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Abstract

The mobile operation integrated robot (MOIR) has the functions

of walking freely in the workshop and perform accurate operation

by installing actuator. In the practical engineering application,

in order to meet the requirements of fast changeover in various

working conditions, the end executor needs to have the function of

correcting and positioning to achieve the purpose of rapid compatible

production online. At present, technical engineers are generally

required to operate the camera software, the servo robot software,

the end actuator and the corresponding parameters to confirm

multiple calibration positions of new products in the production

of common industrial robots. Therefore, for practical engineering

application, it is urgent to develop an adaptive correcting and

positioning (ACP) method with a simple, effective control for real-

time implementation. With that in mind, a simple multi-scene

ACP method with the advantages of high accuracy, efficiency and

reliability in complex work environment was proposed. The pose

of the servo robot mounted on the MOIR converting automatically

according to the new product size and features under the new

working conditions. At the same time, combined with the clarity

adaptive recognition algorithm, the system can clearly identify the

detection features of the new target object, and store the pose

information of the servo robot under the condition of maximum

clarity. Finally, practical application experiments are carried out to

validate the practicability.
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1. Introduction

In today’s rapidly changing demand, manufacturing
enterprises need to quickly respond to the needs of the
market, especially for the robot automatic workstation,
its flexible, rapid transformation of production is an
important technical requirement, so as to meet the
changing trend of small batch and multi-category products.
Such as to meet the CNC equipment automatic loading
and unloading, automatic grinding, automatic palletizing,
automatic welding, automatic assembly and other scene
requirements. Therefore, after the key elements such as
fixture and product dimensions change in the process
of transformation, how to quickly realise the automatic
transformation of online, automatic correction and posi-
tioning is an important research content. In particular, in
some production scenarios where there are many types of
specifications and the number of each specification is small,
the replacement method mainly faces three problems: 1)
high skill requirements for operators; 2) teaching operation
process is cumbersome; 3) each workpiece needs to be
equipped with a set of independent fixture; 4) it takes a long
time. For example, in the fields of online appearance defect
detection, real-time weld tracking, polishing and polishing
in the precise force-position control of precision parts, and
automatic assembly of precision parts. After replacing the
end effector, it is necessary to carry out online accurate
correction and positioning for the new end effector in order
to quickly achieve the purpose of accurate control in the
production process.

Since this paper is based on a large number of
practical applications in the actual production pro-
cess of smart factories, so far, no identical research
objects and corresponding research results have been
found.

Lyu et al. [1] designed a robot that can autonomously
find and pick objects in an unmanned supermarket. Solved
the problems of building a robot with both high payload
and big workspace and designing a robot system that
incorporates the navigation and grasping system. Hao [2]
integrated feedforward neural network for mapping the
depth image into real-world coordination and convolutional
neural network for environment segmentation, proposed a
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method for environmental detail mapping and annotation
to model. Hanh et al. [3] put forward a practical strategy
that can significantly reduce the time for a gluing
task in footwear industry by using a 6-DOF industrial
robot and RGB-D camera. It is challenging to collect
enough samples and the collected samples are usually in
unbalanced distribution for training in machine learning
and computer vision methods. Aimed at those problems,
Feng et al. [4] employed deep convolution generative
adversarial networks (DCGANs) to augment the data and
transfer learning method to avoid training from scratch,
and the penicillin bottle defects detect experiments result
showed the proposed method outperforms the traditional
models. Zhang et al. [5] proposed a visual servo control
system that integrates parallel structure with a wide-angle
lens and a telephoto lens, to obtain high-definition images
with advantages of more accurate and in good robustness
as it can reduce measurement errors. To solve the problem
of handling a wide range of object categories need task-
specific training data for novel objects, Zeng et al. [6]
presented a robotic pick-and-place system that can grasp
and recognise both known and novel objects in cluttered
environments. Wu et al. [7] proposed a method for
measuring the position and orientation based on monocular
vision combined with the 3D model of aerial refuelling
drogue target. In order to improve the operational
efficiency of robot-based shoe manufacturing, Wu et al. [8]
proposed a method of shoe-groove tracking based on
industrial robot, and some numerical experiments were
presented to demonstrate the effectiveness. Abidi et al. [9]
proposed a new approach to enhance real-world intensity-
based visual servoing, with the main goal to direct
successfully a robotic task without going through the
entire image and improved considerably the computing
time. Larouche and Zhu [10] develops a Kalman filter
(KF)-enhanced position-based visual servo control strategy
for autonomous robotic capture of a moving target with
an eye-in-hand-configured robotic manipulator and the
efficiency of tracking and capturing of a moving target
was improved. Liu et al. [11] proposed a novel object-
tracking method to provide accurately segmented object
boundaries, with the advantages of tracking object with
translation, rotation, scale change and partial occlusion.
Based on novel monochromatic structured light patterns,
Xu et al. [12] presented a rapid 3D shape measurement
system. By using the two-level fringe patterns to establish
the correspondence between the projector image and
camera image with sub-pixel accuracy, and overcome the
occlusion to achieve high density measurement. Siradjiddin
et al. [13] presented a distributed fuzzy proportional control
system for a vision-guided redundant robot manipulator to
track moving objects through a variety of motions without
a priori knowledge of the robot kinematic. Zhao and
Wang [14] devised a binocular stereo vision measurement
system with two CCD cameras to obtain the images
of a detected object’s 3D surface boundary, presented
a novel measurement scheme for a three-dimensional
object’s surface boundary perimeter and a bent surface’s
perimeter measurement indicated the repetition error
decreases to 0.6%. To compensate for the unknown

