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Abstract

Medical imaging robots typically use technologies, such as X-ray,

magnetic resonance imaging (MRI), and computed tomography

(CT), to generate images of the human body interior. These

generated images are complex and contain a large amount of

noise and interference, which requires high-precision and real-time

fast image analysis algorithms to extract significant information,

including tumour area, tumour location, organ and tissue, and

blood vessel information. This paper proposes a novel lightweight

neural network to perform tumour segmentation in brain MRI

images, which could realize the high-accuracy and fast execution.

To meet the real-time requirements, a lightweight module based

on channel attention mechanism is presented, which constitutes an

encoder–decoder architecture for the segmentation task. To enrich

the feature map information, this paper designs a spatial attention

mechanism to concatenate the output feature maps of the encoder

and decoder correspondingly, which could realize the better fusion of

high-level and low-level semantic features extracted by the network.

The comparison experiments and ablation studies are conducted

to improve the effectiveness of the proposed model, which could

represent a higher performance. The computational cost of the

proposed model shows the possibility of a real-time implementation.
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1. Introduction

Medical robotics is a new interdisciplinary research field
that integrates multiple disciplines, such as medicine,
biomechanics, material science, computer vision, and
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robotics. Medical robotics has important research value as
a hot area of research. As usual, medical robotics could
be grouped into neurosurgical robots [1], [2], rehabilitation
robot [3], [4], auxiliary diagnostic robot [5], [6] and
medical imaging robot [7], [8]. The medical imaging
robot could be understood as robot-assisted to acquire
a medical image and perform image analysis tasks. For
example, robot-assisted endoscopic camera imaging is used
in endoscopic surgery [9], and robot-assisted medical image
registration [10] during the surgery providing valuable
information to the surgeon. In addition, robot-assisted
medical image analysis can be used for lesion segmentation
and diagnosis tasks to assist physicians in making medical
decisions. Lesion segmentation is essential in medical
imaging analysis. The significance of medical image
leision segmentation lies in the automatic and accurate
separation of lesions from normal tissues, thereby helping
physicians to better locate the site of the disease and
carry out diagnosis and treatment. Robot-assisted medical
image segmentation tasks require high accuracy and
real-time performance simultaneously. Therefore, when
developing image segmentation algorithms, it is necessary
to meet the requirements for both accuracy and speed
simultaneously.

Glioblastoma is a common primary brain tumour,
accounting for 28% of all central nervous system tumors
and 80% of all malignant brain tumors. Malignant
glioblastomas are more invasive and have a poor prognosis,
and can lead to patient death. Utilizing a robot-assisted
medical imaging analysis system to diagnose and treat
brain tumors in a timely and accurate manner is crucial in
reducing mortality rates and improving patient quality of
life. Segmentation of glioblastomas in MRI images provides
valuable assistance in treatment planning and disease
progression monitoring for tumour patients.

Deep learning has been growing up rapidly, which

can be used in image analysis. Although deep learning
techniques have shown great potential in natural image
segmentation, applying them to medical image data
segmentation still faces significant challenges. Medical

220



datasets have class imbalance issues, and the number
of samples is limited. Tumour features also have some
irregularities, making automatic segmentation algorithms
still face many challenges. In the brain MRI image
dataset, the tumour area is the foreground infor-
mation that could get more attention, while other
brain tissues occupy a higher proportion of pixels in
the MRI image. Therefore, the tumour segmentation
problem also needs to focus on the issue of pixel
imbalance. Overall, the automatic segmentation algorithm
for brain MRI tumors based on robot-assisted medical
imaging systems needs to face challenges including
pixel imbalance, segmentation accuracy, and segmentation
speed.

CNN can obtain high-dimensional features in images
and share convolution kernels during computation to
reduce the number of parameters in the network. It
has achieved very good performance in medical image
segmentation. Havaei et al. [11] used two training processes
to construct a dual-path CNN structure that can simul-
taneously use large and small image patches, establishing
dependencies between pixel labels. Razzak et al. [12]
designed a network based on two sets of CNN structures
that can simultaneously capture local and global features,
which overcomes the instability and overfitting problems of
the network by obtaining the variance of the CNN model.
Mohseni Salehi et al. [13] proposed a network based on
CNN that can automatically combine context information.
It learns local and global features using 2D image blocks of
different sizes and pixels with three parallel 2D convolution
paths in the axial, coronal, and sagittal directions. It
can also learn 3D image information without complex
calculations.

