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ROV TARGET GRASPING STRATEGY
BASED ON VISUAL PERCEPTION

Jiawen Li,* Xiang Cao,"* and Xueyou Huang*

Abstract

With the increasing prominence of unmanned systems in aquaculture
and fisheries, this study proposes a visual perception-based remote
operated vehicle (ROV) target grasping strategy to address complex
underwater environments and high operational risks. The strategy
consists of two parts: target detection and target grasping. Target
detection is to use the visual sensor carried by ROV to perceive
the underwater environment, obtain environmental images, and use
deep neural network algorithms to detect targets in the images.
The detected target is the premise of realising the target grasping,
and the target grasping uses a fuzzy PID algorithm to control
the robot arm carried by the ROV to grasp the detected target.
Simulation and experiments show that this method can realise target
detection and grasping under different water quality and has higher
detection accuracy and speed. In practical engineering applications,
this method meets the requirements of intelligent aquatic fishing in

complex underwater environments.
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1. Introduction

Currently, traditional fishing methods are used to harvest
aquatic products like sea cucumbers and sea urchins.
However, these methods are not always efficient in
completing fishing tasks. To solve this issue, this paper
presents a visual perception-based strategy for ROV target
grasping. This method is designed to adapt to the complex
and dynamic underwater environment and is both safe and
reliable. Additionally, it is highly portable. The strategy is
comprised of two main modules: target detection and target
grasping. The two are interrelated and cannot be separated.
The target detection algorithm detects underwater target
objects and determines their location, category, and other
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information. The target grasping task formulates grasping
strategies based on this information. Embedding object
detection and grasping algorithms into the ROV control
system enables it to make decisions and adjustments in
a real-time environment. In conclusion, target detection
and grasping are complementary tasks, and their close
connexion and mutual influence make real-time grasping
tasks more effective in practical applications. The results of
the two tasks are discussed separately, which can improve
ROV’s perception and operation capabilities in complex
environments [1]-[3]. Each module will be introduced in
detail below.

Target detection is a fundamental problem in computer
vision, and its purpose is to identify all of the targets
of interest in an image and establish their class and
location. Since all kinds of different objects have a different
appearance, pose, and different degree of occlusion, and
the imaging is disturbed by lighting and other factors,
target detection has been a very challenging problem
[4], [5]. The classic target detection algorithm and the
depth learning algorithm are the two main phases in target
detection. Target detection is traditionally divided into
three parts. The first step is to locate the target using
region selection and then to navigate the entire image using
the sliding window. In the second step, the selected region
is extracted. The third step is to use the model which has
been trained in advance to carry on the region recognition.
The traditional target detection has shortcomings in region
selection. Because the target could appear at any point in
the image and its size and aspect ratio are unknown, the
sliding window method is used to traverse the entire image
at first, and several scales with different orientations must
be established. The speed and effectiveness of subsequent
feature extraction and classification are significantly
impacted by this thorough method’s high temporal
complexity and huge number of duplicated windows, which
is especially problematic for real-time target identification
and ROV grasping. Deep learning-based target recognition
systems have quickly advanced due to the development of
technology like graphics processing units [6]. “Two-Stage”
and “One-Stage” are the two main divisions of deep
learning-based target identification techniques. In 2014,
Girshic et al. [7] proposed the region-convolutional neural
network (R-CNN) model, which is the first attempt of
a convolutional neural network in target detection, and
it is based on a selective search of region selection box



and convolutional neural network combined to improve the
capability of feature representation, which makes the field
of target detection enter a new stage. Redmon et al. [8]
proposed the YOLO detection algorithm approach, where
the idea of YOLO detection differs from that of the
R-CNN family in that it solves the target detection
as a regression task. To complete an end-to-end real-
time target detection task, the YOLO approach employs
a single convolutional neural network that utilises all
of the visual input. This network predicts the target’s
bounding boxes while also determining the target’s class.
Full graph information can be used throughout the
training and prediction phases of YOLO, which leverages
it for prediction. Due to the Fast R-inability CNN’s
to examine the entire image during the identification
process, it wrongly identifies background patches as targets
[9]. The YOLO background prediction error rate is half
as low as Fast R- CNN’s. YOLO is a technique for
real-time target identification based on a special neural
network model that has characteristics that allow rapid
detection with high accuracy and some stability. Later,
with improvements, the team put forth YOLOv2 and
YOLOv3 [10], which offer a lot of advantages in terms
of detection accuracy. The single shot multibox detector
(SSD) detection algorithm, put out by Liu et al. [11], has
significant improvements in detection speed and accuracy,
but has limitations in the detection of small objects. To
increase the accuracy of target detection in complicated
underwater environments, Wang et al. [12] developed
an enhanced SSD-based target detection algorithm with
ResNet instead of VGG network structure, however, it
has drawbacks in real-time detection. Han et al. [13]
proposed a new underwater target detection technique
that can facilitate ROV underwater target classification,
but there are defects in detection accuracy and it is
difficult to perform real-time target detection and grasping.
In summary, it can be seen that the target detection
algorithms studied by previous researchers combined
with ROV real-time target detection and grasping have
defects, such as low real-time, low accuracy, and low
detection speed.

