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Abstract

This paper presents lightweight and fast Lidar-inertial odometry

(LF-LIO) for a robot’s real-time pose estimation in an unknown

complex environment. This system includes prediction, odometry,

mapping, and trajectory optimisation modules. In the prediction

module, the initial value of the odometer’s motion is calculated by

inertial measurement unit (IMU) pre-integration and the state of

the previous moment, the odometry then employs a scan-to-submap

matching method based on ground segmentation and optimisation

proposed by this paper to estimate the pose transformation between

consecutive frames. To ensure high performance in real-time, a

keyframe map is created instead of a full map. When updating

incrementally the efficiency of the map is improved, meanwhile

an efficient dynamic sliding window is proposed to manage sub-

maps. We compare the performance of LF-LIO with three methods,

Lidar odometry and mapping in real-time (LOAM), lightweight and

ground-optimised Lidar odometry and mapping on variable terrain

(LeGO-LOAM), and fast direct Lidar-inertial odometry (Fast-LIO2),

using KITTI datasets, the contrasted results of the application

indicate that the proposed LF-LIO method has better accuracy with

a reduced computational burden.
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1. Introduction

Simultaneous localisation and mapping (SLAM) in an
unknown environment are one of the key technologies for
a robot’s autonomous navigation. The robot’s onboard
computing resources are tight. The SLAM algorithm
deployed on the robot requires fewer computing resources
to achieve high-precision, low-latency, and high-robust
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position estimation. Visual methods [1]–[7] have advan-
tages in obstacle recognition and low-texture scenes and
have high positioning accuracy, however, the visual method
has a small observation range and is easily affected
by illumination changes. To process high-resolution data
acquired by visual sensors in real time, additional
computing resources are required. Multi-line Lidar is
widely used in various unmanned systems because of its
wide sensing range, unaffected by ambient light, and the
ability to directly obtain the distance between sensors
and obstacles in three-dimensional space, e.g., self-driving
cars [8], and factory robots [9].

Previous researchers have proposed various methods
to apply Lidar to achieve robot motion state estimation
and simultaneous mapping. A paper [10] proposed a
Lidar odometry and mapping in real-time (LOAM), which
is an advanced iterative closest point (ICP) matching
method [11]–[14]. A full point cloud is replaced by the plane
and edge features extracted from the point cloud to match
the pose. This pose estimation has two parts, the front-end
uses frame-to-frame feature point matching to output high-
frequency and low-precision pose estimates at a frequency
of 10 Hz, and uses this estimate to remove motion distortion
in the point clouds. The back end forms a small map every
10 frames of point clouds, to match the feature points with
the submap extracted from the complete map. Outputting
low-frequency and high-precision pose estimates at a
frequency of 1 Hz, to complete a real-time, low-drift pose
estimation, which is the most accurate of a single Lidar
odometer in the KITTI [15]. Many subsequent works are
based on the framework proposed in LOAM [10], e.g.,
a lightweight and ground-optimised Lidar odometry and
mapping on variable terrain (LeGO-LOAM) [16]. Based on
LOAM, applying fast segmentation of 3D point clouds [17],
the ground points are segmented out to constrain the
altitude error of the odometry estimate. Based on LOAM, a
Lidar odometry, and mapping with loop-closure detection-
based correction (LLOAM) [18] added loopback detection
to eliminate accumulated errors. In a fast, robust, high-
precision Lidar odometry and mapping package for Lidars
of small fov (Loam-livox) [19] the LOAM method is
adapted according to the characteristics of solid-state
Lidar.
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Figure 1. (a) Corresponding feature points were detected from frame-to-frame and (b) corresponding feature points were
detected from frame-to-map.

At the data acquisition unit, sensors, such as IMU and
global navigation satellite system (GNSS), etc., provide
initial values for laser odometry matching, eliminate
motion distortion and accumulated errors, to improve
odometer accuracy and robustness. A fast direct Lidar-
inertial odometry (Fast-LIO2) [20] employs raw point
cloud frames for matching to effectively use subtle features
in the environment and uses extended Kalman filtering
(EKF) to fuse IMU data, to enable fast, low-drift
odometers. A 3D LiDAR SLAM integration with GPS/INS
for UAVs in urban GPS-degraded environments [21]
introduces GNSS data as priors during optimisation to
eliminate the accumulated error of the odometer. A
tightly-coupled Lidar inertial odometry via smoothing
and mapping (LIO-SAM) [22] uses factor graphs to
jointly use the Lidar odometry and IMU pre-integration
data [23] as pose constraints, and joint optimisation.
When GNSS is available, the GNSS factor is introduced
as the prior value of pose to eliminate the accumulated
error of the odometer. Tightly-coupled Lidar-visual-inertial
odometry via smoothing and mapping (LVI-SAM) [24]
uses visual odometry, Lidar odometer, and IMU pre-
integration data as constraints for pose optimisation,
and it uses vision to identify obstacles, advantages
in loopback detection, to build a higher accuracy
odometer.

