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Abstract

The two-degrees-of-freedom (DOF) planar seven-bar mechanism is

a complicated mechanism because of its two closed kinematic chains

and two input joints that lead to its motion’s complexity. The

majority of previous research in this area primarily focuses on the

mechanism with only revolute pairs. Since the revolute pair only

produces rotational motion, the need for translational movement is

unaddressed. Translational motion created by a prismatic pair where

the prismatic pair moves in the same direction at the same speed

is needed in numerous mechanical structures. Therefore, kinematic

analysis of the two-DOF planar seven-bar mechanisms with a

prismatic pair and with two prismatic pairs is necessary. Paired with

three-dimensional (3D) simulation, the method for the analysis is

algebraic. Firstly, singularity curves, dead center positions, branches,

and branch points of the two proposed mechanisms were identified

via mathematical analysis; so was the rotational or translational

displacement of each joint in each proposed mechanism. Secondly,

the singularity configurations of the mechanisms at branch points

were simulated and verified via the mechanisms’ 3D models. Lastly,

the sub-branches of each mechanism were identified mathematically

and described by demonstrating different configurations of the

mechanisms in different sub-branches via their 3D models.
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1. Introduction

In the research of planar mechanisms, the analysis of planar
mechanisms’ motion is crucial. Singularity curves, dead
center positions, branch curves, branches, branch points,
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and sub-branches are the elements that affect the motion
of a planar mechanism. A branch of a planar mechanism
refers to the range of motion where the mechanism
operates continuously with given parameters without being
disassembled. The boundaries of a branch are called branch
curves which are sections of the singularity curves also
known as the collections of dead center positions, some of
which are branch points. If a planar mechanism encounters
a dead center position or branch point, the movement of the
mechanism is impeded. Hence, dead center positions should
be avoided. In this paper, a bar in a multi-bar mechanism
refers to a link that has two or multiple kinematic
pairs.

The most comprehensive research on planar single-loop
mechanisms’ mobility was the rotatability laws for N-bar
kinematic chains [1]–[4] and the concept of joint rotation
space (JRS) [5], which offer a series of methods to study
single-loop planar and spherical mechanisms’ motion. Since
a multi-loop planar mechanism is formed by single loops,
these methods are also applicable to the kinematic analysis
of multi-loop planar mechanisms [6]–[8]. In addition,
scholars across the world have proposed other methods
to analyse multi-loop planar mechanisms’ motion. Dou
and Ting [9] developed a module approach for the branch
identification of a large variety of multi-loop linkages. Wang
et al. [10] studied the Stephenson six-bar mechanism’s two
closed kinematic chains with the discriminant method and
obtained, dead center positions, branches, branch points,
and sub-branches of the mechanism. Wang et al. [11] put
forward the concept of the equivalent four-bar linkage, with
which the singularity of single-degrees-of-freedom (DOF)
multi-loop mechanisms was thoroughly studied. Wang and
Ting [12] achieved automated mobility identification of a
group of single-DOF planar eight-bar linkages. Plecnik and
McCarthy [13] presented function generators that offered
a direct solution to the kinematic synthesis equations of
the Stephenson-III six-bar mechanism. Compared with
single-DOF multi-loop planar mechanisms, a two-DOF
two-loop planar mechanism requires two input joints
to determine its configurations and has more complex
motion. Wang et al. [14]–[16] put forward a theoretical
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method based on the discriminate method that analyses
the singularity, branches, and sub-branches of planar two-
DOF seven-bar parallel linkages and manipulators. Wang
et al. [17] introduced the concept of the equivalent five-bar
linkage which can geometrically identify the dead center
positions of two-DOF seven-bar planar mechanisms. Nie
and Ding [18] proposed a method based on the graph
theory and transmission angles to identify two-DOF planar
parallel manipulators’ dead center positions. multi-loop
planar mechanisms with more than two DOF offer even
more complex motion and greater potential for industrial
application. Therefore, many scholars proposed different
methods to study their motion characteristics. Wang et al.
[19] analysed the dead center positions of a series of multi-
DOF multi-loop planar mechanisms with a degeneration
method. Liu et al. [20] proposed a methodology to identify
branches, circuits, and movement range of complex Assur
groups (AGs) and created a novel discriminant method for
identifying singularity configurations of complex AGs.