camera calibration parameters, a novel prediction error
formulation was presented by Tatlicioglu et al. [15], realised
image-based regulation control of a robot manipulator with
an uncalibrated vision system. By employing the pseudo
stereovision system (PSVS) to capture a complex image in
a single shot, Pachidis and Lygouras [16] proposed a vision-
based path generation method for a robotic arc welding
system that no need to “Teaching by Showing” like method.
By using structured light 3D machine vision for object
profile perception, and NURBS interpolation for accurate
and smooth trajectory generation, Hu et al. [17] proposed
an innovative and practical strategy for automated leather
surface roughing. Fang et al. [18] proposed a new class of
model-free (i.e., the three-dimensional task-space model of
the object is unknown) visual servoing method to realise
the estimation of the relative camera orientation between
two views of an object. Bender and Bone [19] presented
an automated grasping system suitable for complex
2.5D real-world objects (i.e., objects with height < width),
which consists of a robotic manipulator, a three-fingered
dexterous hand with a palm-mounted CCD camera, and a
PC. The advantages of precise and efficiency were verified
by some experiments of grasping three complex-shaped
automotive parts. Paul et al.[20] applied visual servoing
mechanisms for handling objects and camera calibration
and object inspection and proposed an image-based
effector servoing method to handle cylindrical and
cuboid pegs.

Visual serving technology has made some progress
in research and has application experience in some
fields. Visual serving is mainly used in known and
determined detection and tracking objects, but in the
application process, it needs to calibrate the artificial hand-
eye system for each determined detection and following
object, which consumes a lot of time and leads to
the decrease of production line output, so the practical
application value is low. However, for the multi-variety,
small-scale detection and tracking scenarios of fully
automated production lines, especially for the application
conditions requiring frequent and rapid type change
detection and unknown detection objects, visual serving is
powerless.

Aiming at these problems, this paper presents an online
multi-scene adaptive correction and positioning (ACP)
strategy combined with the clarity automatic recognition
algorithm for the mobile operation integrated robot
(MOIR). To realise the function of online automatic dis-
placement production of MOIR in the field of multi-variety
and small-batch production, and quickly and accurately
realise the automatic displacement of end-effector. Thus,
greatly shorten the time of automatic replacement, improve
production efficiency, and meet the needs of rapid com-
patible production of automatic production lines in smart
factories.

The remainder of this paper is organised as follows.
In Section 2, the proposed method is described. Practical
application experimental studies are presented in Section 3.
Section 4 includes the experimental results and analysis.
Finally, discussion and conclusions are provided in
Section 5.
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Figure 1. Mechanical design of MOIR.

Figure 2. Electrical design schematics of MOIR.

