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A NOVEL REDUCED-ORDER FAULT

RECONSTRUCTION APPROACH FOR

MISMATCHED SYSTEMS

Zhenwen Sheng,∗ Yiheng He,∗∗ Jing He,∗∗ and Xinliang Hu∗∗∗

Abstract

In this paper, a reduced-order fault reconstruction approach

is proposed for a mismatched non-linear system with actuator

faults, disturbances and uncertainties. First, such a system is

separated into multiple sub-systems through state transformation,

and then, reduced-order transformation is conducted on the system

to transform the mismatched system into matched sub-systems

to obtain a reduced-order model that is efficient for locally

separating the effects of mismatched faults and disturbances.

Then, a sliding-mode observer is designed for the reduced-order

model by reconstructing the faults using the equivalent output

injection principle. Finally, a fourth-order non-linear aircraft model

is conducted to verify the effectiveness of the proposed method.
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1. Introduction

In studies of fault diagnosis based on observer, the
sliding-mode observer is widely used because of its good
robustness [1], [2]. Studies on matching systems, in
which faults and disturbances are only present in a fully
observable state, have achieved several results. These
studies are based on Edwards’ approach [3], which divides
the state into observable and unobservable parts using
coordinate transformation, where the unobservable state
does not contain faults and disturbances and can be
asymptotically converged to a range. Therefore, in the
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observable section, a sliding-mode observer is designed and
its faults are reconstructed using an equivalent output
injection [4].

External disturbances are common in reality systems
[5], [6]. Tan and Edwards minimised the effect of
disturbances [7] on fault reconstruction using LMI [8].
When a system contains faults and disturbances, their
decoupling has been the focus of many studies, Chan
et al. reconstructed with two sliding mode observers
[9], Chua et al. used LMI to design the gain of the
observer so that the disturbances are bounded [10].
A consensus braking algorithm with distributed sliding-
mode observers is proposed, the observer is capable of
converging in a finite time [11]. When the dimensions
of a system matrix were under specified conditions,
He et al. simultaneously reconstructed the faults and
disturbances, the original system is transformed into
two subsystems by coordinate transformation, and the
fault and disturbance are separated [12]. Among the
studies on non-linear systems, many advancements have
been achieved in Lipschitz non-linear systems [13]–[15].
Progress has also been obtained on sensor faults [16],
notably by equating sensor faults to actuator faults
using low-pass filters [17], [18]. He et al. reconstructed
systems where actuator and sensor are fault simultaneously
by coordinate transformation [19]. Generally, the model
of fault reconstruction is developed from simple to
complex to close the engineering background [20], and
the limitations of fault reconstruction are becoming
relaxed [21].

There are mismatches in reality systems, in which
the unobservable state comprises a fault or disturbance.
The investigation of such systems is crucial for practical
applications in fault reconstruction. The mismatched
faults or disturbances are described as mismatched
terms, and the unobservable state will diverge under the
influence of the mismatched terms, rendering the state
untraceable and the residuals non-converging, failing fault
reconstruction. Research has also been conducted on such
systems. For graded faults, Tan and Edwards [22] employed
a high-order sliding mode differentiator to generate a
derivative of the output as a feedback input to the original
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system. Zhu and Yang [23] employed a cascaded sliding-
mode observer using fault and observer signals as separate
virtual system inputs and outputs and then periodically
designed the observer for the virtual system until the
conditions were met. Both approaches can yield certain
results, but the structures are complicated. Zhirabok et al.
designed reduced-order transformation for discrete systems
[24], based on which actuator faults in linear systems are
reconstructed [25]. The primary idea of reduced order is
to transform a system model into a reduced-order model
that does not contain a disturbance [26]. However, the
fault is reconstructed using the Walcott–Zak observer’s
assumptions [27]. It has been demonstrated [28] that this
assumption is a sufficient condition for matching systems.
The reduced-order model essentially does not take into
account the matching of reduced fault. In addition, the
process of solving the parameters of the reduced-order
model is slightly complicated. This paper contributes
to the study of the reduced-order reconstruction of
mismatched systems based on the traditional reduced-order
model.

