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Abstract

To ensure the effect and improve the accuracy of large-scale

path planning for underwater robots, a large-scale algorithm for

planning the path for underwater robots based on deep reinforcement

learning is proposed. Deep reinforcement learning is analysed,

and the idea, structure, network update method, and training

process of deep deterministic policy gradients (DDPG) algorithm are

described. A fitness learning model of the robot which under water

is confirmed to describe the mathematical relationship between

the geographical location and operating speed of the underwater

robots. On this basis, DDPG algorithm is applied in large-scale

path planning of underwater robots. TensorFlow is used to build

Actor and Critic neural network structures, and design environment

state models, action state spaces, and reward functions. In deep

reinforcement learning, the large-scale navigation planning for the

underwater robot, through exploration-online trial and error, finds

the optimal search strategy, and considers obtaining the maximum

expected reward during the path planning procedure, achieving the

large-scale path planning for the underwater robot. According to

the experimental results, the proposed algorithm demonstrates good

performance in large-scale path planning for underwater robots and

effectively improves both the accuracy and efficiency of the planning

process.
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1. Introduction

With the increasing scarcity of natural resources on land,
many countries have accelerated the pace of exploring and
developing the ocean, making people increasingly aware
of the importance of human research, development, and

∗ CSG PGC Power Storage Research Institute, Guangzhou 510000,
China; e-mail: wangwenhui66854@163.com
Corresponding author: Wenhui Wang

Recommended by Ponnambalam S.G.
(DOI: 10.2316/J.2024.206-1035)

utilisation of marine resources. Various marine technology
giants have sparked a wave of research and development
of underwater equipment and made intelligent underwater
robots a hot research field. Intelligent underwater robots
have a wide range of application possibilities and important
value, and are an indispensable subfield in the field of
robotics [1]. In recent years, the research and development
of intelligent underwater robot technology has made
rapid progress and has been applied in marine scientific
research, commercial, and military fields, playing an
increasingly important role. To navigate in dynamic and
complex ocean terrain, key technologies are indispensable
for the functionality of intelligent underwater robots
[2], [3]. Due to the complex and ever-changing marine
environment, known environmental information may not
be very accurate, so large-scale path planning technology
is needed to ensure the safety of underwater navigation
for intelligent underwater robots. Therefore, studying
the large-scale path planning of underwater robots
has important practical significance for safe underwater
navigation.

2. Related Works

Lim et al. [4] proposed a constrained path-planning
algorithm for underwater robots based on selective
hybrid particle swarm optimisation (PSO) algorithm.
The functionality of the path planning relies on the
utilisation of two distinct algorithms for PSO, selective
differential evolution-hybrid quantum PSO and adaptive
PSO. Zhuang et al. [5] proposed a collaborative path-
planning algorithm for multi-autonomous underwater
robots in fluctuating marine surroundings. Using the global
Legendre pseudospectral method to calculate the shortest
path for cars to avoid collisions in a static environment.
Krishnan et al. [6] analyzed the control of AUV autonomy.
They utilized the powerful processing capabilities provided
by machine learning and deep learning to implement robot
functions.

Wang et al. [7] proposed a multi-behaviour critical
reinforcement learning algorithm for path planning of
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autonomous underwater vehicles. Ma et al. [8] used two
different Tabu search methods to update the AUV path
in real time and used polynomial coefficient solution to
fit part of the path data. Bykova et al. [9] described two
safety navigation algorithms for autonomous underwater
vehicles. Cao and Zuo [10] proposed a new latent field
hierarchy structure that utilises fuzzy algorithms to provide
a reasonable path for AUVs in underwater environments.
However, each algorithm still faced problems, such as
suboptimal path planning, reduced accuracy, and slow
efficiency.

Therefore, this article proposes a large-scale
path-planning algorithm for underwater robots based on
deep reinforcement learning.

3. Deep Reinforcement Learning

3.1 DDPG Algorithm Idea

By combining the characteristics of Actor–Critic
structure [11], [12], deep Q-network algorithm, and
DPG, they are applied to deep deterministic policy
gradients (DDPG).