2. Multi-scene ACP Method

2.1 System Description

As shown in Fig. 1, the dimension of the MOIR is
approximately 900 mm × 500 mm × 950 mm. Four driving
wheels were mounted on the left and right sides of the
MOIR and were driven by four servo motors, and the four
driving wheels can achieve independent steering function
to meet the goal of flexible operation in narrow spaces of
the semi-open industrial scenarios. The laser navigation
system SICK TIM320 was mounted as the positioning
sensor with an accuracy of ±20 mm. An industrial PC was
used as the main controller and a touch screen monitor
was used for providing the input, and a lithium battery
pack was mounted inside the MOIR to supply power. In
addition, a servo robot with a camera attached to the

Figure 3. The relationship between coordinate systems.

end was installed on the top. Fig. 2 shows the MOIR
electrical design schematic. Critical modules included the
sensor module, control module, and execution module. Four
encoders were used for landmark detection and obstacle
detection and two LiDARs of SICK TIM320 for measuring
the absolute coordinates.

2.2 Visual System Calibration

The servo robot mounted on the MOIR has a camera and
an end executor at the end. In the hand-eye calibration
system, four coordinate systems are mainly involved: the
servo robot coordinate system BCS, the servo robot end
coordinate system ECS, the camera coordinate system
CCS and the world coordinate system GCS. Figure 3
shows the relationship between coordinate systems. The
world coordinate system GCS is usually determined by the
pose of the calibration plate during the camera calibration
process.

2.3 Camera Calibration and Servo Robot
Modelling

2.3.1 Camera Calibration Method

The purpose of camera calibration is to establish the
transformation relationship between the image coordinate
system and robot coordinate system. The process of camera
calibration method adopted in this paper is shown in
Fig. 4, the main steps can be explained as follows:

Step 1: Get calibration images. The camera obtains
3–5 images of the nine-point calibration plate, according
to the sequence as shown in Fig. 5.

Step 2: Extract features and calculate rotation center.
The system extracts feature points and refines subpixels
according to the images. Suppose (rx0, ry0) is the center
of rotation, (x, y) is the point to be rotated, and (x0, y0)
is the rotated point, then the rotation center point can be
expressed as:x0 = cos(α) ∗ (x− rx0)− sin(α) ∗ (y − yy0) + rx0

y0 = cos(α) ∗ (y − ry0)− sin(α) ∗ (x− yx0) + ry0
(1)
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Figure 4. The process of camera calibration method.

Figure 5. Nine-point calibration sequence.

Step 3: Calculate key matrixes. Calculate the unit
matrix H, the internal parameter matrix K and the
external parameter matrix M of the camera.

Step 4: Re ≤ Thr? Calculate the reprojection error
Re, preset a threshold value Thr, and judge whether Re
is less than or equal to Thr or not. If so, turn to step
5 and continue the modelling process until it complete;
otherwise, the convergence optimisation will be carried out
and return to step 3 and continue the calibration.

Step 5: Calculate the correction values (∆x,∆y,∆R).
As shown in Fig. 6, set the position after correction
as (x1, y1, R1), then the angle deviation ∆R between
the current position (x, y,R) and the template position
(xm, ym, Rm) can be written as:

∆R = Rm −R (2)

Then the position after correction according to the
central rotation point (xc, yc, Rc) can be expressed as:x1 = (x− xc) ∗ cos(∆R)− (y − yc) ∗ sin(∆R)

y1 = (x− xc) ∗ sin(∆R) + (y − yc) ∗ cos(∆R)
(3)

Figure 6. The diagram of rectification principle.

And the position deviation after the shift can be
written as: ∆x = xm − x1

∆y = ym − y1
(4)

Step 6: Template matching calculation. Template
matching is one of the core functional modules in the
algorithm proposed in this paper. The stability of the
process directly determines the accuracy and stability of
the ACP method. Suppose that f(x, y) and t(x, y) are the
original image and the template, respectively, the enhanced
image after convolution calculation is g(x, y), then the
convolution formula can be written as:

g(x, y) = f(x, y) ◦ t(x, y) (5)

The discrete convolution formula of (5) can be defined
as follows:

g(x, y) =

M∑
m=1

N∑
n=1

t(m,n) · f(i−m, j − n) (6)

Where M and N are the dimensions of the template.
As (7) shows, normalised correlation matching is

carried out between the preprocessed template image and
the detected image, and the coordinates with the highest
degree of matching are returned.

Rccorr normed =

∑
x′y′ T (x

′, y′) · I(x+ x′, y + y′)√∑
x′y′ T (x

′, y′)2 ·
∑
x′y′ I(x+ x′, y + y′)2

(7)

Where T (x′, y′) and I(x, y) are the template matrix
and the original image matrix, respectively. R is the result
value obtained from the calculation matrix, and the best
matching result can be obtained when the value of R is
maximum.

