Outdoor 3 59.37 0.18 0.07
Outdoor 4| 287.30 0.16 0.09

GPS (10 Hz). The real attitude of the vehicle on the ground
is generated by the correlation algorithm.

3.1 Data Sets of KAIST

The images collected from the camera were simulated on
the KAIST data set, and RMSE was used as the evaluation
index. In the collected KAIST data set, the sensor
information was selected. The main selection included left
camera (10 Hz), IMU (100 Hz), wheel encoder (100 Hz),
and GPS (5 Hz). We ran two tests, the urban 32 and the
urban 33. Among them, the test distance on the urban
32 orbit is 7100 m, and the test distance on the urban
32 orbit is 7600 m. After testing in urban 32, we found
that the trajectory of our proposed system was in good
agreement with the real trajectory on the ground, while
the trajectory of VINS-Fusion [8] was intuitively deviated
from the reference.

To quantitatively evaluate our method, RMSE was
calculated using a trajectory evaluation tool named EVO
in each data set, showing that the performance of our
proposed method is significantly better than that of
VINS-Fusion [8], as shown in Table 1. This shows that our
method has better results.

3.2 Outdoor Data Sets

In the outdoor real experiment, we evaluate the global
positioning accuracy on one hand, and verify the
convergence of the external parameters and the consistency
of the sensor noise transmission on the other hand. Since
there is no global direction for real ground values, local
frame relocation is evaluated by the relocation error
constructed by anchoring Apriltag.

In practical experiments, both the IMU and wheel
odometre sampled at 100 Hz, while the camera and GNSS
receiver sampled at much lower frequencies of 10 Hz.
Outdoor 1 works properly, and Outdoor 2 records the
dynamic environment with vehicles moving around. Based
on dynamic factors, the Outdoor 3 generated by the car
body is stationary for a long time. To test the robustness
of the algorithm, two complex data sets, Outdoor
4, were considered, including a variety of challenging
scenarios, such as fast motion and rotation, long-term
rest, etc.



Table 2
Reconstruction Evaluation of Noise Based on Apriltag in Outdoor Experiment

Sequence |Length [m]|Evaluation VIW | VIWyRg |Proposed |Proposedyg

Outdoor 1 88.34 Angle Error (deg/m) 0.058 0.049 0.017 0.013
Position Error (%) 1.623 1.069 | 0.081 0.083

Outdoor 2 75.09 Angle Error (deg/m) 0.059 0.059 0.018 0.014
Position Error (%) 1.152 0.978 | 0.073 0.087

Outdoor 3 67.37 Angle Error (deg/m) 0.051 0.031 0.019 0.018
Position Error (%) 0.780 0.639 0.098 0.093

Outdoor 4| 292.54 Angle Error (deg/m) 0.069 0.062 0.009 0.007
Position Error (%) 1.618 1.330 0.025 0.024

To discuss the feasibility of the noise reestimation in RMSE evaluation, and has good localisation
method, an ablation experiment was conducted using the performance.

data set collected in the field. xyg refers to the algorithmic
repropagation with noise mentioned in Table 2. This
shows that our method has better results. Through the
noise propagation method based on Apriltag, the angle
error of VIWO under the local frame is reduced, and
the system accuracy is improved, indicating that the
method can play a role in attitude estimation. However,
the global attitude is seriously affected by GNSS, so the
accuracy of global positioning has not been significantly
improved.

3.3 Discussion

There are some problems with VINS-Fusion [8]. The state
estimation of visual inertial odometre is affected by the
accumulation of long-term trajectory drift. By introducing
wheel odometre, the drift of vehicle body caused by noise
and other factors can be solved well, and the accuracy
and robustness of state estimation of vehicle body in non-
rigid environment can be improved. In addition, the wheel
odometre provides a more reliable observation and uses less
noise directly to the speed, which is optimised to be more
constrained than the IMU measurement of the expected
fraction of the speed. Therefore, the VIWO tightly coupled
optimisation system proposed by us presents better results
when taking RMSE as the index and compared with
VINS-Fusion [8].

As shown in Table 1, since the optimisation-based
method can realise online initialisation of external
parameters, our system can obtain more accurate pose
transformation relationship for attitude estimation in
ENU coordinate system. In the whole system, the noise
reestimation method guarantees the consistent estimation
of IMU and wheel odometre. The positioning accuracy
is guaranteed by this adaptive adjustment. To make up
for the delay effect caused by optimisation, we use short-
term pre-integral to realise the decomposition of pose
estimation. To sum up, the multi-sensor fusion positioning
system proposed by us is superior to VINS-Fusion [§]
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4. Conclusion

To realise drift-free state estimation of ground moving vehi-

cles, a VIO tightly coupled system based on optimisation

is proposed, and the local state and GNSS measurement
information are fused by factor graph optimisation
method.

1. By tightly coupling the VIWO, and by optimising the
framework used to fuse the absolute position obtained
by the GNSS, and an IWO that can publish the pose at
high speed.

2. Adaptive adjustment of the covariance matrix was

achieved by the noise reestimation method, and weight

variance during optimisation was obtained to ensure the
consistency of IMU and wheel.

We tested the proposed system in an outdoor

experiment, and the experimental results show that

the proposed method achieves accurate and robust
positioning.
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