With limited computing resources, and the onboard
robotic systems, it is also still challenging to estimate the
state of a moving robot and build a map synchronously,
employing multi-line LiDAR to enable fast, low drift
robot state estimation and simultaneous map construction.
Research questions are highlighted:
1) Though the current resolution of multi-line Lidar is

gradually improved, hundreds of thousands of points of
measurement data are generated per second to process
the data in real-time to estimate the pose and movement
of the robot, it requires more computationally efficient
methods.

2) The farther distant the multi-line Lidar scans, the lower
the resolution can be achieved, therefore, commonly
using frame-to-frame feature point matching methods,
farther distant feature points cannot be effectively
completed. Such an odometer has relatively low
accuracy. As shown in Fig. 1, compared to frame-to-
frame matching, frame-to-map matching can discover
more distant feature points.

3) The robot needs to maintain a complete map during the
operation of the algorithm. As the runtime increases,
the memory usage of the system increases, and real-time
performance reduces. It was extremely inefficient using
loop closure constraints to correct accumulated errors
of the odometer, and also need to remap the whole map.
This work proposes a lightweight and fast Lidar-

inertial odometry (LF-LIO) and mapping method to
solve the above problems. Firstly, the raw IMU data is
processed by using a pre-integration model. The predicted
motion during one lidar scan is used to compensate for
motion distortion in the Lidar DAT and also provides an
initial value for the odometer matching. Odometry takes
segmentation clustering to remove useless points from
the point cloud, to match the feature points extracted
from the point cloud with the submap, and to better
use of environmental features. The map is composed of
keyframes [25] containing the feature point cloud and the
corresponding estimated pose. Adding new keyframes to
the map takes less time compared to maintaining a full
map, and the map does not need to be remapped after
global pose optimisation. The system also employs graph
optimisation to fuse absolute GNSS measurements and
detected loop closure constraints to eliminate accumulated
errors, to improve the accuracy of pose estimation. This
paper has the following novel research outcomes:
1) By pre-integrating the IMU and combining the robot

state, a highly reliable matching initial value is
calculated to improve the convergence speed of point
cloud matching.
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Figure 2. System overview.

2) A lightweight and fast frame-to-map odometer matching
method based on point cloud segmentation clustering
and dynamic sliding window is proposed. By reducing
useless feature points, the feature points that are far
away from the radar in the point cloud are better
utilised to improve the accuracy and matching speed of
the odometer.

3) A new map form is proposed. The map consists
of a series of keyframes. Each keyframe contains a
point cloud composed of edge points, a point cloud
that composed of plane points, and the estimated
value of the robot state corresponding to the key
frame.

1.1 Notation

This paper defines the following symbols: W repre-
sents the world coordinate system. B represents the
robot body coordinate system. Assuming that the IMU
and RTK coordinate systems coincide with the robot
body coordinate system, the state of the robot is
defined as:

X =
[
RT , pT , vT

]T (1)

While R∈SO (3) represents a rotation matrix, p∈R3

indicates the displacement of the robot, v repre-
sents the speed of the robot. TBW∈SE (3) repre-
sents the pose transformation from the world coor-
dinate system to the robot body coordinate system
TBW = [RBW |tBW ].

2. Lightweight Lidar - Inertial Odometry and
Mapping

2.1 System Overview

As shown in Fig. 2, the system structure proposed is
divided into four main modules, motion prediction, odome-
ter estimation, trajectory optimization, and mapping.

The prediction module time-synchronises all sensor
data received to ensure data consistency in time, then,
pre-integrate the IMU data to get the relative delta
between two frame states, to combine with the optimal
estimated value of the system speed state at the start
of pre-integration, to calculate the pose prediction value.
The odometer obtains the motion prediction value, to
compensate for motion distortion in point clouds based on
predicted values, to segment the point cloud and extract
features. The extracted feature is matching the points
and sub-maps, to get the relative pose transformation
of the point cloud of the current frame relative to the
previous frame, and calculate the optimal estimate of the
current state of the system. Finally, the odometer outputs
the optimal pose estimation at the current moment and
the feature points extracted from the point cloud. The
mapping module saves the odometer outputs that meet
the same conditions as new keyframes, to be added to sub-
maps and environment maps. The trajectory optimisation
module uses graph optimisation, to combine with GNSS
and detected loop closure constraints, to perform global
pose optimisation, eliminate the accumulated error of
the odometer, to improve the global consistency of pose
estimation.