Step 7: Output results then end the calibration process.

2.3.2 Servo Robot Modelling Method

The servo robot modelling is the first modelling of the
extraction point and the photo point, so as to adapt to the
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Figure 7. Servo robot modelling process.

correction and positioning of different types of products
during the automatic transformation process. Figure 7
shows the modelling flowchart of the servo robot in this
paper. The main steps are described as:

Step 1: Get target object pose. The camera acquires
the pose information (x, y,R) of the target object and feeds
it back to the control system and the servo robot system.

Step 2: Grab target object. The servo robot of MOIR
grabs the target object Bm according to the result of
step 1.

Step 3: Positioning and photographing. The servo
robot of MOIR completes the positioning of the target
object, and the camera system starts photo program to
obtain the corresponding images.

Step 4: L(Tf ) ∈ C(Vf )? Determine whether the target
features are at the view field center. Suppose L(Tf )
contains all of the target features locations, and C(Vf ) is
the view field center. Then two cases in this step, that is, if
the target features locate in the vision field center, turn to
Step 5 and continue the modelling process until it complete.
Otherwise, the servo robot will put back the target object
then calculate the correction and positioning information,
and send it to the control system, which controls the end
executor of the servo robot to correct the pose deviation.
Then return to Step 2 and continue the modelling process.

Step 5: Generate coordinate systems. If the target
features locate in the vision field center, generate the
first workpiece coordinate system Oj and the first tool
coordinate system Ot, then end the modelling process.

2.4 Clarity Automatic Recognition Algorithm

In order to automatically obtain the pose information of
each joint of the servo robot during the ACP, it is necessary
to carry out automatic imaging clarity calculation on
the target object. Figure 8 shows the adaptive clarity
calculation flow. Table 1 is the corresponding pseudocode.
The clarity calculation process is mainly divided into eight
steps, and each step can be explained as follows:

Step 1: Convert the RGB image Irgb to gray image
Igray. In order to improve the accuracy of image conversion
calculation, this paper optimises by converting floating-
point arithmetic into integer arithmetic and integer

Figure 8. The diagram of adaptive clarity calculation.

arithmetic into bit arithmetic.

Grey = (299 ∗R+ 587 ∗G+ 114 ∗B + 500) /1000 (8)

Where R, G and B are the three components of each
pixel in RGB image; since integer arithmetic truncates the
decimal part, 500 is added to the end of the equation to
reduce precision loss.

Step 2: Threshold segmentation. Otsu threshold
method is used to segment the target (black) and
background (white) in the whole image. Set the grey level
of the image is L and the number of pixels with gray level
as i is ni, then the histogram distribution of the image is:

pi =
ni
N
,

L−1∑
i=0

pi = 1 (9)

According to the grey level, the threshold value t can
be divided into two classes, that is C0 = (0, 1, . . . , t), and
C1 = (t+ 1, t+ 2, . . . , L− 1). The mean probability levels
of class C0 and class C1 are, respectively, as:

w0 = Pr (C0) =

k∑
i=0

pi (10)

w1 = Pr (C1) =

L−1∑
i=k+1

pi = 1− w0 (11)

u0 =

k∑
i=0

i ∗ P r (i|C0) =

k∑
i=0

i ∗ pi/w0 (12)

u1 =

L−1∑
i=k+1

i ∗ P r (i|C1) =

L−1∑
i=k+1

i ∗ pi/w1 (13)
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Table 1
Pseudocode of the Adaptive Clarity Calculation

Algorithm: Adaptive clarity calculation algorithm

Input: RGB pictures

Output: [the maximum clarity value dmax, the pose information (xT , yT , zT , αT , βT , γT )]

Calculation:

1: Start and input RGB image Irgb;

2: Convert Irgb to gray image Igray;

3: Clip the gray image Igray, and get the target area ROI;

4: Segment the ROI region by Otsu threshold algorithm;

5: Eliminate small areas with Opening operations in morphology;

6: Put all sub-contours into the sub-contours set O = {o1, o2, . . . , on};

7: for oi ∈ O do

8: ai ←the area of the sub-contour oi;
AT = {a1, a2, . . . , an}, store all ai into matrix AT

9: for ai ∈ AT
10: if ai > amax(the threshold value of the maximum sub-contour area)

11: amax = ai;

12: end if

13: end for

14: end for

15: patch img ← Grab the region containing the target area;