Semantic segmentation models based on fully con-
volutional networks (FCNs) [14] have been widely used
in medical image segmentation. Based on FCN, the
popular U-Net network [15] builds a completely sym-
metrical convolutional network with U-shaped structure
and skip connections, achieving high-dimensional and
low-dimensional feature fusion and realizing excellent
segmentation results. This method has been widely used
in medical image segmentation, and a large number of
improved models have been proposed based on U-Net
architecture. Zahangir Alom et al. [16] proposed RU-Net
and R2U-Net, recurrent convolutional neural networks
based on the U-Net framework, combining the advantages
of U-Net, ResNet, and RCNN. The Res-UNet [17] network
turns the submodules into residual blocks and adds
weighted attention mechanisms based on the original U-
Net, enabling the model to better learn target features. To
improve the capability of fast execution, some lightweight
models are proposed to perform brain tumor segmentation.
Tarasiewicz et al. [18] proposed a lightweight U-Net called
Skinny which is trained over all image planes, including
axial, coronal, and sagittal. Wang et al. [19] presented
a lightweight hierarchical convolutional network called
LHC-Net, in which a multi-scale strategy was adopted to
replace the ordinary three-dimensional convolution with
the hierarchical convolution of residual-like connections.
The multi-scale feature extraction capability was improved,

and parameters and computing resources were greatly
reduced.

Although a considerable amount of literature has been
reported to solve this problem, it still face many challenges.
Complex network architectures can learn richer semantic
features, but the speed of their implementation cannot
meet the real-time requirements. In the existing lightweight
network, some lightweight bottlenecks are usually added in
the whole architecture which could effectively improve the
inference speed of the network, but the accuracy decreases.
In addition, the pixel imbalanced problem exists in the
brain tumor segmentation task, which can also reduce
the segmentation accuracy. Based on the abovementioned
problems, a novel lightweight network utilizing attention
mechanism is built to perform brain tumor segmentation.
A lightweight component is presented to form an encoder–
decoder network. The whole algorithm implementation
architecture is shown in Fig. 1.

In this study, a novel lightweight component is
proposed to form a novel encoder–decoder lightweight
segmentation network, which could realize execution of
brain tumor segmentation at a high speed and a high
accuracy simultaneously. To alleviate the pixel imbalanced
problem, a spatial attention module is designed to
concatenate the encoder map and decoder map, which
could avoid information loss. The contribution of this work
is summarised as follows:
1) A lightweight component is presented, adopting a

channel attention mechanism, which enables lightweight
components to pay more attention to the key features of
the segmentation task by enhancing the expressibility
of different channels in the feature map.

2) A novel lightweight encoder–decoder architecture is
designed utilizing lightweight component, which could
capture image features at different scales and levels.

3) A spatial attention module is designed to connect the
feature map of encoders and decoders at different levels,
and to adjust the weight of the feature map through the
attention mechanism, so that the network can better
focus on the key information in the map and alleviate
the problem of information loss caused by imbalanced
pixels.

2. Methods

In this section, a lightweight component inspired by E-Net
[20] is proposed. The E-Net architecture is composed of
an initial block and bottleneck module. The initial block
concatenates the convolution operation and maxpooling
operation. Each bottleneck block has two branches. One
branch includes three convolutional layers and the other
branch includes maxpooling layer and padding layer. The
initial block architecture and bottleneck architecture are
shown in Fig. 2(a) and (b), respectively.

The bottleneck module is used to construct the encoder
branch architecture, which preserves the index of maximum
value in the max pooling operation to avoid information
loss in downsampling. Meanwhile, the channel attention
mechanism is introduced in the bottleneck module, which
could focus on the importance of channels in the feature
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Figure 1. The implementation of brain tumour segmentation algorithm.