In this study, state transformation was performed
first for the system model, and then, the sub-system
that was not affected by the mismatched terms was
adopted as the reduced-order model. Variables with a
matching disturbance were used, and the reduced-order
model was unaffected by a mismatched fault following order
reduction. The reduced-order model contained reduced-
order fault and disturbance, for which a sliding-mode
observer can be developed to reconstruct the fault or
disturbance. The innovations of this study are as follows:
a new approach for reconstructing faults using matching
sub-systems in reduced order is proposed. The matching
condition only considers the relationship between the
output matrix and the fault matrix. In this study, the state
matrix was also considered to establish an approach for
obtaining matching sub-systems in mismatched systems.
Then, the observer was designed to build an approach for
reconstructing faults in mismatched systems with reduced
order. 2) The nature of the traditional reduced-order model
was examined, and the design of the model was enhanced.
In this study, the matching sub-systems were obtained
using state transformation and were used as reduced-order
systems to prevent the failure to satisfy the matching
condition for the fault in the model. Meanwhile, matching
disturbance was preserved as much as possible. The
available order of the reduced-order model was increased
to enhance reconstruction feasibility after reducing the
order. Furthermore, the reducing order was simplified
to make the selection of the transformation matrix
easier.

This paper is structured as follows. Section 2 describes
the system, designs the transformation matrix, obtains the
matching sub-system as a reduced-order model, examines
the traditional reduced-order model and states the paper’s
improvement. Section 3 establishes a sliding-mode observer
for the new state equations, proves stability and recon-
structs the faults and disturbances out by the equivalent
output injection principle. Section 4 simulates the system

to verify the model’s validity, and Section 5 concludes this
study.

Throughout this study, the notation ||∗|| denotes the
Euclidean norm for vectors and (induced) spectral norm for
matrices.

2. System Description

For mismatched systems containing a Lipschitz non-linear
term, the actuator faults, disturbances, and uncertainties
are termed as

ẋ(t) = Ax(t) + Ψ(x, u) +Bu(t) + Efa(t) +Dd(t)

y(t) = Cx(t) (1)

where x(t) ∈ Rn is the system state parameter, u(t) ∈ Rr

represents the input of the system, y(t) ∈ Rp is the
output signal of the system, and n > p. fa(t) ∈ Rq is
an unknown bounded non-linear function that indicates
system actuator faults, i.e., there is a positive scalar
function γ1 which makes ||fa (t)|| ≤γ1. d (t) ∈ Rw denotes
the unknown input disturbances and uncertainties of the
system, and ||d (t)|| ≤ γ2. A, B, C, D, and E are known
matrices, and A ∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n, D ∈ Rn×w

and E ∈ Rn×q.
The difficulty with analysing mismatched systems

is that when the Edwards’ approach is employed [3],
the mismatched system (1) transforms into the following
form:

ẋI(t) = AIxI +AIIxII + ΨI(xI, u) +BIu+ EIfa +DId

ẋII(t) = AIIIxI +AIVxII + ΨII(xII, u) +BIIu+ EIIfa +DIId

ỹ(t) = xII(t) (2)

The presence of mismatched terms prevents conver-
gence xI and thus affects fault reconstruction. In this
study, the fault was reconstructed by solving the matching
sub-system.

Assumption 1 [3]: The invariant zero of the matrix pair
(A, C) is stable.

Considering the influence of mismatches on the system
using the state matrix and non-linear term, the system
is divided into the following parts. The transformation
matrices are T and S.

z(t) = Tx(t) =
[
zT1 zT2 zT3 zT4 zT5

]T
, v(t) = Sy(t) (3)

TAT−1 = A,SCT−1 = C = [0 Ip] , TB = B,

TE = E, TD = D,TΨ = Ψ (4)

The equations of the transformed system are as
follows:

ż(t) = Az(t) + Ψ(z, u) +Bu(t) + Efa(t) +Dd(t)

v(t) = Cz(t) (5)
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Where

A =



A11 A12 A13 A14 A15

0 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

0 A52 A53 A54 A55


Ψ =



Ψ1(z1, z2, z3, z4, z5, u)