16: di ←get the resolution value of patch img using the Laplacian operator; DT = {d1, d2, . . . , dn}, store all di
into matrix DT ;

17: for di ∈ DT do

18: If di > dmax(the threshold value of the maximum resolution)

19: dmax = di;

20: end if

21: end for

22: (xT , yT , zT , αT , βT , γT )←store the pose information of the servo robot control system;

23: Feed pose information (xT , yT , zT , αT , βT , γT ) back to the servo robot control system.

uT =

L−1∑
i=0

i ∗ pi (14)

w0u0 + w1u1 = uT , w0 + w1 = 1 (15)

The variance of class C0 and class C1 are, respectively, as:

σ2
0 =

t∑
i=0

(i− u0)
2 ∗ pi/w0 (16)

σ2
1 =

L−1∑
i=t−1

(i− u1)
2 ∗ pi/w1 (17)

Then the intraclass variance and the interclass variance
can be, respectively, expressed as follows:

σ2
W = w0σ

2
0 + w1σ

2
1 (18)

σ2
B = w0 (u0 − ut)2 + w1 (u1 − ut)2

= w0w1 (u1 − u0)
2

(19)

σ2
T = σ2

B + σ2
W (20)

So the grey level L is reflected in the histogram as two
types of grey. What we need to do is to find the maximum
threshold to make the difference between the two kinds of
grey, according to which the grey image is segmented. So
the aim is to find the applicable value of t that maximised
the variance between classes.

289



Step 3: Get the target features outline ln. This paper
employed Harris corner detection algorithm to calculate the
sub-contours of the target features, and its mathematical
expression is as follows:

E (u, v) =
∑
x,y

w (x, y) [I (x+ u, y + v)− I (x, y)]
2

(21)

Where E(u, v) is the energy function, (u, v) is the
shift step of window; (x, y) is the coordinates of pixel
points; and w(x, y) is the weight of pixel-value differencing
which represent the current pixel contribution to the whole
calculation, and can realise by median filtering or Gaussian
filtering. I(x+u, y+v)−I(x, y) is the grey difference before
and after the window shift.

Step 4: Draw the maximum outline lmax. The Green
formula was adopted to calculate the area of each sub-
contour. It can be written as:

S =

∫∫
d

(
∂Q

∂x
− ∂P

∂y
)dσ =

∮
L

Pdx +Qdy (22)

Where P (x, y) and Q(x, y) are in the region of D, L
and S are the positive boundary curve and the area of
sub-contour region D, respectively.

Step 5: Extract the boundary Ln.
1) The Laplacian operator module is used to compute

the gradient of image, that is, for two-dimensional image
f(x, y), the Laplacian operator is defined as:

∇2f =
∂2f

∂x2
+
∂2f

∂y2
(23)

In order to be more suitable for digital image
processing, (23) can be expressed in discrete form:

∆2f = [f (x+ 1, y) + f (x− 1, y) + f (x, y + 1)

+f (x, y − 1)− 4f (x, y)] (24)

2) Calculate the grey value gradient
We employed the second derivative of Laplacian

operator to emphasise the detection of boundary regions
with rapidly changing density in the image. For each pixel
in the image, the square of grey difference between two
adjacent pixels is calculated according to (25):

D (f) =
∑
y

∑
x

|f (x+ 2, y)− f (x, y) |2 (25)

Where f(x, y) represents the grey value of the pixel
(x, y) of image f , and D(f) represents the image clarity
value. According to the above analysis, the larger the D(f)
value is, the clearer the image will be.

Step 6: Get the clarity value dn. In general, a normal
image with clear boundaries will have a larger variance,
while a fuzzy image contains less boundary information, so
the variance will be smaller. For a fuzzy image, the grey
value near each pixel changes little, then the gradient value
is also small; while for a clear image, the image outline
is sharp, the gradient value will be large. Based on this
analysis, in order to speed-up the calculation efficiency,
the convolution kernel shown in Fig. 9 is employed as

Figure 9. The Laplace filter convolution kernel.

the Laplacian filter convolution for scanning calculation to
obtain the maximum clarity value.

Step 7: Store all clarity value dn into matrix DT ,
and pick the pose information (xT , yT , zT , αT , βT , γT ) that
meet the maximum clarity value and feed it back to the
servo robot control system. The way to get the maximum
clarity value can be expressed as follows:

DT = [d1, d2, ..., dn] (26)

dmax = max [DT ] (27)

Where dn represents the n-th clarity value, and dmax

is the largest clarity value of the matrix DT .
Step 8: Correction and positioning. The servo robot

of the MOIR correction and positioning according to the
pose information (xT , yT , zT , αT , βT , γT ).