Figure 2. The initial block and bottleneck block in E-Net:
(a) initial block and (b) bottleneck block.

map. The bottleneck module and upsampling operation
are utilized to construct the decoder branch architecture.
Inspired by E-Net [20], the presented encoder branch
and the presented decoder branch are asymmetric, which
could reduce the parameters of the proposed network.
In addition, a novel attention module is proposed to
learn to focus on target structures of varying shapes and
sizes, which can be easily integrated into encoder–decoder
architecture.

2.1 Encoder–Decoder Architecture

The unique structure of the encoder–decoder enables
to realize effective utilization of contextual information.
The encoder branch is responsible for extracting high-
level semantic features from the input data, while
the decoder branch progressively recovers the resolution
to generate detailed information. This utilization of
contextual information helps improve the accuracy of
segmentation tasks. Inspired by it, the encoder–decoder

architecture composed of lightweight module is proposed
which is shown in Fig. 3. Each green block represents a
lightweight module. The arrows in the diagram indicate the
connectivity pattern of the encoder–decoder architecture.
Additionally, the spatial attention mechanism is annotated,
showing its position in the network structure. It connects
the feature map of encoder branch and decoder branch,
serving as a skip connection. The proposed structure
also employs an asymmetric form of encoder and decoder
branch to reduce network parameters.

2.2 Lightweight Component

The proposed lightweight block consists of a main
branch and an auxiliary branch. The main branch
performs max pooling operation and padding operation
and then connected to the feature map generated by
the auxiliary branch. The auxiliary branch consists of
three main convolutional operations. The first and third
convolutions adopt 1×1 kernel to compress channels,
reduce data dimensionality, and decrease computational
complexity. The second convolutional operation varies in
different lightweight block. After the first downsampling,
it performs a 3×3 convolution operation, while after
the second and third downsampling, it employs dilated
convolution to expand the receptive field. By using dilated
convolutions with different dilation rates, the network
can perform multi-scale feature extraction, capturing fine-
grained and coarse-grained features simultaneously. After
the convolution operation in the auxiliary branch, a batch
normalization layer is added to accelerate the training
process and address the internal covariate shift problem.
The computation process of the proposed lightweight block
is illustrated in Fig. 4.

After the concatenation of the feature maps generated
by two branches, the channel attention mechanism
is introduced to adaptively adjust the importance of
channel features by learning channel weights. Inspired by
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Figure 3. The encoder–decoder architecture of the lightweight network.

Figure 4. The computation diagram of the presented lightweight module.

SE-Net [21], the auxiliary branch continues to perform
global average pooling operation and then followed by two
fully connected layers and sigmoid activation, calculating
the weights for each channel. The computational weights
are multiplied by the original feature map in the main
branch, which helps reduce the impact of redundant
features and enhance the generalisation capacity of the
network.

2.3 Spatial Attention Mechanism

The output of spatial attention mechanism is the element-
wise multiplication of input feature-maps and attention
coefficients: x̂li = xli · αl

i. α
l
i ∈ [0, 1] represents attention

coefficients which detect prominent regions in the image
and selectively remove feature responses, retaining only
the activations that are pertinent to the specific task.
A singular scalar attention value is calculated for each
pixel vector xli ∈ RFl , with Fl representing the number of
feature-maps in layer l. In this paper, to determine focus
regions, the decoder vector xdi

and the encoder vector xei
are employed for each pixel i. The formulation of attention

mechanism is as follows:

qlatt1 = σ1
(
Wex

l
ei +Wdxdi + b

)
(1)

qlatt2 = Aavg · qlatt1 ◦Amax · qlatt1 (2)

αl
i = σ2

(
qlatt2

(
xlei, xdi; θatt

))
(3)

Where σ1 (xi) corresponds to the ReLU activation
function, σ2 (xi) corresponds to the sigmoid activation
function. The graphical representation of the presented
attention mechanism is depicted in Fig. 5. The main
computation process of attention is formulated as two
parts: qlatt1 and qlatt2. qlatt1 corresponds to the left side of the
vertical dotted line and the other represents the right side.
A set of parameters Θatt contains: linear transformations
We ∈ RFl×Fint , Wd ∈ RFd×Fint and bias terms b ∈ RFint .
The implementation of linear transformation is by 1×1×1
convolution computed for the input tensors. In (2), Aavg

and Amax illustrate the average pooling operation and
the max pooling operation. Equation (3) corresponds
to the final computation result of the spatial attention
mechanism.