3.2 DDPG Algorithm Structure

The DDPG algorithm takes the Actor write structure
as its basic structure [13], [14]. The state transition
stochastic strategy is replaced by the deterministic strategy
[15], [16].

Both Actor and critical are composed of two networks,
with the estimated network of Actor denoted as µ (s |θµ );

the target network of Actor is labeled as µ′
(
s
∣∣∣θµ′

)
;

critical’s estimated network is recorded as Q
(
s, a

∣∣θQ ); the

target network of critical is denoted as Q′
(
s, a

∣∣∣θQ′
)

; θ

represents the angle between the target point and the robot
direction. The DDPG algorithm reduces error values by
updating the network. The estimation network of Actor
updates parameters according to (1).

∇θµJβ(µ) =
1

N

∑
t

(∇aQ(s, a
∣∣θQ )

∣∣
S=st,A=µ(st)

·∇θµµ (s |θu ) |S=st) (1)

In (1), s denotes the current state; a refers to expected
value; ∇aQ(s, a

∣∣θQ ) represents the gradient of the critical
estimation network; J means the objective function for
policy gradient update, and β indicates the azimuth angle,
its state st will change to the state st+1, µ refers to the
commands given by the policy network. The calculation
method of the estimated LOSS is shown in (2).

L =
1

N

∑
t

(Ut −Q(st, at
∣∣θQ ))

2
(2)

In (2), Ut expresses the target value of the temporal
difference.

The update of the Actor section is shown in (3).θQ
′ ← τθQ + (1− τ)θQ

′

θµ
′ ← τθµ + (1− τ)θµ

′
(3)

In (3), τ represents the update frequency of the target
network [17], [18]. Normalise the distribution of robot
obstacles.

di =
di

max(d1, d2, . . . , d180)
(4)

In (4), di means the vector after dimensionality
reduction; di represents the vector before dimensionality
reduction.

Setting the feedback distance of the laser sensor to
be less than the safety threshold range indicates that a
collision has occurred and the robot needs to be guided.
The reward and punishment mechanism is shown in (5).

r(st, at) =


rarrive ρt < dgoal

rcollision min(d1, d2, . . . , d180) < dcollision

cr(ρt−1 − ρt)− C

(5)

In (5), dgoal is the set threshold; dcollision stands for
setting a security threshold; cr and C are constants. The
performance function δ of defining policy α is shown in (6):

δ (α) = Rw∼ε [Qα (w,α (e))] (6)

In (6), ε refers to the distribution function of the state
w under strategy α, and Qα (w,α (e)) is the evaluation
value obtained by strategy α. The gradient of the
determination policy α shown in (7) is obtained:

∇χαδ = Rw∼ε
[
∇χαQα

(
w, e

∣∣χQ ) ∣∣ w=wt,e=α(wt|χα)

∇χαα (w |χα ) |w=wt ] (7)

Experience playback strategy randomly selects data
update parameters from the experience library.

3.3 DDPG Algorithm Network Update Method

The policy network α of the optimal policy is shown in (8):

αbest = argmax δ (αχ) (8)

The gradient descent method [19], [20] is used to
update the policy network’s network parameters according
to (9):

χαt+1 ← χαt − φe
(
−∇δ

(
αχ

α
t

))
(9)

In the Actor–Critic structure, it measures the
evaluation network by loss function ϕ shown in (10):

ϕ
(
χQ
)

=
(
Et −Q

(
wt, et

∣∣χQ ))2 (10)

In (10), Q means the estimated evaluation given by the
evaluation network to the action et, and Et expresses the

205



actual evaluation obtained by the action et in the current
state.

