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GLASIUS BIO-INSPIRED NEURAL NETWORK
ALGORITHM-BASED SUBSTATION
INSPECTION ROBOT DYNAMIC
PATH PLANNING

Wei Zhang,* Xiaoliang Feng,** and Bing Sun***

Abstract

This study presents a glasius bio-inspired neural network (GBNN)
algorithm for intelligent substation inspection robot autonomous
path planning. First, a GBNN Neural map is established to represent
the working environment of the inspection robot. In this model,
each neuron corresponds to a grid map position unit. The GBNN
model was trained to map the environment, including obstacles
and potential paths, into a discrete neural network representation.
Second, the motion path of the inspection robot was planned
autonomously based on the activation output values of the neurons
in the neural network. The robot selected the path with the highest
activation output value for the next movement direction. The
simulation results under dynamic obstacle scenarios or in uncertain
environments demonstrated the effectiveness of the GBNN algorithm
in path planning.
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1. Introduction

Intelligent substations are one of the most important parts
of a smart grid and are exposed to long-term safety hazards
in the field. To prevent grid accidents, substations must
be inspected and maintained regularly. Traditional manual
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inspection, which is labour-intensive [1], is inefficient
and may be dangerous, particularly in thunderstorms
and other adverse weather conditions. There is a
significant safety risk and it cannot be promptly inspected.
Recently, intelligent inspection robots have gradually
replaced manual inspection. Intelligent inspection robots
are equipped with various sensors and measuring devices
to independently perform electrical equipment inspection
tasks [2]. These robots use thermal infrared imaging
sensors to monitor oil levels and temperatures, Pan-Tilt-
Zoomcameras [3] to monitor breaker situations, partial-
discharge detection devices to track lightning arrester
actions, and other measuring devices to detect internal
thermal and external machinery defects.

This study focuses on path planning for inspecting
robots, which refers to determining an available path from
the starting position to the target point while avoiding
obstacles in the workspace. Common methods include
artificial potential field (APF) [4]-[6], grid method [7], A*
algorithm [8], [9], particles warm optimisation method [10],
other heuristic approach method [7], and even complete
path coverage methods such as the Glasius bio-inspired
neural network (GBNN) [11] and Voronoi partition-
based coverage [12]-[14]. However, these methods have
shortcomings when applied under different working
conditions. For example, the grid method is limited by
sensors and requires excessive computational resources.
The A* algorithm often results in paths with many turns,
large cumulative turning angles, and the stander A*
method always not consider dynamic obstacles [8], [9]. The
APF method may have local extremum points and oscillate
in narrow passages. In [15], a learning-free and adaptive
bio-inspired neural network algorithm called the GBNN
was proposed and applied to full-coverage path planning
for mobile robots.

In the GBNN algorithm, the neurons in the bio-
inspired neural network correspond one-to-one to the
cells in a 2D grid map of the target area, and the
external inputs of the neurons are determined based
on the status of the cells in the grid map. Thus,
the activation values of the neuron scan be calculated



directly, and the path of the robot can be determined
by the activation values of the neural network and
its previous path. This algorithm does not require
any neural network learning or training processes and
exhibits good real-time performance. Furthermore, the
GBNN method has been widely applied in various fields,
including complete coverage path planning for autonomous
underwater vehicles (AUV) [16] and mobile robot [17], [18],
cooperative path planning for unmanned surface vehicles
(USV) [19], [20], multi-robot distributed collaborative
region coverage search [15], energy efficiency for complete
coverage path planning of ship hull maintenance [21],
and the substation inspection path planning [22], [23].
In [16], the GBNN method was introduced for single
AUV complete coverage and combined with the centroidal
Voronoi tesselation distribution method for multi-AUV
complete coverage path planning. In [17], the GBNN
method was combined with a backtracking algorithm to
reduce the path repetition ratio for complete coverage
path planning of mobile robots. In [18], GBNN-based
UV-C disinfection path planning was improved by using
a preventive deadlock-processing algorithm. In [20], the
GBNN algorithm was used for USV path planning for
multi-USVs, and the Hungarian algorithm was built and
modified for task assignment. In [23], considering the
constraints for a multi-robot system to perform a region
coverage search task in an unknown environment, a
novel multi-robot distributed collaborative region coverage
search algorithm based on a GBNN was developed, and
the simulation results showed good performance.