The basic formula and workflow of each module are
described as below.
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Figure 3. Sensor data interpolation.

2.2 Prediction

It is important that multi-sensor data clock is synchronised.
If the measurement data at different times is used for state
prediction, it will interfere with each other and reduce the
accuracy of the result. Once the IMU and GNSS data is
acquired and interpolated, the equivalent value in the laser
point cloud is calculated based on (2):

D =
tback−t

tfront − tback
Dfront +

t−tfront

tfront − tback
Dback (2)

t indicates the acquisition time of the current point
cloud frame, tfront and tback represents the acquisition time
of the two frames of data closest to time t. Dfront and Dback

represent the corresponding data. The schematic diagram
of interpolation is shown in Fig. 3.

After clock synchronisation, the motion state of the
robot is predicted based on the measurement data of the
IMU. The measured values of the angular velocity and
linear acceleration of the robot measured by the IMU can
be modelled as:

ω̃t = ωt + bωt + ηωt (3)

ãt = RBW
t (at−g) + bat + ηat (4)

While ω̃t and ãt indicate the original measurement
value of the IMU under B at time t, the measured value
consists of the true value, zero bias bt and white noise ηt.
In this article, we assume that ηt is zero, and therefore,
it is not mentioned in the subsequent equations. RBW

t is
the transition matrix from W to B at time t, g is the
gravitational acceleration at W . The state of the ith frame
is known, the motion state of the robot at the j th frame
can be expressed as:

Rj = Ri

j−1∏
k=i

Exp ((ω̃k − bωk ) ∆tk,k+1) (5)

vj = vi + g∆tij +

j−1∑
k=i

Rk (ãk − bak)∆tk,k+1 (6)

pj = pi +

j−1∑
k=i

(
vk∆tk,k+1 +

1

2
g∆t2ij∆t

2
k,k+1

+
1

2
Rk (ãk − bak) ∆t2k,k+1

)
(7)

To avoid the cumulative error caused by the
introduction of IMU direct integration, to improve forecast
accuracy, the relative motion between two adjacent frames
is calculated using the IMU pre-integration model proposed
in on-manifold pre-integration for real-time visual–inertial
odometry [23], is defined as:

∆Rij = RT
i Rj (8)

∆vij =

j−1∑
k=i

∆Rik (ãk − bak)∆tk,k+1 (9)

∆pij =

j−1∑
k=i

[
∆vik∆tk,k+1 +

1

2
∆Rik (ãk − bak) ∆t2k,k+1

]
(10)

Then, according to the pre-integration results and
the optimal estimation of the robot state at the previous
moment X̃t−1, from (11)–(13):

Rt = Rt−1∆Rt−1,t (11)

vt = vt−1 +Rt∆vt−1,t+g∆tt−1,t (12)

pt = pt−1 +Rt−1∆pt−1,t + vt−1∆tt−1,t +
1

2
g∆t2t−1,t

(13)

Calculate the predicted value of the system state
at the current moment Xt, and the predicted value
of relative motion from the previous frame ∆Tt−1,t =
[∆Rt−1,t|∆tt−1,t].

Remark 1: The speed at the last moment used in
the calculation is calculated based on the pose matched
by the Lidar, it can be considered as the true value of
the real-time speed of the robot, the pre-integration value
only represents the pose change increment between two
adjacent frames regardless of the state at any other time,
meanwhile, the measurement accuracy of the IMU is very
high in a short time. Thus the calculated predictions are
highly reliable.