After the target is identified, proceed with target
grasping. Autonomous grasping means that without human
intervention, the vision robotic arm system acquires the
position of the target object through the camera and
drives the robotic arm to complete the grasping task
for the target object [14]-[16]. The robotics field faces
many challenges in gripping technology. The wide range
of applications of robotic arms has also contributed to the
diversity of robotic arms. There are also many challenges
that need to be solved urgently. For example, the ability
to grasp accurately complex environments, the occlusion
of complex backgrounds, and the collision of robotic
arms [17]. The remaining networks were suggested by
Trottier et al. [18] for object localisation utilising vision
sensors to gather data for controlling a robotic arm
for gripping activities. They employed a global average
pooling layer before a fully connected layer to enhance
the convolution step by eradicating the spatial correlation
of the backpropagation error signal. They do not use
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pre-training but perform direct data expansion to avoid
the overfitting phenomenon, and this approach largely
reduces the training time. Nguyen et al. [19] used a
Kinect camera for target recognition and estimated object
grasping strategies from local area point clouds. Walker
[20] proposed to represent the robot arm position in
joint coordinates or Cartesian coordinates. A collection
of model-free deep reinforcement learning algorithms that
can resolve grasping problems in a range of complicated
scenarios were proposed by Quillen et al. [21] after applying
deep reinforcement learning algorithms to robot grasping.
The algorithm proposes a simulated benchmark for robot
grasping, evaluates the benchmark task based on various
@-function estimation methods, uses a deep neural network
model for robot grasping, and combines the evaluation
to select a suitable method for grasping. This method is
validated in different robots and can achieve the grasping
of complex target objects. Jebelli et al. [22] proposed a
learning algorithm that neither requires a 3D model of the
object by visually grasping the object seen for the first time,
by building a logistic regression model, given an image
of the object, the algorithm will try to identify in each
image the points corresponding to the better position of the
grasped target object. After triangulating this collection
of points, a 3D position is ultimately obtained, and an
attempt is made to grasp that area. Synthetic pictures are
employed as the training set, and supervised learning is
used to train and detect the grabbing point from the image.
Finally, practical validation is carried out, and a range of
items are successfully grabbed. The above researchers have
proposed relevant grasping strategies to perform target
grasping, but there is no portability in the deployment
into embedded devices, which is only suitable for specific
grasping tasks and cannot perform grasping tasks with
high quality in the face of target grasping in complex
underwater environments.

In response to the above issues, this paper proposes a
target-grasping method based on visual perception. First,
the camera on the ROV is used to obtain images of the
underwater environment, and the YOLOv5 algorithm is
used to automatically detect the position and category
information of the target object. Then, the detected target
position and category information are transmitted to the
fuzzy PID controller, which controls the movement of the
ROV manipulator by calculating and outputting control
commands [23]. After the ROV performs the grabbing
action, it monitors the grabbing results and returns
information, which will be passed to the target detection
module to optimise the target detection algorithm. After
the ROV performs the grabbing action, it monitors the
grabbing results and returns information, which will
be passed to the target detection module to optimise
the target detection algorithm. With the help of the
controller, the ROV robotic arm can accurately grasp
the target object in the underwater environment and
move it to the designated position. Throughout the
study, target detection and grasping play an important
role. Target detection and target grasping are different
stages of the same thing. Target detection guides the
capture strategy, and the grasp results are fed back to



optimise the target detection results. Embedding target
detection and grasping algorithms into the ROV control
system enables it to make decisions and adjustments in
a real-time environment. In actual operation, ROV can
adjust the grasping strategy in real-time according to the
target detection results and grasping feedback to cope
with changing situations. Finally, through experiments
and simulation verification, the control parameters are
adjusted to achieve better target detection and grab
effect. Simulation and experiments demonstrate that the
proposed method can achieve target detection and grasping
under different water qualities, with higher detection
accuracy and speed. In practical engineering applications,
this method meets the requirements for intelligent aquatic
fishing in complex underwater environments. In this
paper, the fishing problem of sea cucumbers and sea
urchins in complex environment is studied, and the main
contributions are as follows:

1) ROV target grasping strategy based on visual
perception: This paper proposes a visual perception-
based ROV target grasping strategy, which aims
to simplify the underwater salvage process and
significantly improve the grasping success rate. To cope
with the harsh underwater environment and limited
diving depth, advanced computer vision technology
is utilized, especially the YOLOv3, YOLOv4, and
YOLOV5 object detection algorithms. By combining
these algorithms, our strategy can efficiently and
accurately identify target objects, such as sea
cucumbers and sea urchins in complex underwater
scenes, thus meeting the needs of smart aquaculture.

2) Lightweight models and efficient real-time target
detection: For practical application requirements,
the lightweight model is selected as the target
detection solution. These models have a smaller size,
occupy less memory, and can achieve higher detection
accuracy and speed when performing fishing tasks.
By combining the YOLO series of algorithms, the
technology proposed in this paper can be quickly
deployed on ROVs and mobile devices to achieve real-
time target detection and grasping tasks.

3) The optimisation effect of fuzzy PID control: In
this paper, to further optimise the grasping strategy,
the fuzzy PID controller is introduced as a control
algorithm, which is optimised for the control arm of
the ROV robot. By using fuzzy PID control, a more
precise and stable control effect is achieved, and the
success rate and efficiency of the grasping operation
are improved. The application of this control strategy
shows good control accuracy and robustness in actual
engineering and further improves fishing efficiency.

4) Risk reduction and efficiency improvement: The
strategy proposed in this paper reduces the risk
of manual seafood harvesting while significantly
improving operational efficiency. Using the fast YOLO
series of algorithms, the ROV can efficiently identify
targets in harsh underwater environments and limited
diving depths, including sea cucumbers and sea
urchins. A large number of simulations and actual
test verifications have demonstrated the high stability
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and adaptability of the strategy, regardless of the

underwater environment or the shape of the target,

it can achieve accurate detection and grasping,
confirming its practicability.

The remainder of the paper is organised as follows.
Section II introduces the ROV model. Section III intro-
duces the Algorithm. Section IV presents the simulation
and experiment under various situations. Finally, Section V
concludes the study and presents future work directions.

2. ROV Model

This part mainly establishes ROV from the Kinematic
model and ROV system design framework.

2.1 Kinematic Model

This part mainly introduces how to develop the math-
ematical model of ROV, and analyse it from the
kinematics and dynamics models. The ITTC and SNAME
recommendation system are adopted to establish the
inertial coordinate system, carrier coordinate system
(O — zyz), and carrier coordinate system (L — £n¢). The
inertial frame of reference is defined as the reference frame
with a fixed point on the ground as the origin. In this paper,
the origin L is established, with the positive direction of
the ¢-axis indicating the movement direction of the ROV,
the positive direction of the (-axis pointing towards the
centre of the earth, and the positive direction of the n-axis
perpendicular to the plane formed by the (€. The positive
direction of this coordinate system is determined by the
right-hand rule. The origin O of the carrier coordinate
system also called the motion coordinate system, is situated
at the ROV’s centre of gravity. The positive direction of
the G-axis points forwards, the x-axis is perpendicular
to the y-axis with the positive direction pointing to the
starboard side of the ROV, and the z-axis is perpendicular
to the plane formed by xy, with the positive direction also
determined by the right-hand rule. The carrier coordinate
system moves with the ROV. A schematic diagram of the
ROV in the inertial and carrier coordinate systems is shown
in Fig. 1. The establishment of these models is crucial
in ensuring accurate target detection and grasping by the
ROV in real-time.

The coordinates (x,y,z) of the origin of the carrier
coordinate system in the inertial coordinate system repre-
sent the location data of the ROV during its underwater
mobility. When the origins of the two coordinate systems
coincide, the angle (¢, 0, 1)) between the inertial coordinate
system and the carrier coordinate system represents
the attitude information of the ROV, and the position
information (x,y, z) and the attitude information (¢, 8,1))
together constitute the pose information of the ROV,
denoted by n = [z, ¥, z, ¢, 0, 1]. In this context, ¢ represents
the roll angle of the ROV, 6 represents the pitch angle of the
ROV, and v represents the yaw angle of the ROV. Newton’s
second law does not apply in the carrier coordinate system,
thus developing controllers in this system is not practical
despite the spatial motion equation of the ROV being easier
to define in this system. Therefore, a conversion between



Figure 1. Inertial coordinate system and carrier coordinate
system.

the carrier and inertial coordinate systems is necessary.
After kinematic modelling, the transformation matrix J ()
[shown in (1)] can be used to convert between the two
coordinate systems.