The path planning of inspection robots has been
conducted by scholars; However, further research is
required. In [24], the robot system for substation equipment
inspection consisted of a wheeled mobile robot and data
center. The mobile robot could park at designated stop
points and rotate its platform to obtain images and
temperature information. However, a drawback is that
multiple landmarks must be laid out beforehand in the
substation to guide the navigation of the robot. In [22],
an optimisation algorithm for power system inspection
that minimises the number of inspection teams and the
length of inspection paths was proposed by combining an
improved k-means algorithm and an ant colony algorithm.
In [23], a bio-inspired neural network method (BINN)
has been proposed to study the multi-robot substation
inspection problem, based on this method can effectively
reduce the path length and number of turns during special
inspections and routine inspections, but not consider
the dynamic obstacles. Considering the characteristics of
power substations and the potential encounter of dynamic
obstacles during the inspection process, this study focuses
on dynamic path-planning methods for inspecting robots
based on the GBNN algorithm. Specifically, we built on
the basic GBNN model and extended it to incorporate the
dynamics of the environment.

At present, there are few studies on substation
inspection robot path planning, and the influence of
dynamic obstacles in the inspection process and the path
planning problem under emergency working conditions
are not considered. The remainder of this paper is
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Figure 1. Inspection robot inspecting illustration.

organised as follows. Section 2 describes the GBNN
based substation inspection robot-path planning. Then,
the GBNN algorithm-based dynamic path planning for
a substation inspection robot with dynamic obstacles
considering congested road sections and even urgent tasks
during the inspection process is presented in Section 3.
Finally, concluding remarks are presented in Section 4.

2. Substation Inspection Robot Path Planning

The basic principle of the GBNN algorithm-based
substation inspection robot path planning is to establish a
bio-inspired neural network model based on a substation
grid map. The GBNN model was used to represent the
working environment of the inspection robot, and a one-
to-one correspondence was established between the neural
network and the substation grid map. Based on the
activation output value distribution of the neurons in
the neural network, the inspection robot autonomously
planned a collision-free inspection path.

2.1 Mapping of Substation Environment

An operational schematic of the intelligent substation
inspection robot is shown in Fig. 1. During the inspection
process, the robot utilises various sensors, such as
cameras and radar, in addition to substation environment
information to perceive obstacles. An inspection robot can
combine this information and transform it into binary-
image information. Based on the substation environment
map, the GBNN algorithm is applied to the inspection
robot path plan. To achieve real-time reflection of
environmental changes in the neural network activity
value, the neural network must be closely integrated with
the substation environment. Environmental information is
typically continuous, while neural networks are discrete.
Therefore, it is necessary to discretise the substation
environment and create a grid map [23], as shown in Fig. 2.

In research on intelligent substation inspection robot
path planning, we consider the inspection robot as a point
mass and ignore its motion model. Owing to the grid
resolution and actual area of the intelligent substation
environment, the number of grid units in the substation is
determined. In this study, we consider a 220 kV substation
as an example, and the actual 5 m X 5 m units are gridded
into 1 x 1 grid units, as shown in Fig. 2. The black grids
in Fig. 2 represent the buildings and electrical equipment
in the intelligent substation, including, the control room,
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Figure 2. The substation path planning environment map
and GBNN neural map: (a) the substation path planning
environment map; (b) the neural map corresponding to the
environment map.

main transformer, high-voltage room, capacitor equipment
area, 10 kV transformer, and 220 kV equipment area. As
shown in Fig. 2(a), these static obstacles mainly include
the following areas: u is the power capacitor equipment
zone, v is the main control building, w is the 10 kV high
voltage equipment, x is the No.1 main transformer, v is the
No.2 main transformer, z is the 110 kV equipment area,
and { and | are 220 kV equipment areas.

2.2 GBNN Algorithm

The GBNN is an improved BINN inspired by the
performance of Hopfield neural networks [16]. The GBNN
method, which utilises differential equations, offers numer-
ous advantages for learning and adaptation. This approach
not only reduces the calculation load but also enhances
the operational speed of the algorithm, resulting in a
more effective path planning solution for substation robots.
Each neuron in the network is characterised by a shunting
equation derived from Hodgkin and Huxley’s membrane
model for biological neural systems, leading only to local
lateral connections among neurons. The dynamic behavior
of a neural network is described by the following equation:

duk

M
T —Aug, + (B — ug) ([Ik]+ + ;wkl [Ul]+>

— (D 4+ ug) 1]~ (1)
where uy is the neural activity of k th neuron, wu; is the
active value of its adjacent neurons I, M is the neuron num-
ber adjacent to neuron k, I} is the external input of neuron
k and it can be represented as (2), [I]" = max [I, 0] rep-
resents an external excitatory signals, [I] = max [—I}, 0]
represents external inhibitory signal, and wy is the
connection weight between the kth neuron and /th neuron.