2.3 Odometry

2.3.1 Distortion Compensation

Whenever a new point cloud frame F̃i is received,
point clouds are motion distortion compensated based
on the scanning principle of mechanical radar, and
the relative motion state prediction value given by the
prediction module ∆Ti−1,i. Using (14) to calculate the pose

transformation of P i
k relative to F̃i at starting time T i

k:

T i
k = tk

∆t∆Ti−1,i (14)

Where tk is the difference between the acquisition time
of each point P i

k in F̃i and the start time of F̃i. ∆t is the
time spent scanning the current point cloud frame. Note,
(14) is merely a conceptual formula, pose transformation
matrix can’t directly calculate interpolation results by
multiplication. P i

k is projected to F̃i in the coordinate
system Bi at the beginning, thereby, the motion distortion
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Algorithm 1: Lidar Inertial Odometry

Input: Lidar frame F̃i

IMU measurement (ω̃t, ãt during current frame)

Last optimal state estimation X̃i−1 and submap Mi−1}

1 Throw ω̃t, ãt and (8)- (13) to prediction Xi and ∆Xi−1,i

2 Compensate distortion for F̃i with ∆Xi−1,i and (2).

3 Segment F̃i to F e
′

i and F p
′

i

4 for each edge point in F e
′

i do

5 Find an edge line in Mi−1 as the correspondence, compute point to line distance based on

(14) and stack the equation to (16)

6 for each planar point in F p
′

i do

7 Find a planar patch in Mi−1 as the correspondence, compute point to plane distance based on

(15) and stack the equation to (16)

8 solve (16) by Gauss Newton, calculate the T̃BW
i

9 Update X̃i by T̃BW
i

Output: Feature F
′

i , state estimation X̃i

caused by the radar motion of the point cloud data is
removed.

2.3.2 Split Clustering

Undistorted point cloud is split clustered, to ground and
obstacle points in point cloud, to cluster obstacle points,
and classify points from the same obstacle [16]. After split
clustering, obstacles that contain too few scan points are
removed, to avoid extracting unreliable features during
feature extraction.

Remark 2: When clustering obstacles, Lidar has
smaller vertical resolution, the method in fast range image-
based segmentation of sparse 3D laser scans for online
operation [26] is not suitable when clustering two points
that are vertically adjacent, Euclidean distance is applied
to determine whether two vertically adjacent points come
from the same obstacle.

2.3.3 Feature Extraction

To extract point cloud features after segmentation and
clustering, the method of feature extraction is applied
with similar to the method proposed in lightweight and
ground optimised Lidar odometry and mapping on variable
terrain [16]. As it is confirmed that the planar features in
obstacles help improve the matching accuracy of heading
angle and horizontal movement, the extraction range of
plane features has been extended. In addition to extracting
planar features at ground points, planar feature extraction
is also performed at non-ground points. F̃i is extracted

of edge features and plane feature, F e
′

i and F p
′

i , which

construct feature set of F̃i, F
′

i = {F e
′

i ,F
p
′

i }.

2.3.4 Scan Match

Matching with F
′

i and submap Mi−1, pose state F
′

i can
be calculated. For computational efficiency and robustness
in complex outdoor environments, the method proposed in
LOAM is chosen. Robot pose TBW

i−1 can be predicted by

IMU, to project F
′

i from B to W to get Fw
i , according to

the feature points in Fw
i , to find five points closest to the

Euclidean distance of the feature point inMi−1 to calculate
the covariance matrix of these five points, and find their
three eigenvalues. If one of them is significantly larger than
the other two, it can be considered that the line feature
corresponding to the edge feature point has been found,
if two eigenvalues are significantly larger than the other,
it can be considered that the plane feature corresponding
to the plane point is found. Use the Euclidean distance
between the feature points and the corresponding features
in the submap to construct the error equation. Euclidean
distance calculation formula for edge point and line feature
and plane point and plane feature as (15) and (16):

dek =

∣∣∣(F e
i,k −Me

i−1,u

)
×
(
F e
i,k −Me

i−1,v

)∣∣∣∣∣Me
i−1,u×Me

i−1,v

∣∣ (15)

dpk =

∣∣∣∣∣∣
(
F p
i,k −M

p
i−1,u

)
(
Mp

i−1,u −M
p
i−1,v

)
×
(
Mp

i−1,u −M
p
i−1,w

)
∣∣∣∣∣∣∣∣(Mp

i−1,u −M
p
i−1,v

)
×
(
Mp

i−1,u −M
p
i−1,w

)∣∣ (16)

k, u, v, w represents the feature point number. For
edge points F e

i,k, M
e
i−1,u, and Me

i−1,v are the two points
on their corresponding line features. For plane points
F p
i,k, M

p
i−1,u, Mp

i−1,v, and Mp
i−1,w are the three points that

make up its plane feature, the (15) and (16) are solving a
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Figure 4. Pose graph structure.