223



Figure 5. The architecture of the proposed spatial attention module.

The presented spatial attention module is incorporated
into the lightweight encoder–decoder network to highlight
salient features that are passed through the skip
connection, which is shown in Fig. 3. Information derived
from a coarse scale is employed in attention mechanism
to resolve ambiguity and filter out irrelevant or noisy
responses in skip connections. This operation is performed
immediately prior to the concatenation process, aiming to
merge only the relevant activations.

3. Experiments and Results

The experiments are conducted to validate the effectiveness
of the proposed lightweight segmentation network and
comparing with existing state-of-the-art methods. The
ablation study is also performed to assess the importance
of each component in the proposed network. The proposed
network is trained using BraTS brain MRI dataset,
which is deployed on a high-performance computing server
equipped with Inter E5-2620 V4 processors with 256G
memory. The computing server is also equipped with
NVIDIA RTX TITAN and 24GB memory.

3.1 Datasets

The experiment of brain tumour segmentation uses a
dataset of multimodal MRI volumes. Each voxel in the
dataset is associated with multiple image modalities,
including T1, T1c, T2, and FLAIR. The segmentation
task faces the challenge of data imbalance, as there are
significant variations among different types of tumors.
Healthy voxels account for 98% of the total voxels,
while pathological voxels, necrosis, edema, non-enhanced
tumour, and enhanced tumour account for only 0.18%,
1.1%, 0.12%, and 0.38%, respectively. Besides, the medical
imaging dataset contains numerous challenges due to
their complex characteristics, primarily because the image
acquisition process is expensive and sensitive compared
to real-life data. Consequently, the collection of medical
images is conducted under controlled conditions to ensure
a more predictable distribution of data.

The proposed network is evaluated on the BraTS
2018 training set and leaderboard dataset. The BraTS
2018 training dataset consists of 210 cases of high-grade

glioma (HGG) and 75 cases of low-grade glioma (LGG).
Each case is manually annotated by one to four raters,
and all segmentation results undergo expert review. The
MRI images in the BraTS dataset are obtained from
19 institutions, using different protocols, magnetic field
intensity, and MRI scanners. The training set provided by
BraTS includes four MRI modalities (T1, T1c, T2, and
FLAIR) and expert manual segmentation labels. Each MRI
sequence consists of 155 slices with a size of 240×240 pixels.
The label data provides pixel-level class annotations,
including the background region, non-enhancing and
necrotic region, edema region, and enhancing region.
Additionally, the official dataset includes a test set without
labels, which can be used for further evaluation of
segmentation algorithms.

3.2 Evaluation Metrics

In the evaluation process, three key evaluation metrics
are primarily performed on the following regions: the
whole tumour (WT) region including the non-enhancing
and necrotic region, edema region, and enhancing region,
the tumour core (TC) region including the non-enhancing
and necrotic region and enhancing region, the enhancing
tumour (ET) region which evaluates the segmentation
results of the enhancing region.

The segmentation evaluation metrics in this study
include the dice similarity coefficient (DSC), sensi-
tivity, specificity, precision, F1-Score. The DSC is a
metric commonly used to measure two sets and is
frequently employed to evaluate the performance of
medical image segmentation models. Its calculation is as
follows:

DSC =
2× |A ∩B|
|A|+ |B|

(4)

where A and B represent the set of pixels in the prediction
results and the ground truth, respectively. |A| + |B|
represents the total number of non-zero pixels in set A and
B, and |A∩B| represents the intersection of pixels between
the prediction results and the ground truth. A higher DSC
index indicates better performance of the model. The DSC
is commonly used to evaluate the performance of models in
binary classification tasks and image segmentation tasks.
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During the experimental process, the DSC can also be
calculated using the following:

DSC =
2TP

2TP + FN + FP
(5)

where TP represents the number of true positive pixels,
FP represents the number of false positive pixels, and
FN represents the number of false negative pixels. In the
evaluation of medical automatic diagnosis tasks, sensitivity
refers to the ability of a system to correctly identify positive
cases. It is formulated as follows:

Sensitivity =
TP

TP + FN
(6)

Specificity refers to the ability of a system to correctly
identify negative cases. It is formulated as follows:

Specificity =
TN

TN + FP
(7)

where TN represents the number of true negative pixels.
Precision refers to the ability of a system to identify correct
positive cases in all positive cases. It is formulated as
follows:

Precision =
TN

TN + FP
(8)

In medical diagnostic systems, F1-Score is a common
evaluation metric that combines sensitivity and precision
to assess the overall performance of the model. A higher
F1-Score indicates a better performance of the model in
identifying true positive cases.