Ψ2(z2, z3, z4, z5, u)

Ψ3(z1, z2, z3, z4, z5, u)

Ψ4(z2, z3, z4, z5, u)

Ψ5(z2, z3, z4, z5, u)



B =



B1

B2

B3

B4

B5


E =



E1

0

E3

E4

E5


D =



D1

0

D3

D4

D5


(6)

ni is defined as the number of dimensions of the state
parameter, i = 1, 2, . . . , 5. zi(t) ∈ Rni , Ψi ∈ Rni ,
Bi ∈ Rni×r, Ei ∈ Rni×q, Di ∈ Rni×w and Ip ∈ Rp×p.
z1 is an unobservable state that is affected directly or
indirectly by the mismatch term and state matrix. z2 is
an unobservable state and is unaffected by the mismatch
term. In the observable state, z3 and z4 are affected by
z1. The difference is that the non-linear term Ψ4 in z4 is
unaffected by z1, and neither is z5 by z1.

Assumption 2 [12]: n5 > q + w.
Note: When Assumption 2 is met, the matching sub-

system can reconstruct both the faults and disturbances.
On the basis of the transformation (4), (5) is further

transformed by the following:

x∗(t) = Γz(t), y∗(t) = Mv(t) (7)

Then, it is reduced to a matching sub-system:



ẋ∗1
ẋ∗2

 =

A∗1

A∗2

x∗1 +

J∗1
J∗2

 y +

Ψ∗1(x∗1, y∗, u)

Ψ∗2(x∗1, y∗, u)


+

B∗1

B∗2

u+

 0

E∗2

 fa +

 0

D∗2

 d
y∗ = x∗2

(8)

When F leads to FA41 = 0, the rank of F is written
as rank(F ) = ζ.

Let

Γ =


0 I2 0 0 0

0 0 0 F 0

0 0 0 0 I5

 ,M =

0 F 0

0 0 I5

 (9)

where I2 ∈ Rn2×n2 and I5 ∈ Rn5×n5 are identity matrices.
Then

[
A∗1

A∗2

]
=


A22

FA42

A52


[
J∗1
J∗2

]
=


A23 A24A25

FA43 FA44 FA45

A53 A54 A55



[
A∗1

A∗2

]
=


B2

FB4

B5

E∗2 =

[
FE4

E5

]
D∗2 =

FD4

D5

 (10)

In particular, when there is no FA41 = 0 for any F,
i.e., A41 is a non-singular term, let

Γ =

0 I20 0 0

0 0 0 0 I5

 , M = [0 0 I5] , (11)

A∗1
A∗2

 =

A22

A52

 ,
J∗1
J∗2

 =

A23 A24 A25

A53 A54 A55

 ,
B∗1
B∗2

 =

B2

B5

E∗2 = E5D∗2 = D5 (12)

then:

A∗ =

A∗1

A∗2

 J∗ =

J∗1
J∗2

B∗ =

B∗1

B∗2

E∗ =

 0

E∗2

D∗ =

 0

D∗2


C∗ = [0 Ic] Ic ∈ Rθ×θ, θ = n5 + ζ (13)

Equation (8) is taken as the reduced-order model
ẋ∗ = A∗x∗1(t) + J∗y + Ψ∗(x∗1, y∗, u) +B∗u

+E∗fa(t) +D∗d(t)

y∗ = C∗x∗(t)

(14)

The reduced-order model is obtained by first trans-
forming (1) and then reducing the order of (5). The
reduced-order model satisfies the matching conditions.
The reduced-order transformation can be expressed as the
following:

ΓA = A∗Γ + J∗C,MC = C∗Γ,ΓE = E∗,ΓD = D∗ (15)

In the process of reduced-order reconstruction, the
original state parameters diverge under the influence of
the mismatched term, the reduced-order state parameters
are dynamically observed, and the deviation dynamic
equations converge and become the basis of fault
reconstruction.