The kinematics of other types of planar mechanisms
with only revolute pairs have also been investigated.
Some scholars proposed different methods to study the
motion of planar mechanisms with joint clearances [21]–
[23]. Based on planar four-link mechanisms, other scholars
[24], [25] created manipulators of different purposes,
generated desired output motion, and established control
methods. Many scholars investigated the kinematics of
planar parallel mechanisms with only revolute pairs [26]–
[32], and invented devices based on them for practical
industrial usages. Chen et al. [33] invented and investigated
a new type of planar two-DOF remote center of motion
mechanisms for minimally invasive surgeries.

Some researchers have focused on designing and
analysing planar mechanisms with prismatic pairs to
produce translational motion. Soh and Ying [34] designed
a motion generation method of six-bar and eight-bar
mechanisms with prismatic pairs which were employed in
redesigning wheelchairs with multiple functions. Almestiri
et al. [35] presented a trajectory generation method
for closed-loop mechanisms with prismatic pairs and
revolute pairs. Zou et al. [36] designed a three-DOF
parallel manipulator without rotational capacity where
planar revolute joints and prismatic joints were exclusively
employed. Zarkandi [37] utilised the concept of instant
centers to conduct the isotropy analysis of multi-DOF
planar parallel mechanisms with prismatic joints. Helal
et al. [38] introduced a generalised algorithm to generate all
alternatives of planar N-bar kinematic chains with sliders.
Dharanipragada and Chintada [39] successfully conducted
the isomorphism test on kinematic chains with prismatic
pairs with the split hamming string method. Kang and
Kim [40] put forward a topology optimisation method
to synthesise a planar linkage mechanism with prismatic
pairs, whose input motion is converted into a desired
output motion at the mechanism’s end effector. Zhao
et al. [41] investigated the forward velocity, displacement,
and acceleration of planar four-bar and five-bar slider-
crank linkages. Essomba and Phu [42] presented a 3-PRP
(P and R represents the prismatic and revolute pairs,
respectively) planar mechanism connected to a 3-PRS

tripod mechanism to perform the bone reduction surgery.
Gallant and Gosselin [43] identified a planar 3-RPR
mechanism’s unconstrained motion with the mechanism’s
joint clearances considered, and thereafter studied the
mechanism’s singularities. Jhuang et al. [44] presented a
method to study a closed-loop four-link statically balanced
mechanism that possesses two prismatic joints. Rodriguez-
Gonzales et al. [45] demonstrated an approach with a
branching identification procedure to synthesize planar
RRPR linkages.

As per the abovementioned literature review, the
essentiality of the translational motion produced by
prismatic pairs in various mechanical structures is clearly
presented. Nevertheless, research on the two-DOF seven-
bar mechanism with prismatic pairs is rarely involved.
Methods to acquire prismatic joints’ precise translational
displacements have rarely been proposed. Therefore, this
paper, based on the aforementioned research, proposes the
two-DOF seven-bar mechanisms with a prismatic pair and
two prismatic pairs to produce translational movement.
The method to identify the proposed mechanisms’ motion
characteristics is also put forward. The method divides
the analysis of the two proposed mechanisms into four
segments. In the first segment, the two-DOF planar five-
bar mechanism is studied. The second segment concerns
recognising the JRSs of the two five-bar kinematic chains
in each proposed mechanism according to the analysis
and results of the first segment; the singularity curves,
dead center positions, branches, and branch points of
the proposed mechanisms are identified via mathematical
analysis. In the third segment, the precise displacement of
each joint in each proposed mechanism at each branch point
is obtained. The proposed mechanisms’ 3D models simulate
the proposed mechanisms’ motion and are utilised to verify
the displacement of each joint at each branch point. The
proposed mechanisms’ singularity configurations at branch
points are obtained mathematically, and later presented as
well as verified by the mechanisms’ 3D models. The fourth
segment illustrates the proposed mechanisms’ sub-branches
via mathematical analysis and the mechanisms’ 3D models.
With the mathematical analysis and 3D simulation, each
proposed mechanism’s range of motion can be attained and
the motion deficiencies of the mechanisms can be directly
observed.