O3x3
J2(n)

Ji(n)

03x3

J(n) = (1)

In this paper, Ji(n) represents the matrix used to
transform linear velocity between the inertial and carrier
coordinate systems, while J5(n) represents the matrix used
to transform angular velocity between the two coordinate
systems.

In this paper, the ROV is considered as a rigid body,
and its motion in water is treated as the motion of a
rigid body in a fluid. Using the Newton—FEuler motion
equations and the Lagrange modelling framework, the
dynamic equations of motion of the ROV in water in the
carrier coordinate system are given by (2).

Mv+Cwv+Dwyrv+Gn) =1w+7 (2)

M stands for the inertial matrix of the ROV with
added mass, C(v) for the matrix with added mass and
centripetal and Coriolis forces, D(v) for the hydrodynamic
damping matrix, G(n) for gravity and the restoring force
vector, 7w for the external disturbance vector, and 7 for
the torque vector brought about by the tension of the cable.

2.2 ROV Hardware System Architecture

The system hardware framework and communication
interface, according to the distribution of robot functions
and tasks, the system is designed as three control cores, the
underlying STM32 driver board, Raspberry Pi, and shore
computer. The rest also includes power system, camera,
lighting, various sensors, data communication transmission
system, etc. Connect the Raspberry Pi to the STM32 via
USB to TTL, and the STM32 is connected to the ESC to
control the rotation of the thruster motor. The PWM wave
is calculated in the Raspberry Pi and transmitted to the
STM32 through the serial port. The motion control part of
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Figure 2. ROV hardware system architecture.

the module runs on the Raspberry Pi. As shown in Fig. 2,
the specific hardware system frame diagram.

3. Algorithm
3.1 Target Detection Strategy

Target detection strategy is one of the focuses in this paper.
To solve the problems that the traditional target detection
algorithm is slow, unable to realise real-time target
detection in the underwater environment, the detection
effect is poor, and the model structure is complicated and
difficult to understand. This paper designs an embedded
network model based on the advantages of the YOLOv5S
network model. YOLO series is mainly designed for target
detection network, because of its high real-time and
accuracy is widely used in industry. The four variants
of the YOLOv5 network are vbs, vbM, vbL, and vbx.
After experimenting with the YOLOv5 family of networks
versus YOLOv3-Efficientnet and YOLOv4-tiny, this paper
chose YOLOvb5s as the target detection model. Just a few
of YOLOvV5’s numerous advantages include its excellent
detection effect, strong practicability, small model size,
cheap deployment cost, high degree of adaptability, and
rapid detection speed. The advantages of its small model
size stand out among the others. These advantages are
especially suitable for embedded devices to complete the
task of target detection. YOLOvV5 is similar to previous
versions, with Backbone, Neck, and Head. Use the dataset
from this study as an illustration to describe how YOLOv5
is implemented. The backbone feature extraction network
of YOLOv5 is CSPDarknet. The backbone extraction
network CSPDarknet extracts feature information from
sea cucumber and sea urchin photos after receiving them.
The features extracted by CSPDarknet are called feature
layers. The feature layer is a collection of features from the
input sea cucumber and sea urchin images. Three feature
layers are collected from the backbone section to build the
subsequent network; these three feature layers are known
as effective feature layers. The three useful feature layers
that were obtained in the backbone part are then fused
together. Combining feature data from various scales is
the goal of feature fusion. The Head is responsible for
evaluating the feature points and deciding whether or not
there are objects that correspond to the feature points.
The YOLOv5 model structure, as shown in Fig. 3.
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Figure 3. YOLO v5 model structure.

Figure 4. Mosaic stitching.

3.1.1 Input

To preserve the original benefits, the input of YOLOv5
utilises the Mosaic data enhancement method of YOLOvA4.
This part mainly takes the dataset of this paper as
an example to describe. A new data augmentation
technique called mosaic data augmentation combines four
photos of sea urchins and sea cucumbers by randomly
scaling, cropping, and arranging the individual images
[24]. This method refers to CutMix and only mixes
two images. The method to input the image is shown
in Fig. 4.