E, Target
I, = § —E, Obstacle (2)
0, Others
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The GBNN algorithm is a discrete-time Hopfield-type
neural network, as illustrated in Fig. 2(b). Each circle in
the figure represents a neuron with activity values that
can be transmitted through connections. The dynamic
behaviour of individual neuron activities is described by
the following law:

M
zi(t+1)=g Zwu [z, ()] + 1, (3)

where the transfer function is chosen as:

-1, <0
Bx, 0<z<1,8>0
1

g(x) = (4)

x>l

In (2), x; (t+1) represents the activity of the ith
neuron at time t+1, x; (t) represents the activity of the
jth neuron at time ¢. The jth neuron is laterally connected
to the ith neuron. [z; (t)]* = max [z; (t),0] indicates that
only positive neural activities can have a global impact
on other neurons, whereas negative activities are limited
to local effects and cannot propagate outward. I; is the
external input to the ith neuron. M is the number of
connections between the ith neuron and its neighbouring
neurons within the receptive field R. The connection weight
between the ith neuron and jth neuron is represented by
wij and is defined as follows:

eoli=il’ 0<|i—j|<R

0, li—jl >R

()

wij =

where |i — j| represents the Euclidean distance between ith
neuron and jth neuron and a and R are positive constants.
To minimise energy consumption, planning the
shortest path with minimal turns for substation inspection
robots is crucial. Thus, the previous movement direction of
the inspection robot must be considered in path planning.
For the current location of inspection robot P., the next
location P, can be defined as follows [26]:
P, < xP, =max{x; +cyr, k=1,2,...,m} (6)
The equation represents the neural activity zj of the
kth neuron, where ¢ is a non-negative constant, m is the
number of neighboring neurons at the current location P,
and gy is a monotonically increasing function that depends
on the included angle ¢; between the current and next
sailing directions of the inspection robot. The expression
for yy, is given by

A - ¥
T T
where ¢ = atan2(yp, —yp,,Tp, —Tp,), P =

atan?2 (ypc —Yp,,Tp, — mpp). P, (EEPP,pr), Pe(xp,,yp,.),
and Py (xp,,yp,) represent the previous, current, and
subsequent step positions, respectively, as shown in Fig. 3.



Figure 3. Movement direction of inspect robot.
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Figure 4. Flow chart of inspect robot path planning based
on GBNN algorithm.

2.3 GBNNBased Inspect Robot Path Planning

The basic idea of the substation inspection robot path
planning algorithm based on the GBNN proposed in
this paper can be summarizsed as follows: establishing
the substation grid map and a GBNN model, and a
correspondence between the bio-inspired neural network
and the map is established. Based on the activation values
of the neurons in the substation grid map, the motion path
of the inspection robot was planned to achieve collision-
free path planning in a dynamic substation environment.
The implementation process of substation inspection robot
path planning based on the GBNN algorithm is shown in
Fig. 4.

As shown in Fig. 4, the process for inspecting
robot path planning based on the GBNN algorithm
mainly includes the following steps: (1) obtaining the
substation map information that includes the start and
target point information, (2) initialising theGBNN network
information, (3) updating the substation inspection
robot’s location information, (4) updating the environment
information, and (5) updating the GBNN network
information. Steps (3), (4), and (5) were repeated until
the substation inspection robot reached its target. The
substation inspection robot position was updated using
(6). The GBNN network is updated by resetting it to
zero and recalculating it. If a task is completed, then,
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the corresponding GBNN isreset to zero. Otherwise, the
GBNN was recalculated.

3. Simulation and Discussion

In this section, we utilise MATLAB to perform the
simulation experiment and represent the substation
working environment using grid maps. In the simulation,
we modelled all inspection robots as particles and set the
parameters of the GBNN algorithm as follows [26]: A =
10,B=D=1,E=100,3=06,a=2 R=+2,and ¢ =
0.5. In the following, we compare different path planning
methods and the GBNN-based inspection robot path plan
effectiveness under normal conditions, considering dynamic
obstacles, and under uncertain environments.