At this time, the actual evaluation yt is calculated
in (11):

Et = rt + βQ′
(
wt+1, α

′
(
wt+1

∣∣∣χα′
) ∣∣∣χQ′

)
(11)

In (11), Q′
(
wt+1, α

′
(
wt+1

∣∣∣χα′
))

is the production

output of the evaluation target web; α′
(
wt+1

∣∣∣χα′
)

denotes the output value of the target strategy network,
and χQ

′
and χα

′
are the network parameters of the

target evaluation network and the target strategy network,
respectively, the reference value is χQ.

The gradient of the evaluation network loss function
can be obtained as (12):

∇χQϕ
(
χQ
)

=
(
Et −Q

(
wt, et

∣∣χQ ))
∇χQQ

(
wt, et

∣∣χQ ) (12)

This enables DDPG network updates and training.

4. Large-Scale Path Planning Algorithm for
Underwater Robot

4.1 Establishment of the Kinematics Model of the
Underwater Robot

The kinematic model of the underwater robot is
established. Assuming that the speed of the driving
wheel is V , the position of the underwater robot at
time i is represented by the 3D state vector U (xi, yi, ζ)
Among them, the coordinate (xi, yi) denotes the reference
point’s position of the robot which is underwater in the
coordinate system, with the midpoint of the rear axis of
the underwater robot as the reference point ζ. The angle
of direction is ζ. The steering angle is β, and the steering
wheel is l1. The following (13) characterises the system
kinematics: 

xi

yi

ζ

 =


cos ζ

sin ζ

0

0

0

1




ζ

Y tan η

l1

 (13)

4.2 Principle of DDPG Path Planning Algorithm

The DDPG algorithm is employed for the large-scale path
planning of the underwater robot.

In the DDPG algorithm, critical network on deter-
ministic χα policy α and value-action function Q and the
parameter is χα, and the other is χQ, respectively. The
iterative update of the algorithm involves the following
steps: use sample accumulation and apply a loss function
to update parameters, then use the Adam optimiser for
iterative updates.

This article uses the Actor neural network structure
built by TensorFlow and the Critic neural network
structure constructed by TensorFlow.

4.3 Environmental State Model Design

It supposes thatDfg represents the distance variable, where
the environmental state parameter is defined as (14):

W = (θ,Dh, D1g, D2g, D3g, D4g) (14)

In (14), the variable θ denotes the angle between the
robot’s heading and the target point, while Dh indicates
the distance between the sensor responsible for utilising
LiDAR technology and the target point.D1g, D2g, D3g, D4g

are the distance between the radar and the nearest obstacle
in each area, respectively. Calculate the distance between
obstacle points and the underwater robot coordinate
system

$i = C$ +Dfg sin θ

ωi = Cω +Dfg cos θ (15)

In (15), C$ and Cω indicate the position movement of
LiDAR relative to the same coordinate system. The area
where the target point is located is specifically divided. The
variable Dfg is divided into five levels of “collision risk,”
“warning,” “near,” “safer,” and “safe,” and the results are
quantified as (16).

Df =



0, Dfg < 6

1, 6 ≤ Dfg < 12

2, 12 ≤ Dfg < 18

3, 18 ≤ Dfg < 24

4, 24 ≤ Dfg ≤ 30

(16)

From this, the input state space of the model contains
5 × 5 × 5 × 5 × 9 = 5625.

4.4 Action State Space Design and Selection
Strategy

This paper adopts the ε-greedy strategy. The underwater
robot can make correct behaviours at time i + 1 based on
the obtained direction angle and other information. More
characteristics of underwater robots need to be considered,
and the continuity of output actions and the feasibility of
behaviours must be guaranteed.

5. Experimental Process

5.1 Experimental Data and Environment

To showcase the value of DRL-based large-scale path
planning algorithms for underwater robots, a 20 × 20 km
seabed topographic map has been generated. The seabed
environment is divided into 20 × 20 grids of the same size.
The seabed topographic map obtained from the study is
shown in Fig. 1.

The hardware platform configuration of the simulation
experiment is represented in Table 1.

The algorithms proposed by Lim et al. [4] and
Zhuang et al. [5] and the proposed algorithm in this

206



Figure 1. Simulation experiment of submarine topographic map.