It can be seen from Fig. 4 that the four colours
represent the four images of sea cucumbers and sea
urchins, and the excess parts will be discarded. The dataset
can be improved by mosaic data. Four sea urchin and
sea cucumber photos are randomly selected, resized, and
dispersed before being utilised for splicing, considerably
enhancing the detection dataset. This random scaling
method adds a lot of small objects, improves the robustness
of the network and reduces GPU memory. This method
directly calculates the data of the four pictures, and
setting a smaller mini-batch value can achieve better
results.

Four original photographs, X1, X2, X3, and X4, shall
be used. X1 shall be the image in the upper left corner,

Figure 5. Alice operation.

X2 shall be the image in the upper right corner, X3 shall
be the image in the lower left corner, and X4 shall be
the image in the lower right corner. After splicing, Y is
the outcome, and the size of the spliced picture is (H, W).
Equation (3) then illustrates the mathematical formulation
of the mosaic stitching technique.

Among them, Yh, w represents the pixel value of the
spliced image at row h and column w. Through this
formula, the four original pictures are stitched into a
picture of size (H, W).

Xi,hw if0§h<gand0§w<%
o (W ifo<h<Zand¥W <w<W
Yo =4 (%) 2o (3)
X3h_(g)’w iff <h<Hand0<w< ¥
X4h7(%)w (W) if%§h<Hand%§w<W

3.1.2 Backbone

Due to the limited computing power of embedded devices,
the deployed model requires lightweight processing, and the
Focus structure of YOLOVS5 is a lightweight feature extraction
module that can improve the efficiency and accuracy of the
model. It can also downsample the features of the input image
from high resolution to low resolution, and then upsample it
from low resolution to high resolution, so as to obtain more
comprehensive and rich feature information. Image extraction
plays a very important role in solving the shortcomings of
insufficient feature extraction. Prior to the picture entering the
Backbone in YOLO v5, the Focus structure slices the image.
Alice operation, as shown in Fig. 5.

3.1.8 Output

The YOLO series target identification loss function is composed
of a classification loss function and a candidate box regression
loss function. In recent years, the candidate box regression loss
function has undergone continual improvement, and YOLO
v5 employs the most current candidate box loss function, the
CIOU loss function. The CIOU loss is calculated as follows:

ot
LCIoU = 1—[0U+%+8’U (4)
4 we" w)’
vE (arctanﬁ - arctanﬁ) (5)
|b N b8
ToU —
oU b0 6| (6)
0 IoU < 0.5
9= (7)
T—Toth o IoU > 0.5

The prediction box and label box are denoted in the
formula by the letters band and b5°, respectively, while the



width and height of the label box and prediction box are
denoted by the letters wS®, h%', w, and h. O is the weight
coefficient, and P is the distance between the two boxes’ centre
points.

3.2 Target Grasping Strategy

This paper presents a fuzzy PID controller to improve
the success rate of grasping underwater objects using a
single robotic arm. The controller receives target information,
performs calculations, and outputs control commands to
manipulate the movement of the ROV manipulator. The fuzzy
PID algorithm is an effective control algorithm that enables
the ROV robotic arm to accurately grasp the target object and
move it to the specified position in the underwater environment.
Moreover, the fuzzy PID algorithm can adjust the fuzzy set and
fuzzy rules based on the actual underwater situation and adapt
to the operating state of the ROV. In this study, three PID
controllers are used for depth, heading, and grasping control,
and the fuzzy control algorithm is added to achieve adaptability
and robustness. To get the optimum control effect and system
performance, the settings of the fuzzy PID controller are
extensively tested and simulated underwater. Equation (8)
gives the transfer function of the fuzzy PID controller in its
general form. It should be noted that although this paper
only uses a single robotic arm, the proposed fuzzy PID
controller can be applied to other ROV systems with multiple
robotic arms.

Ki Kd -N
:K _— —_—
G(s) Pt i X

(8)

Among them, Kp, Ki, and Kd are the gains of the
proportional, integral, and differential controllers, respectively,
and N is the fuzzy factor of the fuzzy controller. The output of
the fuzzy PID controller can be expressed by (9).

de(t)
dt

y(t) = Ky - e(t) + K - /e(t)dt L Ka-N- )
where e(t), the difference between the reference input and the
feedback input, represents the error signal.