3. Analysis of the Traditional Reduced-order
Model

The primary idea of the traditional reduced-order model is
to make the reduced-order model free of disturbances using
reduced-order transformation, and Zhirabok transformed
(1) into the form of (14) by performing the following state
transformation [26]:

ΦA=A∗Φ + J∗C,R∗C=C∗ΦΦE=E∗,ΦD = D∗ ≡ 0 (16)
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where Φi is the row i of Φ. Then, it is assumed that
the fault is matched. The goal is to obtain a matching
sub-system without disturbance through reduced-order
transformation. In the design of the traditional reduced-
order model, it is more difficult to determine all parameters
simultaneously. For simplicity, the matrix below was given
in [26]:

A∗


0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 0

 , C∗ = [1 0 0 . . . 0] (17)

When ΦiE 6= 0 holds only to i = 1, (14) satisfies the
matching condition. In this study, state transformation
was performed first to obtain a matching sub-system,
and then, the reduced-order model’s parameters were
selected accordingly, resulting in an equation that meets
the matching condition:

C∗E∗ = [0 Ic] ,

 0

E∗2

 = E∗2 (18)

The solving process was simpler and more intuitive.
As it is required ΦD = D∗ ≡ 0 in (16), in the reduced-

order transformation, the observable state containing
disturbance will be partially omitted according to the
row rank of D∗2. When D∗2 is a non-singular matrix,
x∗ will be fully rounded off. This reduces the degrees of
freedom available for reduced-order reconstruction. In this
study, the observable variables containing the matching
disturbances were retained while the degree of freedom of
the matching sub-system was increased.

In summary, the proposed approach of performing
state transformation first and then reducing the order to
obtain the parameters of the reduced-order model is more
appropriate because it avoids the mismatched fault. The
order reduction process is easier and more intuitive. It
partially retains the state containing matching disturbance
simultaneously, making reduced-order reconstruction more
feasible.

4. Observer Design

A sliding-mode observer is designed for (8):

 ˙̂x∗1

˙̂x∗2

 =

A∗1
A∗2

 x̂∗1 +

J∗1
J∗2

 y +

Ψ̂∗1(x̂∗1, ŷ∗, u)

Ψ̂∗2(x̂∗1, ŷ∗, u)


+

B∗1
B∗2

u+

 0

v(t)

−
0

L

 ey
ŷ∗ = x̂∗2

(19)

where ey = y∗ − ŷ∗ and e = x∗ − x̂∗ = [e1 e2]T . As x∗2 is
fully observable, there must be an L, which makes A∗0 = -L
a stable matrix. v(t) is the input signal of the sliding-mode

observer:

v =

g
Pey
‖Pey‖ if ey 6= 0

0 otherwise
(20)

where g is the scalar function to be designed. A∗0 is a
stabilising matrix. Therefore, for any symmetric matrix
Q > 0, the Lyapunov equation

AT
0 P + PA0 = −Q (21)

has a unique solution P, which is the symmetric
positive definite.

On the basis of (8) and (19), the deviation dynamic
equation is written as the following:ė1(t)

ė2(t)

 =

A∗1 0

A∗2 A∗0

e1(t)

e2(t)

+

Ψ∗1 − Ψ̂∗1

Ψ∗2 − Ψ̂∗2


+

 0

E∗2fa +D∗2d− v(t)

 (22)

Assumption 3 [29]: Because Ψ∗1(x∗1, y∗, u) is a Lipschitz
non-linear function and y∗ is observable, there exists a
positive Lipschitz gain γ3, γ4 for the following:∥∥∥Ψ∗1(x∗1, y∗, u)− Ψ̂∗1(x̂∗1, ŷ∗, u)

∥∥∥ ≤ γ3 ‖e1‖∥∥∥Ψ∗2(x∗1, y∗, u)− Ψ̂∗2(x̂∗1, ŷ∗, u)
∥∥∥ ≤ γ4 ‖e1‖ (23)

Theorem 1: e1 is bounded and converges to a range after
a certain amount of time t0, i.e.,

‖e1‖ < δ1, t > t0 (24)

where δ1 is a positive scalar.