F1− Score = 2× Sensitivity × Precision

Sensitivity + Precision
(9)

To evaluate the real-time performance and compu-
tational efficiency, the time consumption and parame-
ters of the proposed model are listed compared with
other models. These metrics play a crucial role in
assessing the recognition capability of medical diagnostic
systems.

3.3 Experiment Results

The experiment is conducted based on the BraTS
2018 dataset for training and comparison, while also
comparing it with existing state-of-the-art algorithms. The
experimental results are shown in Table 1, which indicates
that the proposed algorithm has achieved significant
improvements of DSC in all three regions, with particularly
noticeable increases in the TC and ET regions. The
experimental comparison demonstrates the effectiveness of
the proposed algorithm.

To comprehensively evaluate the overall performance
of the proposed model, additional experiments are
conducted to compare sensitivity and specificity metrics,
and the results are shown in Table 2. The proposed
method only realize a significant improvement in sensitivity
for the WT region, while the improvements in TC
and ET are not prominent. However, the specificity
scores for all three regions have reached the highest

Table 1
The Comparison of Dice Coefficient Score with Other

Existing Models

Method Dice Coefficient Score

WT% TC% ET%

V-Net [22] 87.61 79.53 73.64

Modified 3D U-Net [23] 90.80 84.40 78.40

Cascaded 2.5D CNN [24] 90.50 83.80 78.60

RMU-Net [24] 90.80 86.75 79.36

3D U-Net [24] 88.60 67.16 81.65

Improved 3D U-Net [24] 90.89 71.65 83.98

Ensemble OM-Net [26] 90.95 86.51 81.36

The proposed network 93.08 91.03 87.04

values. The experimental results suggest that although
the proposed algorithm achieves substantial gains in
Dice scores, the improvements in sensitivity for TC and
ET are not significant. Therefore, future experimental
research should focus on additional tricks to enhance
sensitivity.

To prove the real-time performance of the proposed
lightweight network, it is crucial to measure the inference
speed of the network. The inference time is computed
under a size of 240×240 image as shown in Table 3.
The proposed model is compared with other lightweight
popular segmentation model. Table 3 shows that the
proposed model can achieve 21.3 ms inference time when
processing one image with size of 240×240. Based on
the abovementioned segmentation scores, the proposed
model only has 0.88 M parameters, which could prove the
performance of the proposed model.

3.4 Ablation Study

To validate the effectiveness of the proposed network
model, the ablation study is conducted for comparison.
According to the network framework described in this
paper, the baseline model is defined as an encoder–decoder
architecture composed of lightweight modules shown to
the left of the block in Fig. 4. The network architecture
is illustrated in Fig. 3. Subsequently, the baseline model
is enhanced by incorporating spatial attention mechanism
to further validate the effectiveness of the proposed
spatial attention module. Finally, the lightweight module is
improved by introducing the channel attention mechanism.
The experiment compares the baseline model with both
spatial and channel attention mechanism integrated.
Table 4 presents the DSC and precision scores for three
models, which can be observed that the proposed algorithm
achieves the highest scores in all metrics, except for the
DSC of the WT region, where it performs slightly lower.
The significant improvement in precision is particularly
notable.
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Table 2
The Comparison of Sensitivity and Specificity with Other Existing Models