The output of the fuzzy PID controller is the superposition
of the output of the PID controller and the output of the
fuzzy controller. After the motion control design of ROV is
completed, solve the serial communication between STM32
and Raspberry Pi. Later, according to the PWM opening and
closing signal value of the G30 robotic arm, the PWM signal
output of the STM32 is designed.

4. Experiment and Analysis

This part analyses from the experimental platform construc-
tion, target detection experiment, and grasping experiment.
Target detection and grasping will be described in detail in this
section.

4.1 Experimental Platform

ROV is an underwater vehicle that can move freely underwater.
It is equipped with cameras, thrusters, depth gauges, and
various sensors to perceive the surrounding environment, and
can also be equipped with robotic arm and other equipment
to complete related tasks instead of humans. After the above
software and hardware design and the establishment of the
experimental environment. In this paper, the swimming pool
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Figure 6. ROV target grasping strategy based on vision
perception.

Table 1
Raspberry Pi 4B Configuration Parameters
Parameter Value
SOC Broadcom BCM2711
CPU 64 Bit 1.5 GHz Quad Core (28 nm
process)
GPU Broadcom Video Core VIQ 500 MHz
WIFT network | 802.11AC Wireless 2.4 GHz/5 GHz

is used to build an underwater environment according to the
requirements, and ROV is selected as the tool to complete the
entire target detection and grasping platform. Target detection
and grasping experimental platform, as shown in Fig. 6.

This paper combines the computing power of embedded
devices with the existing server resources of the laboratory.
The PC GPU selected in this article is GTX 3060, the memory
of the graphics card is 8 GB, the processor used is AMD
Ryzen 5 5500, and the machine has 32 GB of RAM. The
training environment of the network model is configured with
PyTorch 1.7.1, and the CUDA version is 11.0. Download and
install dependent libraries according to network model training
requirements.

In view of the current development of embedded devices,
the embedded device selected in this article is the Raspberry Pi
4B. The system installed on Raspberry Pi 4B is Ubuntul8.04.
The relevant technical parameters involved in this Raspberry
Pi 4B, as shown in Table 1.

The target grasping task is mainly to choose a suitable
manipulator. This paper chooses the G30 single-function
manipulator. G30 Robotic Arm Configuration Parameters, as
shown in Table 2.

4.2 Target Detection Experiment

4.2.1 Evaluation Metrics

Commonly used evaluation indicators for target detection
algorithms include mAP, AP, F1-Score, IOU, NMS, FPS,

etc. The experimental environment built in this paper is an
underwater environment, and the target detection model is



Table 2
G30 Robotic Arm Configuration Parameters

Value
1500 ps
>1530-1900 ps
<1470-1100 ps
16s

Parameter

PWM neutral signal

PWM open signal
PWM close signal

Time to open/close

deployed to embedded devices. In this paper, combined with
the actual situation, the evaluation indicators of the target
detection model are, mAP and FPS. FPS is the number of
frames per second to process images, that is, how many images
are processed per second. mAP is the average AP value, and
the average AP value is calculated for multiple validation
set individuals. mAP calculates the average area under the
P-R curve across all categories, while AP determines the area
under a specific sort of P-R curve. Precision can be expressed
(10), recall can be expressed by (11), mAP can be expressed
by (12), and (13) can be used.

TP

P =Tp+Fp (10)
TP
R=7prFn (11)
1Lt
mAP = N;/o P(R)dR (12)
PR
Fl=2—" 1
P+R (13)

P represents the number of real sea cucumber pictures
among the recognised pictures. R represents the ratio of the
number of correctly identified sea cucumbers to all real sea
cucumbers in the test set. TP represents the number of sea
cucumber pictures that are correctly detected, FP represents
the number of sea cucumber pictures that are detected as
sea cucumber pictures, and FN represents the number of sea
cucumber pictures that are not detected, and the system
mistakenly thinks it is sea urchin.

4.2.2 Model Effect Analysis

After the network model training is completed, select the
sea cucumber pictures in the verification set for verification.
The results in Fig. 7 show that YOLOv4-Tiny and YOLOvb5s
can identify sea cucumbers, but the YOLOv3-Efficientnet
model has missed detection, which has certain limitations
in the subsequent target grasping process. From the above
analysis, the YOLOv4-Tiny and YOLOv5s models have certain
applicability. This paper continues to analyse the mAP and
F1 of the model to obtain the best network model.