Proof: By Assumption 1 and referring to Yan 2008 [30],
e1 is bounded. �

Theorem 2: If the sliding mode input term g is chosen
to be g > (‖A∗2‖+ γ4)δ1 + ‖E∗2‖ γ1 + ‖D∗2‖ γ2 = g1, the
deviation ey(t) converges asymptotically to zero.

Proof: Given the Lyapunov function

V1 = eTy Pey (25)

take the derivative of (25) and substitute the deviation
in (22) into it

V̇1 = eTy
(
AT
∗0P + PA∗0

)
ey+2eTy P

(
A∗2e1+

(
Ψ∗2−Ψ̂∗2

))
+2eTy PE∗2fa + 2eTy PD∗2d− 2eTy Pv(t)

V̇1 = −eTyQey + 2eTy P
(
A∗2e1 +

(
Ψ∗2 − Ψ̂∗2

))
+2eTy PE∗2fa + 2eTy PD∗2d− 2gPey

V̇1 = −eTyQey+2Pey ((A∗2+γ4) δ1+E∗2fa+D∗2d−g) (26)
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When g > (‖A∗2‖+ γ4)δ1 + ‖E∗2‖ γ1 + ‖D∗2‖ γ2 = g1,
there is

V̇1 ≤ 0 (27)

It is known from Theorem 2 that ey is bounded, which
means that there is a moment t1 for the following:

‖ey‖ < δ2, t > t1 (28)

where δ2 is a positive scalar.

Theorem 3: If g is g > (‖A0‖ δ2 + (‖A∗2‖ + γ4)δ1 +
‖E∗‖ γ0 + ‖D∗2‖ γ2)/λmin (P ) = g2, then starting from
any state point other than the slide mode surface s = 0,
the system will reach the slide mode surface in a
finite time.

Proof : Given the slide mode surface s = Pey and build a
Lyapunov function:

V2 =
1

2
sT s (29)

Take the derivative of (29) and substitute the deviation
in (22) into it

V̇2 = sT (P ėy)

= sTP
(
A∗2e1 +A∗0ey +

(
Ψ∗2 − Ψ̂∗2

)
+E∗2fa +D∗2d− v(t))

= sTP
(
A∗2e1 +A∗0ey +

(
Ψ∗2 − Ψ̂∗2

)
+E∗2fa +D∗2d)− sT Pv(t)

= sTP
(
A∗2e1 +A∗0ey +

(
Ψ∗2 − Ψ̂∗2

)
+E∗2fa +D∗2d

)
− gsTP Pey

Pey
(30)

As λmin (P ) ‖s‖2 ≤ sT Ps

V̇2 ≤ sTP
(
A∗2e1+A∗0ey+

(
Ψ∗2−Ψ̂∗2

)
+E∗2fa+D∗2d

)
−gλmin(P ) ‖ s ‖≤‖ s ‖

(
‖ P ‖

(
A0δ2 + (A∗2 + γ4) δ1

+E∗γ0 +D∗2γ2)− gλmin(P )
)

(31)

When g > (‖A0‖ δ2 + (‖A∗2‖ + γ4)δ1 + ‖E∗‖ γ0 +
‖D∗2‖ γ2)/λmin (P ) = g2,

V̇2 ≤ 0 (32)

In summary, when slide mode input g is larger than
g1 and g2, the convergence of the observation error is
ensured and the system enters the sliding mode surface in
a finite time. When the sliding motion is generated, there is
S = Ṡ = 0. According to the principle of equivalent output
injection, the generalised fault will be reconstructed as the

following:

0 = E∗2fa +D∗2d− veq (33)

veq = g
Pey

‖Pey‖+ δ
(34)

where δ is a small positive scalar that suppresses the
chattering of the sliding-mode motion. Let Ẽ = [E∗2 D∗2],

f =
[
fTa dT

]T
, then

f = −g(ẼT Ẽ)−1ẼT Pey
‖Pey‖+ δ

(35)

fa and d can be reconstructed from (35).