2.5 Evaluation Method

Two evaluation indexes were proposed to verify the
reliability, stability and compatibility of the proposed
method in this paper, namely, the repeated correction
and positioning evaluation method and the compatible
correction and positioning evaluation method.

2.5.1 Repeated Reliability Evaluation Methods

It is assumed that the same target object has N detection
points. Under the same test conditions, the MOIR should
correction and positioning N times for each target object,
and repeat the detection for W times, then the repeated
reliability evaluation of the same target object is defined
as:

Rit =

∑W
t=1 (dit)

W × Ti
, (i = 1, 2, ..., N ; t = 1, 2, ...,W ) (28)

Rit ≥ RiD (29)

Where Rit is the accuracy of repeated correction and
positioning at the i -th detection point, dit is the clarity
value of the i -th detection point and the t-th time. Ti is the
target clarity value of the i -th point. RiD is the reliability
evaluation threshold of the i -th detection point in the same
target object.
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Then the system repeated reliability of the same target
object is defined as:

Rrsd =

∑N
i=1 (Rit)

W
, (i = 1, 2, ..., N ; t = 1, 2, ...,W )(30)

Rrsd ≥ RD (31)

Where Rrsd is the system repeat reliability accuracy of
N detection points by W times in the same target object;
RD is the system repeat reliability accuracy threshold, the
value is determined by the pixel of the imaging system and
the accuracy requirements of the detection condition.

2.5.2 Compatible Reliability Evaluation Method

Suppose that there are M kinds of target objects, and
each of them has N detection points. Under the same
test conditions, the MOIR carries out the correction and
positioning of M kinds target objects in turn, and records
the clarity value dab of the target object during the
correction and positioning, respectively. Then the system
compatible correction and positioning evaluation of the
target object a and detection point b is defined as:

Rab =

∑M
b=1 (dab)

M × Tab
, (a = 1, 2, . . . ,M ; b = 1, 2, . . . , N)(32)

Rab ≥ RabD (33)

Where Rab is the system compatible accuracy of target
object a and the b-th detection point; Tab is the target
clarity value of target object a and the b-th detection
point; RabD is the system compatible reliability evaluation
threshold of target object a and the b-th detection point.

Then the system compatible reliability of M kinds of
target objects is defined as:

Rcomp =

∑N
a=1 (Rab)

M
, (a=1, 2, . . . ,M ; b=1, 2, . . . , N) (34)

Rcomp ≥ RC (35)

Where Rcomp is the system compatible reliability
accuracy of N detection points by W times in M kinds of
target objects, and RC is the system compatible reliability
accuracy threshold, and the value is determined by the
pixel of the imaging system and the accuracy requirements
of the detection condition.

3. Practical Application Experiments Introduction

As indicated in Figs. 10–12, some practical application
experiments are performed in this section to validate the
ACP technique developed in this paper, namely, the ACP
function test, the repeated reliability evaluation test and
the compatible reliability evaluation test. Figure 10 shows
the experimental scene, Fig. 11 is the actual experimental
scenario. Here the purpose of the test platform mainly
realises the hem process of lithium-ion battery cells and
the appearance defect detection of finished battery cells.

The proposed method will be applied to 50
kinds of lithium-ion battery cells (as Fig. 12 shows,
numbered[B1, B2, · · ·B50]) on 8 MOIRs (numbered

Figure 10. The diagram of MOIR follows detection online.

Figure 11. Actual situation of the production line.

[R1, R2, . . . R8]). As Fig. 13 shows, each kind of lithium-
ion battery cells contains 7 detection points, that is, the
left corner (CL), the right corner (CR), the long side
1(L1), the long side 2 (L2), the left head (HL), the right
head (HR) and the tail (TW ).

Figure 14 shows partial process of adaptive correction
of the servo robot, and Fig. 15 shows partial process of
adaptive calibration of the camera.