The network model is only verified on the sea cucumber
dataset, which cannot accurately represent the overall
performance of the network model. Therefore, it is necessary
to further analyse the real performance evaluation indicators
before drawing conclusions. This paper also analyses the mAP
of the three network models. The value of mAP can intuitively
reflect the accuracy of the target detection of the network
model. Therefore, it is authoritative to choose mAP as the
evaluation index of the three network models. The mAP of the
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Figure 7. Network model validation.
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Figure 8. Network model mAP.

three network models of YOLOv3-Efficientnet, YOLOv4-Tiny,
and YOLOv5s are shown in Fig. 8.

It can be seen from Fig. 8 that the mAPs of sea urchin
and sea cucumber detected by the YOLOv5s network model
are 0.89 and 0.93, respectively. Based on the above results, it
can be seen that under the same experimental environment,
the YOLOv5s network model is more suitable for identifying
sea cucumbers and sea urchins. According to the analysis of
real data, the three models have better recognition effects
on sea cucumbers and higher accuracy, while the recognition
accuracy of sea urchins will be relatively low. Sea cucumbers
performed better than sea urchins for two possible reasons.
The first is that the characteristics of sea cucumbers are
more obvious, while the characteristics of sea urchins are
more difficult to extract. The second is the interference of
underwater environmental factors. The image of the sea urchin
and the underwater environment are generally grey, which
makes it difficult for the main feature extraction network
to easily extract the features of the sea urchin, resulting in
low detection accuracy.

According to the mAP study, YOLOv5s is more effective
at detecting sea cucumbers and sea urchins as targets. Neither
precision nor recall can be used as a comprehensive evaluation
model, so the comprehensive evaluation index is selected to
further compare the effectiveness of the three network models.
To simplify the comparison steps, this paper only compares
the three network models to select the effect of sea cucumber
recognition, as shown in the Fig. 9.

In many cases, the model does not only care about a
certain indicator but needs to balance the indicator value. The
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Figure 9. Network model F'1 comparison.

Table 3
Model Performance
Model mAP | FPS/s | Size/MB
YOLOv3-EfficientNet | 0.84 4 25.6
YOLOv4-Tiny 0.88 10 24
YOLOv5s 0.91 8 14.7

F'1 value comprehensively considers the accuracy and integrity
of the model and is one of the important indicators to evaluate
the performance of the target detection model. The confidence
score in this study was set to 0.5. Based on experimental results,
it was observed that YOLOv5s performed better than the other
two network models. Considering the characteristics of the
underwater environment, it can be concluded that YOLOv5s
is more suitable as an embedded network model for the target
detection module.

By analysing sea cucumber and sea urchin image
recognition and mAP, as can be observed, this platform benefits
more from the YOLOv5s target detection network approach.
This research examines the performance of the three models
in additional detail while taking into account the intricate
grabbing environment of underwater sea cucumbers and sea
urchins. The three network models’ individual performance, as
shown in Table 3.

The model sizes of YOLOv3-Efficientnet, YOLOv4-Tiny,
and YOLOv5s are 25.6MB, 24MB, and 14.7MB, respectively.
The FPS of the three network models is 4, 10, and
8, respectively. The size of the YOLOv3-Efficientnet and
YOLOv4-Tiny models exceeds 20MB, and these two network
models have no advantage over YOLOv5s. Due to the low
computing power of embedded devices, when the network
model is large, the accuracy of target detection is reduced
when deployed to embedded devices. The two models cannot
satisfy ROV for real-time target detection and grasping. The
analysis of YOLOv4-Tiny and YOLOv5s shows that under the
same experimental conditions, the FPS of YOLOv4-Tiny is
higher than that of the YOLOv5s network model. Since this
paper needs to perform real-time target detection and grasping
of sea urchins, the real-time performance and accuracy need
to be considered. Although the frame rate of YOLOv4-Tiny
deployed on embedded devices is higher than that of the
YOLOvV5s network model, the mAP of the YOLOv5s network
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Figure 10. Underwater target grasping process.

model is higher than that of YOLOv4-Tiny when the frame
rate is guaranteed. Based on the above analysis, it can be
seen that although the YOLOv5s model is not perfect, it has
high accuracy and detection efficiency in sea cucumber and
sea urchin image recognition, and can complete the real-time
target detection and grasping tasks of ROV. In this paper,
based on the actual situation and requirements of the platform,
YOLOvV5s is selected as the network model for the target
detection task of the platform.

4.3 Target Grasping Experiment

This section mainly analyses the results of target grasping and
optimises the grasping strategy and target detection through
the results.