Method Sensitivity Specificity

WT% TC% ET% WT% TC% ET%

MobileNetV2 [28] 82.34 73.58 76.13 83.19 71.26 81.45

MU-Net [24] 85.64 85.64 95.26 98.26 82.95 95.85

RMU-Net [24] 92.95 90.36 89.40 91.29 89.18 94.24

MC-Net [26] 90.65 79.70 80.95 99.51 99.81 99.80

OM-Net [26] 90.78 81.03 82.45 99.43 99.79 99.77

Improved 3D U-Net [24] 91.18 70.50 81.82 99.40 99.75 99.81

The Proposed Network 94.44 87.69 84.44 99.91 99.96 99.97

Table 3
The Comparison of Inference Time and Parameters with Other Existing Models

Method Inference Time Parameters Parameter Size

Time FPS

U-Net [15] 78.4 ms 12.8 7.76 M 29.62 MB

Attention U-Net [26] 87.3 ms 11.5 7.85 M 30.25 MB

E-Net [20] 33.9 ms 29.5 0.91 M 3.45 MB

The proposed 21.3 ms 46.9 0.88 M 3.34 MB

Table 4
The Comparison of DSC and Precision in Ablation Study

Method DSC Precision

WT% TC% ET% WT% TC% ET%

Baseline 91.38 84.79 83.18 87.59 75.65 77.41

Baseline + Attention 93.87 87.12 80.99 94.07 88.34 78.15

Baseline + Attention + SE 93.08 91.03 87.04 95.43 94.64 89.81

Table 5 verifies the sensitivity and specificity metrics
for the ablation study. It is evident from Table 5 that
the introduction of the spatial attention mechanism
and channel attention mechanism do not improve the
sensitivity metric, although the specificity metric shows
improvements. This result aligns with the experimental
results in Table 2, where sensitivity does not show
significant improvement. Analysis suggests that the
introduction of spatial attention and channel attention
mechanism significantly enhanced DSC and precision but
compromised sensitivity. Therefore, to comprehensively
evaluate the overall performance of the proposed model,
the F1-Score is introduced.

The F1-Score is the harmonic mean of precision
and sensitivity, which measures the accuracy of the
model in predicting positive samples and the coverage
of true positive samples. The ablation experimental

results are shown in Table 6, which validates the
improvements of precision through the introduction of
the spatial attention module and channel attention
mechanism. Consequently, this improvement also leads
to an increase in the F1-Score, indicating an overall
enhancement performance of the network. The experiments
demonstrate that despite the decrease in sensitivity caused
by the proposed attention mechanisms, the comprehensive
performance metrics of the network still show improve-
ment. This validates the effectiveness of the proposed
algorithm.

To show the segmentation result of each slice in MRI
images, Fig. 6 shows the comparison of prediction from
the proposed model and the ground truth. The first row
shows the prediction of the presented model and the second
row indicates the label image, which can be observed
that the segmentation results exhibit consistent overall
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Table 5
The Comparison of Sensitivity and Specificity in Ablation Study

Method Sensitivity Specificity

WT% TC% ET% WT% TC% ET%

Baseline 95.51 96.45 89.89 99.77 99.77 99.89

Baseline + Attention 93.66 85.92 84.05 99.87 99.87 99.94

Baseline + Attention + SE 94.44 87.69 84.44 99.91 99.96 99.97

Figure 6. The visualisation segmentation results of the proposed model.

Table 6
The Comparison of Sensitivity and Specificity in Ablation

Study

Method Sensitivity Precision F1-Score

Baseline 95.51 87.59 91.38

Baseline + Attention 93.66 94.07 93.86

Baseline + Attention
+ SE

94.44 95.43 94.93

shapes but also need improvement in handling pixel-level
details.

4. Conclusion

This paper presents a novel real-time lightweight seg-
mentation network for brain tumour MRI segmentation
with the application of medical imaging robots. A novel
lightweight module with an introduction of the channel
attention mechanism is designed to construct an encoder–
decoder architecture. Additionally, a novel spatial attention
module is devised to implement skip connection of the
feature map between the encoder and the decoder.
With experimental validation, the proposed network
outperforms many existing networks in terms of DSC

for tumor segmentation. The proposed spatial attention
module and lightweight component with channel attention
achieve high improvements in DSC and precision, which
allows for a better performance of the proposed model. The
introduction of the attention mechanism do not effectively
improve the sensitivity metric, which is worth noting.
The future research will focus on improving sensitivity
indicators and exploring the inherent relationship between
changes in sensitivity and attention mechanism.
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