Before the ACP, the servo robot needs to get the
correction information (∆x,∆y,∆R) of each lithium-ion
battery cell by the camera attached at the end of the
servo robot, as the shape and orientation of lithium-ion
battery cells upstream of the automated production line are
different. Figure 16 shows some experimental results with
correction information (∆x,∆y,∆R) of different lithium-
ion battery cell types before ACP. Then the servo robot will
grab the object, correct the end executor’s pose according
to the correction information as mentioned above, and
move to the target photo position automatically. Then the
end executor of the servo robot will carry out vertical
movements of 5 mm up and down with lithium-ion battery
cells based on the height of the target photo location.
During the movements, the camera system will take
pictures at 0.5 mm intervals, and the clarity recognition
algorithm proposed in this paper will be performed after
every photograph. The upper computer system will make
a comparative analysis according to the clarity values
of the current type of lithium-ion battery cell, and
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Figure 12. Partial models of lithium-ion battery cells: (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 5; (f)
model 6; (g) model 7; (h) model 8.

Figure 13. Lithium-ion battery cell structure diagram (the “I” model and the “L” model).

Figure 14. Partial process pictures of adaptive correction of the servo robot.
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Figure 15. Partial process pictures of adaptive calibration of the camera.

Figure 16. Some experimental results with correction information (∆x,∆y,∆R) of different lithium-ion battery cell types
(before ACP).
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Figure 17. Some experimental results with clarity value dab of different detection positions (after ACP).

select the parameter information (xT , yT , zT , αT , βT , γT )
corresponding to each degree of freedom of the servo robot
when the clarity value is maximum. Record and save the
corresponding parameter information for real-time ACP
in the mass production process. Figure 17 shows some
experimental results with clarity value dab of different
detection positions after ACP.

4. Experimental Results and Analysis

4.1 Automatic Transformation Results Analysis

In order to verify the multi-scene ACP function proposed
in this paper, an MOIR numbered R1 was used to carry
out automatic transformation tests on 50 kinds of battery
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Figure 17. Continued

cells. The experimental results are shown in Fig. 18. The
results indicate that the proposed method can realise the
automatic transformation function of 7 calibration points
of each cell to be detected. From the results shown in
Fig. 18(a), it can be found that the clarity range of
automatic correction and positioning in the left corner

(CL) is within the interval [100.07, 136.93]. According to
the actual production line data, when the CL resolution
target value is not less than 100, it can meet the demand
for automatic replacement of the production line. So
the MOIR can smoothly carry out deviation correction
and positioning and stable online real-time detection.
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Figure 17. Continued

According to the same analysis, the clarity ranges of CR,
L1, L2, HL, HR, and TW of the battery cells are [131.39,
181.80], [188.25, 299.74], [91.03, 124.69], [846.31, 1095.27],
[610.91, 851.43], [71.34, 102.4], respectively.

A large number of practical examples prove that in
the actual production process, the MOIR designed in
this paper needs to separately satisfy the corresponding
target clarity values of 100,130, 180, 90, 850, 600, 70 for
different detection positions of different lithium-ion battery

cell types, to successfully realise multi-scene automatic
transformation, and meet the rapid mass production of
automatic production lines.

From the analysis of the results shown, it can be seen
that in the same location to be detected, the resolution
values corresponding to different lithium-ion battery cells
are not the same. The main reason is that different models
of lithium-ion battery cells have different dimensions and
different colors, different types of light sources, such as
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Figure 18. Clarity results of multi-scene automatic transformation.
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Figure 18. Continued

Table 2
The System Repeated Reliability Results of ACP Method

NO. MOIRs Rit(CL) Rit(CR) Rit(L1) Rit(L2) Rit(HL) Rit(HR) Rit(TW)

1 R1 98.42% 108.05% 106.74% 106.44% 113.40% 106.36% 102.81%

2 R2 113.56% 111.65% 102.66% 101.42% 101.81% 104.97% 104.25%

3 R3 101.98% 106.86% 111.09% 99.18% 106.91% 97.09% 105.53%

4 R4 115.22% 99.04% 99.55% 101.36% 103.39% 103.55% 103.41%

5 R5 108.73% 102.73% 104.17% 106.66% 108.82% 109.31% 99.06%

6 R6 109.72% 102.57% 106.62% 105.72% 109.11% 109.02% 95.82%

7 R7 107.92% 109.34% 113.19% 105.30% 103.43% 114.55% 106.46%

8 R8 96.39% 107.17% 98.34% 100.39% 103.96% 98.79% 102.25%

Rrsd 106.49% 105.93% 105.29% 103.31% 106.35% 105.45% 102.45%

Figure 19. The system repeated reliability chart of ACP method.
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Table 3
The System Compatible Reliability Results of ACP