Table 1
Average Processing Time for a New Scan

Matching method LF-LIO LOAM LeGO-LOAM Fast-LIO2

Scan To scan / 38.43 ms 12.76 ms 35.33 ms

Scan To map 17.98 ms / / /

Map To map / 225.4 ms 67.79 ms /

least squares problem instead of solving the optimal pose
estimation:

min
BWT̃i

 ∑
F e

i,k∈F
e
i

de2
k +

∑
Fp

i,k∈F
p
i

dp2
k


Gauss Newton method is used to solves the optimal

pose estimation T̃i to make the equation get the minimum
value. Then, the relative motion between adjacent frames
∆Ti−1,i can be calculated by (17):

∆Ti−1,i = T̃i−1T̃i (17)

Finally based on T̃BW
i and ∆Ti−1,i, the optimal

estimated value of the robot’s motion state in the current
frame is output. Overall algorithm for odometer is shown
in Algorithm 1.

2.4 Mapping

While each frame of the point cloud is inserted into the
environment map after matching, the performance of the
system will be affected. Therefore, the concept of keyframes
commonly used in vision methods is introduced. When the
cumulative motion transformation of the robot relative to
the previous key frame is greater than the set threshold, a
new keyframe is created with one frame containing point
cloud features F

′

i and the corresponding optimal pose

estimation T̃BW
i , point cloud frames between two keyframes

are discarded after matching.
If the keyframes are stitched into a complete point

cloud map, the point cloud map needs to be re-stitched
after each trajectory optimisation, it is waste a lot of
computing resources. Thus LF-LIO environmental map
consists of a series of individual keyframes. After each pose
optimisation, the corresponding poses are corrected in the
keyframes, no need to be projected to the global map.
Meanwhile, this storage method has an advantage, earlier
keyframes can save the point cloud into a disk, and only
the pose corresponding to the keyframe is saved in memory
to reduce memory consumption, to support a larger point
cloud map.

The map-based storage format system uses the idea of
sliding windows to manage submaps containing a dynamic
number of keyframes for matching with point cloud frames.
The number of keyframes contained in the submap has a
minimum value min and a maximum value max. When
a new keyframe is added to the submap, if the number
of keyframes in the submap is not greater than max,
insert directly into submap, otherwise, extract the most
recent min keyframes, to generate new submap Mi =
{F ′

i ,F
′

i−1, . . . . . .F
′

i−min}.

2.5 Trajectory Optimise

To eliminate the accumulated error of the odometer
to build high-precision point cloud maps, the system
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Figure 5. Odometry trajectories of LeGO-LOAM, Fast-LIO2, and LF-LIO in NO. 18, NO. 22, NO. 27, NO. 33, NO. 34 data.

employs graph optimisation to combine absolute GNSS
measurements with loop closure constraints detected by
the system. The structure of the pose graph is shown
in Fig. 4. The keyframe pose is set as the node to be
optimised, and constraint edges are built as the pose
transformation of adjacent keyframes and detected loops.

When the error between the odometer poses and the
GNSS absolute measurement value is greater than the
set threshold, the corresponding GNSS measurements
are taken as a priori, then they are globally optimised
to eliminate accumulated errors and improve system
accuracy.
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Figure 6. Optimised trajectories of LeGO-LOAM, Fast-LIO2, and LF-LIO in NO. 18, NO. 22, NO. 27, NO. 33, NO. 34 data.

3. Evaluation Test

To verify the performance of the proposed method, this
paper conducts a series of tests on the standard KITTI
dataset. The KITTI dataset is jointly released by the
Karlsruhe Institute of Technology in Germany and the
Toyota American Institute of Technology, Dataset includes
Velodyne 64-line 3D Lidar, IMU, GPS, and Information
captured by the four cameras, covering many scenes, such

as villages, cities, highways, etc. This article selects the
NO. 18, NO. 22, NO. 27, NO. 33, NO. 34 data in KITTI
dataset for tests, and compared with LOAM, LeGO-
LOAM, and Fast-LIO2, using a laptop with i7-9700HQ
as the computing platform, OS is ubuntu 18.04, applying
ROS [27] as the communication framework for each module.
All four algorithms are implemented in C++.