3.1 Comparison of Different Path Planning
Methods

To assess the feasibility of GBNN path planning methods,
we conducted a point-to-point path planning simulation.
The simulation environment consists of electrical equip-
ment and buildings marked with black grids, while the
free space allows the inspection robot to navigate. The
starting point is denoted by a red triangle, and the target
point is represented by a red pentagram. Specifically,
in Fig. 5(a), the starting point is set at point (4, 10),
and the target is located at point (19, 4). Additionally,
in Fig. 5(b), the target point (20, 16). To compare the
performance of GBNN with other path planning methods,
we employed three widely-used methods: A* algorithm and
APF algorithm, as shown in Fig. 5. Upon analysing the
simulation results in Fig. 5(a), we observed that the paths
generated by GBNN, A* and APF all successfully reached
the destination. However, when we changed the target
point, the APF algorithm, using the same parameters as in
Fig. 5(a), exhibited poor generalisation properties. It was
unable to plan a path that navigates through obstacles,
as depicted in Fig. 5(b). Due to the A* method’s primary
application for static path planning without considering
dynamic obstacles, we decided to focus on studying the
performance of GBNN-based path planning under normal
working conditions, considering dynamic obstacles and
uncertain conditions for the subsequent parts of this study.

3.2 Normal Path Planning

To validate the effectiveness of the proposed algorithm,
simulation analyses were conducted to evaluate the path
planning performance of inspection robots in power
substations performing point-to-point inspection tasks,
based on the GBNN algorithm.

As depicted in Fig. 6, the inspection robot started
from the main control building and performed a point-to-
point inspection task. The starting points of the inspection
robot is (4,10), indicated by the red triangle in Fig. 6(a),
and the task point is (20,17), indicated by the red pentagon
in Fig. 6(a). Figure 6(a) presents the inspection robot’s
planned path based on the GBNN algorithm, and Fig. 6(b)
illustrates the GBNN neuron activity values under this
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Figure 5. Comparison of different path planning methods.
Table 1 Table 2

The Neighborhood Activity Value of the Start Point
(4,10) Under Normal Path Planning

Position Neural activity
(3,11) 9.1324E-29
(4,11) 9.2701E-28
(5,11) 7.7853E-27
(3,10) 1.2091E-29
(4,10) 1.0161E-28
(5,10) 6.8729E-28
(3,9) —1.0000
(4,9) —1.0000
(5,9) 6.3252E-29

condition. The neural network activity value of the task
target point was 1, as shown in Fig. 6(b). Table 1 lists the
activity values of starting point (4,10) and its eight adjacent
neurons. As shown in Table 1, (3,9) and (4,9) represent
obstacles with a neural network activity value of —1, and
the neural network activity value of (5,11) corresponding
to the point adjacent to the starting point (4,10) is the
maximum value of the surrounding activity values, which
is 7.7853E-27. Therefore, the inspection robot moved from
starting point (4,10) to (5,11).

3.3 Path Planning Consider Dynamic Obstacle

To further analyse the GBNN algorithm-based path plan-
ning performance, we considered the dynamic obstacles
appeared during inspection process. In the simulation, we
considered that the obstacle appeared when the inspection
robot reached the point (8,14) with partial or full coverage.
The simulation results are shown in Fig. 7, and the neural
activities around the obstacle are listed in Table 2.
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The Neighborhood Activity Value Around (9,15) under
Static Obstacle

Position Neural activity

Without Partial Full coverage

obstacle on coverage obstacle
road obstacle

(8,16) | —1.0000E400| 1.0000E+00 |—1.0000E+00
(9,16) | —1.0000E400| 1.0000E+00 |—1.0000E+00
(10,16) |—1.0000E+400| 1.0000E+00 |—1.0000E+00
(8,15) 1.3746E-20 9.7676E-22 6.5873E-25
(9,15) 2.6788E-19 | —1.0000E+00 | —1.0000E-+00
(10,15) | 5.2539E-18 5.2411E-18 6.2587E-26
(8,14) 1.0596E-20 8.5324E-21 2.0011E-24
(9,14) 1.9285E-19 1.7997E-19 | —1.0000E+00
(10,14) | 3.4669E-18 3.4648E-18 3.4563E-18

When a partial coverage obstacle appeared at the

inspection point (9,15), the neural activation value changed
from 2.6788E-19 to —1, as shown in Table 2, and when a
full coverage obstacle appeared, the neural activation val-
ues of inspection points (9,15) and (9,14) both changed to
—1. Figure 7 and Table 2 show that the obstacle appears
before the inspection robot reaches the inspection point
(9,15), causing the inspection robot to change its inspection
path from the original path (8,14)—(9,15)—(10,15) to
(8,14)—(9,19)—(10,15) with a partial coverage obstacle,
and finally to (8,14)—(7,15)—(7,16) with a full coverage
obstacle.