5. Simulation Example

To verify the effectiveness of the proposed approach in
this study, the High Incidence Research Model aircraft
model was adopted [30], which contains actuator faults and
disturbances. According to (1), its parameters are

A =



0 0 0 1

−0.367 −0.0318 0.0831 −0.008

0 −0.0716 −1.485 0.9848

0 −0.2797 −5.672 −1.0253


, B =



0 0

0.012 −0.0071

−0.3058 −0.0223

−22.429 7.8777


,

E =



1 0

0 1

4 1

1 0


, D =



1

0

0

0


C =


0 1 0 0

0 0 1 0

0 0 0 1

 ,Ψ(x, u, t) =

[
0

sin x3
(x2+1)

0

]T

When this system is solved using the traditional
reduced-order model method, the result is

Φ =

0 0 0.28 0.07

0 0 0.8 −0.2

 , E∗ =

1.19 0.28

0 0.8

 ,
C∗ =

[
1 0

]
Obviously, there is rank(C∗E∗) 6= rank(E∗), the

matching condition for the fault is not satisfied. The fault
cannot be reconstructed.

When using the approach proposed in this study,
taking

Γ =

0 0 1 0

0 0 01

 ,M =

0 1 0

0 0 1


Then, the parameter matrix after transforming (14) is

A∗ = 0, D∗ = 0, J∗ =

 −1.485 0.9848

−5.6725 −1.0253

 ,
B∗ =

 −0.3058 −0.0223

−22.4293 7.8777

 , E∗ =

4 1

1 0

 ,
x1∗ = x3, x2∗ = x4
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Figure 1. State parameters x1 and x2 of the original
equation.

Figure 2. Reduced state parameter x∗1.

The observer parameters are set as follows:

L =

−0.5 0

0 −0.5

 , P =

1 0

0 1


The two inputs are u1 = sin (5t) and u2 = 4 sin (10t).

As two actuator faults are involved, fa1 = 2 (40t)+2 sin (5t)
is used to simulate a gradual fault, and a step signal
fa2 = 3 ∗ step (t− 5) is adopted to simulate an abrupt
fault. The disturbance d is the white noise of cycle 0.1 s and
amplitude 1. δ is set to 0.07, and g = 50. The simulation
results are as follows:

Figure 1 shows the actual values of the original
equation’s state parameters x1 and x2. Before order
reduction, state parameters are not observable, so
only x1 and x2 values are given. Figures 2 and 4
demonstrate the comparison between the actual and
observed values of reduced state parameters x∗1 and
x∗2. Figures 3 and 5 show the observation errors for
x∗1 and x∗2, respectively. Under the influence of the
mismatched terms, the state parameter x diverges, but
the reduced state parameters x∗1 and x∗2 are observable

Figure 3. Reduced state parameter x∗2.

Figure 4. Observation error e1 of reduced state x∗1.

Figure 5. Observation error e2 of reduced state x∗2.

with very small observation errors. The reduced state
parameters x∗1 and x∗2 can be used to reconstruct
the fault. The results of the fault reconstruction are
as follows:

Where Figs. 6 and 8 show the actual versus observed
values for actuator faults fa1 and fa2. Figures 7 and 9
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Figure 6. Actuator fault fa1.

Figure 7. Actuator fault fa2.

Figure 8. Observation error of actuator fault fa1.

demonstrate the corresponding observation errors. It can
be seen clearly from the above figures that the error
between the fault and reconstructed value is very small.
The approach proposed in this study can reconstruct
abrupt and soft faults.

Figure 9. Observation error of actuator fault.

6. Conclusion

In this study, a new reduced-order fault reconstruction
approach was established for mismatched non-linear
systems. The approach considers the effect of the mismatch
terms on the system through the state matrix and carries
out state transformation on the system model to obtain
a matching sub-system and treat it as a reduced-order
model, for which a sliding-mode observer was designed to
reconstruct the fault or disturbance contained within it.
Then, the validity of the results was later demonstrated
using simulation experiments. Owing to the reduced-order
reconstruction’s design characteristics, the terms that can
be reconstructed are related to the faults and disturbances
contained in the reduced-order model. If the orders of these
faults and disturbances exceed the orders of the reduced
parameters, it would be impossible to decouple the faults
and disturbances. The reduced-order model’s inadequacies
will be further investigated and addressed.
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