2. The Discriminant Method to Identify the
Two-DOF Five-Bar Mechanism’s Singularity
Configurations

The schematic diagram of the two-DOF five-bar mecha-
nism is described in Fig. 1(a); the 3D model of the five-bar
mechanism is shown in Fig. 1(b).

In Fig. 1(a), every single solid line with an arrow,
which symbolises a vector, represents a link. Link AE is the

fixed link; the input joints are D and E. Since
⇀

AB +
⇀

BC =
⇀

AE +
⇀

ED +
⇀

DC, (1) can be derived according to the Euler
loop equation based on Euler’s formula.

a2e
iθ2 + a3e

iθ3 = a1e
iα + a5e

iθ5 + a4e
iθ4 (1)
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Figure 1. (a) The schematic diagram; (b) the 3D model of
the two-DOF planar five-bar mechanism.

Equation (1) can be converted into (2) and (3).

a3 cos θ3 = a1 cosα+ a5 cos θ5 + a4 cos θ4 − a2 cos θ2(2)

a3 sin θ3 = a1 sinα+ a5 sin θ5 + a4 sin θ4 − a2 sin θ2 (3)

By eliminating θ3, (4) and (5) can be acquired.

(a1 cosα+ a5 cos θ5 + a4 cos θ4 − a2 cos θ2)2

+(a1 sinα+a5 sin θ5+a4 sin θ4 − a2 sin θ2)2=a3
2 (4)

a1
2 + a2

2 − a32 + a4
2 + a5

2 + 2a1a5 cos(θ5 − α)

+2a1a4 cos(θ4 − α) + 2a4a5 cos(θ4 − θ5)

−2(a2a4 sin θ4 + a2a5 sin θ5 + a1a2 sinα) sin θ2

−2(a2a4 cos θ4+a2a5 cos θ5+a1a2 cosα) cos θ2=0 (5)

With X2 equallingtan θ2
2 , sin θ2 equals 2X2

1+X2
2

; cos θ2

equals
1−X2

2

1+X2
2

. Therefore, (5) can be converted into (6).

A2X2
2 +B2X2 + C2 = 0 (6)

where

A2 = a1
2 + a2

2 − a32 + a4
2 + a5

2 + 2a1a5 cos(θ5 − α)

+2a1a4 cos(θ4 − α) + 2a4a5 cos(θ4 − θ5)

+2(a2a4 cos θ4 + a2a5 cos θ5 + a1a2 cosα)

B2 = −4(a2a4 sin θ4 + a2a5 sin θ5 + a1a2 sinα)

C2 = a1
2 + a2

2 − a32 + a4
2 + a5

2 + 2a1a5 cos(θ5 − α)

+2a1a4 cos(θ4 − α) + 2a4a5 cos(θ4 − θ5)

−2(a2a4 cos θ4 + a2a5 cos θ5 + a1a2 cosα).

Equation (7) describes the condition that (6) needs to
satisfy to have roots.

∆2 = B2
2 − 4A2C2 = 4D1D2 ≥ 0 (7)

where

D1 = 2a2
√
a12 + a42 + a52 + 2a1a5 cos(θ5 − α)

+2a1a4 cos(θ4 − α) + 2a4a5 cos(θ4 − θ5)

+[a1
2 + a2

2 − a32 + a4
2 + a5

2

+2a1a5 cos(θ5 − α) + 2a1a4 cos(θ4 − α)

+2a4a5 cos(θ4 − θ5)]

Table 1
The Dimensions for the Two-DOF Five-Bar Mechanism

a1 a2 a3 a4 a5 α

5 6 6.5 6.3 5.5 30◦

Figure 2. The JRS of the planar five-bar mechanism.

D2 = 2a2
√
a12 + a42 + a52 + 2a1a5 cos(θ5 − α)

+2a1a4 cos(θ4 − α) + 2a4a5 cos(θ4 − θ5)

−[a1
2 + a2

2 − a32 + a4
2 + a5

2

+2a1a5 cos(θ5 − α) + 2a1a4 cos(θ4 − α)

+2a4a5 cos(θ4 − θ5)].

Equation (8) is employed to attain the value of θ2 given
that A2 does not equal 0.