Table 1
The Hardware Configuration of the Simulation Experiment Platform

Name Model

Central processing unit CPU Intel i5 7300HQ

Graphics processing unit GPU NVIDIA GTX 1050Ti

Memory 16GB DDR4

Operating system Windows 10 64 bit

Figure 2. 2D path planning results for type a sea area.

paper were, respectively, used to compare the path
planning length, success rate, and efficiency of different
algorithms.

5.2 Planning and Simulation of 2D Paths

The paths generated by different algorithms are shown in
Fig. 2.

In Fig. 2, the improved algorithm could enable AUV
to find the shortest and optimal paths even in front of
obstacles. The contrast of the large-scale path planning

Figure 3. Path planning under different algorithms.

accuracy of the underwater robot with different algorithms
is shown in Table 2.

From Table 2, when the number of iterations reached
500, the success rate of the proposed algorithm was
more than 97.3%. This algorithm has a high success rate
and accuracy. The path planning formed under different
algorithms for B-type sea areas in the experiment is shown
in Fig. 3.

From Fig. 3, the algorithm proposed in this study
provides the optimal path plan for robots in path planning,
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Table 2
Comparison Results of the Success Rate of Large-Scale Path Planning of Underwater Robots with Different Algorithms

Iterations/Time The Proposed
Algorithm/%

Algorithm Proposed by
Lim et al. [4]/%

Algorithm Proposed by
Zhuang et al. [5]/%

100 96.4 89.5 86.7

200 96.9 90.2 85.4

300 97.6 88.4 86.9

400 98.2 88.8 86.3

500 97.5 89.1 86.1

Table 3
Comparison Results of Simulation Data

Rating Indicators Reference [4] Reference [5] Algorithm in This Article

Path length (km) 35.24 42.61 30.04

Accumulated corner (rad) 25.28 23.56 12.67

Running time (h) 3.89 4.7 3.3

Table 4
Comparison Results of Large-Scale Path Planning Time and Path for Underwater Robots Using Different Algorithms

Iterations/Time,
Distance

The Proposed
Algorithm

Algorithm Proposed by
Lim et al. [4]

Algorithm Proposed by
Zhuang et al. [5]

100 3.4 s/58.12 km 6.8 s/67.12 km 8.9 s/78.16 km

200 5.9 s/35.18 km 9.5 s/42.23 km 11.2 s/59.41 km

300 7.6 s/30.04 km 12.9 s/35.24 km 14.1 s/42.84 km

400 9.5 s/30.04 km 15.1 s/35.24 km 17.2 s/42.61 km

500 12.5 s/30.04 km 17.9 s/35.24 km 19.6 s/42.61 km

Figure 4. Comparison results of large-scale path planning
lengths of underwater robots with different algorithms.

and the stability of the robot is also within the requirements
and has the shortest path distance.

The contrast of the large-scale path planning length of
the underwater robot with different algorithms is shown in
Fig. 4.

From Fig. 4, the large-scale path planning length of
this proposed algorithm is only 28.13 km. And the results
are shown in Table 3.

From Table 3, the path planning under the algorithm
in this article is 30.04 km, with a cumulative angle of
12.67◦, and a running time of 3.3 h. The optimal planning
path and minimum turning angle meet the stability
requirements.

5.3 Comparison Results of Large-Scale Path
Planning Efficiency of Underwater Robots

The comparison results of the large-scale path planning
time of the underwater robot with different algorithms are
shown in Table 4.
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From Table 4, the proposed algorithm only takes 12.5 s
and the planned path length is only 30.04 km.

6. Conclusion

The DDPG algorithm was used to optimise the control of
underwater robots. The results indicated that the method
proposed had good effectiveness, which could effectively
improve the accuracy and efficiency of large-scale path
planning for underwater robots. But, the simulation
experiments conducted by this algorithm are static, and in
actual dynamic environments, further research is needed
on the algorithm.
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