3.4 Path Planning for Uncertain Environments

During the operation of an intelligent substation inspection
robot, obstacles, busy roads, or even urgent tasks
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Figure 7. Path planning for the obstacle appeared during the inspection process: (a) partial coverage obstacle; (b) full

coverage obstacle.

may be encountered, all of which pose challenges
to the robot path planning. Based on these three
uncertain working conditions, we analysed the cor-
responding inspection path of the robot wusing the
GBNN method. The corresponding simulation results
are shown in Fig. 8, and Table 3 lists the neighbor-
hood activity values around (7,14) under an uncertain
environment.

As shown in Fig. 8(a), during the inspection process
of the robot from the starting point (3,5) to the target
point (10,19), dynamic obstacle A, as indicated by the
yellow grid, appears when the robot inspects point
(4,5), and obstacle B appears when inspecting point
(7,12). The inspection path of the robot was determined
based on the GBNN algorithm. Comparing it with the
inspection path without obstacles shown in Fig. 8(b),
it can be seen that after the appearance of obstacle
A, the inspection path of the robot changed from
(4,5)—(5,6)—(6,7)—(7,8) to (4,5) —(5,5) —(6,5) —(7,6),
and after the appearance of obstacle B, the inspection path
of the robot changed from (7,12)—(7,13)—(7,14)—(7,15)
o (7,12)—(6,13)—(5,14)—(4,15). Considering the busy
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road sections that may appear during the robot
inspection process, as shown by the blue shadow in
Fig. 8(c), the inspection path of the robot changed
from (7,14)—(7,15) without considering congested road
sections to (7,14)—(6,14).

Comparing the GBNN neuron activation values for
the adjacent grid (7,14) before and after the appearance
of busy road sections in Table 3, it can be observed that
the neuron activation values for other grids remained
unchanged because the inspection starting point and
target point did not change. Figure 8(d) depicts a
simulated study of the inspection path when congested
road sections are considered, where the robot receives an
urgent inspection task to go to the inspection location
(12,15) while running at (3,14). Because the inspection
target point of the robot changed, the neuron activation
values for each grid changed accordingly (as shown in
Table 3). The inspection path of the robot changed from
(3,14)—(2,14)—(1,15)—(1,16)—(1,17)—(1,18),  without
an urgent task, to (3,14)—(4,14)—(5,14)—(6,14)—(7,15)
—(8,15), until the new inspection goal point was
reached.
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Figure 8. Path planning for the obstacle appeared during the inspection process: (a) path planning with dynamic obstacle;
(b) path planning without obstacle.

The Neighborhood Activity Value Af(jt]irlled:s(ﬁlél) under Uncertain Environment
Position Neural activity
without obstacle on road | Dynamic obstacle | Obstacle with busy route | Obstacle with urgent task

(6,15) 1.5315E-10 1.4170E-23 —1.0000E-07 —1.0000E-07
(7,15) 1.3399E-09 7.1853E-25 7.1853E-25 2.7931E-07
(8,15) 1.5315E-10 7.2662E-26 7.2662E-26 5.5620E-06
(6,14) 1.4680E-11 7.4810E-24 7.4810E-24 8.9725E-09
(7,14) 6.5536E-11 4.4625E-25 4.4625E-25 1.5448E-07
(8,14) 1.4629E-11 5.3184E-26 5.3184E-26 2.6051E-06
(6,13) 1.0667E-12 2.0011E-24 2.0011E-24 1.6647E-09
(7,13) 3.2336E-12 1.4154E-25 1.4154E-25 1.5646E-08
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4. Conclusion

The GBNN model was used in this study to investigate
the autonomous path planning and safe obstacle avoidance
of inspection robots based on a two-dimensional grid
map of the substation. From the different path-planning
comparisons between the A*, APF, and GBNN methods.
The GBNN algorithm has a simple structure and better
generalisation capability than the APF method. Further
simulations were conducted for inspection robot path
planning under normal working conditions, consider-
ing dynamic obstacles and an uncertain environment.
The GBNN-based path-planning method can effec-
tively solve path-planning problems for inspection robots
encountering dynamic obstacles, avoiding congested sec-
tions, and performing emergency tasks during inspection
processes.
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