No. MOIRs Rab(CL) Rab(CR) Rab(L1) Rab(L2) Rab(HL) Rab(HR) Rab(TW)

1 R1 98.73% 102.33% 100.92% 102.53% 101.24% 99.23% 102.23%

2 R2 100.23% 100.44% 100.43% 99.06% 100.09% 100.35% 100.13%

3 R3 99.52% 101.86% 99.82% 100.25% 100.02% 99.93% 99.10%

4 R4 100.51% 100.02% 99.96% 99.83% 99.67% 100.33% 101.00%

5 R5 99.72% 99.84% 100.10% 99.67% 100.02% 99.95% 100.41%

6 R6 101.99% 99.92% 100.23% 99.58% 99.54% 99.58% 100.31%

7 R7 100.28% 99.21% 99.80% 99.80% 98.63% 100.17% 98.88%

8 R8 100.19% 100.01% 100.56% 99.77% 99.97% 99.98% 100.82%

Rcomp 100.15% 100.46% 100.23% 100.06% 99.90% 99.94% 100.36%

Figure 20. The system compatible reliability chart of ACP method.

violet light, infrared light, white light, green light, etc.
should be used, so the average grey value generated after
taking photos is not the same. This results in a difference
in clarity values.

And in the same type of lithium-ion battery cell, the
clarity value varies with the detection locations. As the
angle, the shape, and the target to be detected are different
in different locations, the same light source cannot satisfy
the lighting needs of all detection conditions. Different
models and light sources of different light types need to be
combined and matched, resulting in different clarity values.

From the analysis of the experimental results, it can be
seen that aim at the experimental objects and conditions of
50 kinds of lithium-ion battery cells used in this paper, the
proposed method in this paper can realise the automatic
transformation function of MOIR on the actual production
line.

4.2 Repeated Reliability Results Analysis

In order to verify the system repeated reliability of the
proposed method, one of the target battery cells was
randomly selected to test. Table 2 and Fig. 16 show the

experimental analysis results. The system repeated ACP
reliability Rrsd of 8 MOIRs for 7 detection points in the
target battery cell are, respectively, 106.49%, 105.93%,
105.29%, 103.31%, 106.35%, 105.45%, and 102.45%. And
according to the actual production data results can be
known that when the repeated reliability accuracy RabD

is no less than 95%, the MOIRs can accurately realise the
target of automatic transformation. From this result, it can
be seen that the multi-scene ACP method proposed in this
paper has high system repeated reliability.

4.3 Compatible Reliability Results Analysis

In this experiment, 50 kinds of target battery cells were
tested for the system compatible reliability of ACP method.
Table 3 and Fig. 17 show the analysis results of the
experiments according to the evaluation methods proposed
in this paper. From the analysis of the results, it can be seen
that the Rcomp of the system compatibility of 8 MOIRs
for 7 detection points in 50 types of target objects are
100.15%, 100.46%, 100.23%, 100.06%, 99.90%, 99.94%, and
100.36%, respectively. According to the actual production
results, we know that when the reliability of compatible is
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no less than 95%, the MOIRs can accurately achieve the
target of compatible changeover. This practical engineering
application experiment result indicates that the proposed
multi-scene ACP method has high reliability of system
compatible.

5. Discussion and Conclusions

The unique characteristic of the proposed methodology
is that it can solve the problem of ACP according
to different specifications and features of new products
online combine with the automatically clarity computing
algorithm, so as to achieve the purpose of rapid changeover
of production online. From the practical engineering
application experimental results, it can be found that the
ACP method has high accuracy, high efficiency, and strong
system repeated reliability and compatible reliability. The
technology proposed in this paper has been applied to
the MOIRs for lithium-ion battery cells appearance defect
detection production lines, and 138 sets of MOIRs have
been successfully delivered to the customers for use as
turnkey projects.

It should be pointed out that the proposed ACP
method in conjunction with the clarity automatic
recognition algorithm only be applied to the lithium-ion
battery cell appearance defect detection field, and the
clarity threshold value has a direct effect on the estimate
of the algorithm. More or less, it is a matter of practical
experience to properly choose. The method proposed in
this study can be extended to handle more complex ACP
of robot, but further experimental verification is needed for
different cases and different fields. Our ongoing research is
to achieve the method for automatically selecting a clarity
threshold.
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