4.8.1 Experiment and Analysis

In this paper, YOLOv5s is selected as the network model for
the target detection task, so the target grasping analysis mainly
discusses the grasping effect of the YOLOv5s model deployed
on the ROV platform. The camera of ROV collects images
of sea cucumbers and sea urchins, and the trained YOLOv5s
target detection network processes them. After obtaining the
detection results, they are sent to STM32. STM32 receives the
data, sends grasping signals to control the robotic arm, and
performs grasping tasks.

In this paper, the pool is used to simulate the underwater
environment to perform the grasping task, and two underwater
environments are set according to the requirements, namely,
clear water quality and turbid water quality, and comparative
experiments are carried out to observe the target grasping effect
of this platform. The platform designed in this paper performs
the process of grabbing sea cucumbers, as shown in Fig. 10.

Figure 10 shows the state of ROV performing the sea
cucumber grasping task, from the initial preparation state
to the whole process of ROV identifying and capturing sea
cucumbers. From the red mark in the figure, it can be
clearly seen that the ROV can perfectly realise the process of
identifying and grasping the target sea cucumber.

4.8.2 Comparison of Different Algorithms

In this paper, fuzzy control and PID control are combined to
design a controller. The effect of PID and fuzzy PID on the
grasping of the robotic arm is compared by simulation. The
specific results are shown in Table 4.



Table 4
Results of Different Algorithms
Algorithm Maximum Steady State | Response
Deviation/cm Error/cm Time/s
PID 4 8 4
Fuzzy PID 3 ) 2
Btrepang ®urchin
11 0.93 (.01
08 1 075 072
0.6 -
0.4 -
0.2
0 -
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Figure 11. Sea cucumber and sea urchin grasping success
rate.

To compare the impacts of the fuzzy controller and fuzzy
PID controller. In this paper, the maximum deviation, steady-
state error, and response time are selected as evaluation
indicators. Among them, the maximum deviation, steady-state
error, reaction time, and other indications favour the fuzzy
PID controller over the fuzzy controller. In summary, the
combination of fuzzy and PID can better complete complex
and changeable underwater grasping tasks.

The simulation experiment can judge that the fuzzy
PID is more suitable for the grasping of the robotic arm,
and it has passed 200 underwater experiments, as shown
in Fig. 11.

By analysing the average grasping success rate of the
target detection and grasping strategy designed in this
paper under different water quality environments, and then
comparing the grasping success rates of sea urchins and sea
cucumbers under the same water quality environment. This
experiment mainly analyses the successful grasping rate of
sea cucumber and sea urchin by the strategy proposed in
this paper under the clear water quality and turbid water
quality experimental environment. In the clear underwater
experimental environment, the grasping success rates of sea
cucumbers and sea urchins were 0.93 and 0.91, respectively. In
the turbid underwater experimental environment, the grasping
success rates of sea cucumbers and sea urchins were 0.76 and
0.72, respectively. According to the analysis of real experimental
data, the average grasping rate of sea cucumbers is higher than
that of sea urchins, which may be due to the different shapes
and sizes of sea cucumbers and sea urchins. The shape of the
sea cucumber is cylindrical, while the shape of the sea urchin
is spherical. The opening of the gripper of the G30 robotic
arm is 70 mm. The shape and size of the sea cucumber are
more suitable for the grasping of the robotic arm. Therefore,
the success rate of sea cucumbers is slightly higher than that
of sea urchins.

237

5. Conclusion

To solve the problems of low fishing efficiency and high fishing
risk coefficient in complex underwater environment, an ROV
target grasping strategy based on visual perception is proposed.
The experimental results prove that the YOLOv5s target
detection network model can better realise target recognition,
and the capture success rate after combining fuzzy and PID
is higher. In this paper, different experimental environments
are set for grasping experiments, and the YOLOv5s target
detection network model is selected to ensure the detection
accuracy and speed. In a clear underwater environment, the
average grasping success rate is 0.92. Under turbid water
quality, the average grasping success rate is 0.74. In summary,
the target detection and grasping strategy based on underwater
visual perception not only ensures a lightweight network model
but also improves the detection accuracy and realises the task
of real-time fishing, which has practical application value for
aquaculture and fishing. It is true that the target detection
model involved in this paper still has certain shortcomings. In
the follow-up research, it is necessary to use a more flexible
loss function to further strengthen the learning ability of each
target detection sample so as to improve the convergence speed
of the target detection model. In practical applications, in the
face of complex environments, the performance of the model is
improved through adaptive data augmentation.
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