Remark 3: LOAM is the earliest SLAM method
based on multi-layer laser radar. Some methods proposed
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Figure 7. Local point cloud map of Fast-LIO2 and LF-LIO after repeated paths: (a) is Fast-LIO2 and (b) is LF-LIO.

by LOAM are used in almost every multiline laser radar
odometer, and the accuracy of LOAM ranks at the top of
the laser radar odometer accuracy ranking of the KITTI
dataset all year round, but its subsequent work has not been
open source. The accuracy of open-source code is low, so we
do not specifically compare the accuracy of LOAM. On the
basis of LOAM, Lego-LOAM makes some optimisations
for feature extraction and pose estimation. Compared with
LOAM, Lego-LOAM has a much faster computing speed
that can run well on embedded boards with lower com-
puting resources. Many mobile robots with autonomous
positioning capabilities currently produced are applied
to LeGO-LOAM, which is also an advanced method
recognised by researchers. FAST-LIO2 is the latest method
just published this year. Because it proposes a new map
format with better efficiency, it can spend redundant
computing resources on matching. It directly uses the full
volume point cloud for matching, so it has high accuracy.
It is also a representative method of Kalman filter fusion.

3.1 Odometry Efficiency

To test the efficiency of the LF-LIO proposed match
method, comparison with LOAM, LeGO-LOAM, and Fast-
LIO2 on the KITTI dataset, average time is taken to test
four odometers processing a new frame of point cloud data,
and the average time is taken by LOAM and LeGO-LOAM
to perform map to map matching. The results are shown
in Table 1. The speed of the LF-LIO method to process
a frame of the point cloud, only slower than the method
proposed by LeGO-LOAM. When the data frame rate of
the laser spinner is 10 HZ, the odometer can be run in
real-time.

3.2 Odometry Accuracy

The system is also tested with only the front-end odometer
for open-loop estimation, LeGO-LOAM, Fast-LIO2, and
LF-LIO trajectories as shown in Fig. 5. The root mean
square errors of the estimated trajectories and the real
trajectories of the three methods are shown in Table 2.

Table 2
The RMSE Transformation Error of the Three Methods

Compared to the Real Trajectory

Method/dataset
number

LeGO-LOAM Fast-LIO2 LF-LIO

18 14.38 6.78 6.04

22 9.89 2.87 2.69

27 10.47 5.49 4.10

33 54.48 17.31 23.83

34 36.19 20.74 18.10

It can be seen that running long enough distances, the
deviation of LF-LIO from the real trajectory is smaller
than that of LeGO-LOAM and Fast-LIO2 in data NO.18,
NO. 22, NO.27, NO. 34. Only data NO.33, Fast-LIO2 has
better accuracy.

3.3 Trajectory Optimisation and Mapping

The optimised trajectories of the three methods are shown
in Fig. 6.

In the LF-LIO method proposed in this paper, the front
end uses scan to map, the odometer is extremely accurate
and incorporates GNSS data as prior data, meanwhile,
a loopback constraint is introduced to continuously
eliminate the accumulated error during the driving process.
Therefore, the optimised trajectory is basically the same
as the true value trajectory. The root means square errors
of the estimated trajectories and the real trajectories of
the three methods are shown in Table 3.

Whether there is ghosting in the point cloud map has a
great impact on subsequent relocation and path planning.
Local maps of repeatedly traversed road sections by
zooming in on FAST-LIO2 and LF-LIO, as shown in Fig. 7.
It can be seen that the map created by LF-LIO has almost
no ghosting in the repeated passing places, and Fast-LIO2
because of the cumulative error when passing through the
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Table 3
The Optimized RMSE Transformation Error of the Three

Methods Compared to the Real Trajectory

Method/dataset
number

LeGO-LOAM Fast-LIO2 LF-LIO

18 5.36 6.78 0.45

22 4.72 2.87 1.65

27 4.64 5.49 1.96

33 46.06 17.31 2.17

34 28.72 20.74 0.21

repeated road sections, there will be errors due to the pose
used to stitch the point cloud, Causing the resulting map
to be ghosted.

4. Conclusion

This paper proposes a lightweight and fast radar-inertial
odometry and mapping method based on frame-to-map
matching, LF-LIO, which is used for robots to estimate
their own position in real-time and build an environment
map in a complex outdoor environment.

Odometer uses frame-to-map matching, to better use
of feature points extracted from point clouds. Applying
keyframe maps instead of full maps avoids system
performance degradation caused by the reprojection of
large maps after pose optimisation. The proposed method
is thoroughly tested and evaluated on the KITTI dataset.
Compared with LOAM, LeGO-LOAM, and Fast-LIO2,
when the system consumes fewer computing resources,
this proposed method got better accuracy. Meanwhile,
thanks to the high-precision odometer, the optimised pose
consistency is better, stitched maps produce less ghosting,
more suitable for the navigation and positioning of robotic
systems.
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