X2 =
−B2 ±

√
∆2

2A2
(8)

The dimensions for the proposed five-bar mechanism
are enumerated in Table 1.

The JRS of the proposed five-bar mechanism is
described in Fig. 2.

In Fig. 2, the two red and blue singularity curves
are, respectively, obtained via D1 and D2 equalling 0; the
shaded area is the JRS of the mechanism whose boundaries
are the red and blue curves. With D1 and D2 equalling 0,
the values of θ4 and θ5 were acquired; the value of θ2 was
obtained via (8); the value of θ3 was obtained via (2) or
(3). The values of θ2, θ3, θ4, and θ5 at dead center positions
are enumerated in Table 2.

The values of θ3 and θ4 in dead center positions 1 and 2
are, respectively, on the red curve in the lower right corner
and the blue curve in Fig. 2. The singularity configurations
of the two dead center positions are displayed in Fig. 3(a)
and (b).

According to Fig. 3(a) and (b), when D1 or D2 equals
0, links AB and BC coincide completely or form one single
line without overlapping. In conclusion, with θ4 and θ5
being the two input angles, the three passive joints A, B,
and C become collinear in singularity configurations.
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Table 2
The Values of θ2, θ3, θ4, and θ5 at Dead Center Positions (D1=0)

Joints θ2 θ3 θ4 θ5

Dead center position 1 27.362◦ −152.638◦ 154.699◦ −80.355◦

Dead center position 2 19.171◦ 19.171◦ 57.296◦ −42.226◦

Figure 3. The planar five-bar mechanism at dead center
positions: (a) 1 and (b) 2.

3. Kinematic Analysis of the Two-DOF Planar
Seven-bar Mechanism with a Prismatic Pair

3.1 The Establishment of the Euler Loop Equation
Based on Euler’s Formula

Figure 4(a) describes the schematic diagram of a planar
two-DOF seven-bar mechanism with a prismatic pair;
Fig. 4(b) shows the 3D model of the mechanism.

In Fig. 4(a), the rectangular slider G contains a
prismatic pair GP. The revolute pair on the slider is GR.
The revolute pairs also include A, B, C, D, E, and F;
ai represents the length of a specific link or a link’s side
and θi represents the displacement of a specific revolute
joint. The triangular link CDF has two sides CD and DF,
which are at an angle of β degrees. Each solid line with
an arrow is a link or a side of a link in the mechanism
represented by a vector; the dotted line with an arrow
⇀

HG, whose scalar value equals S, is also a vector that
represents the translational motion of prismatic joint G.
The sides, AE and EH, of the triangular link AEH are,
respectively, at α and η degrees with the horizontal line;
⇀

HG and the horizontal line are at an angle of γ degrees.
With D and E designated as the two input joints and link
AEH as the fixed link, the Euler loop equations based on
Euler’s formula are employed to describe the two five-bar
kinematic chains of the mechanism.

In the five-bar kinematic chain ABCDE, as
⇀

AB+
⇀

BC =
⇀

AE +
⇀

ED +
⇀

DC, (9) can be derived.

a2e
iθ2 + a3e

iθ3 = a4e
iθ4 + a1e

iα + a5e
iθ5 (9)

In the five-bar kinematic chain HEDFG, as
⇀

HE+
⇀

ED+
⇀

DF =
⇀

HG +
⇀

GF, (10) can be derived.

a9e
i(π−η) + a5e

iθ5 + a7e
i(θ4−β) = Seiγ + a8e

iθ8 (10)

Figure 4. (a) The schematic diagram and (b) the 3D
model of the planar two-DOF seven-bar mechanism with a
prismatic pair.

Figure 5. Links AB and the bar BC form (a) one single
straight line without overlapping; (b) completely coincide.

According to the results of Section 2, the Euler loop
equations for the two singularity configurations of ABCDE
are described in (11) and (12).

Links AB and BC form one single straight line, as is
shown in Fig. 5(a).

(a2 + a3)eiθ2 = a4e
iθ4 + a1e

iα + a5e
iθ5

(a2 + a3) cos θ2 = a4 cos θ4 + a1 cosα+ a5 cos θ5

(a2 + a3) sin θ2 = a4 sin θ4 + a1 sinα+ a5 sin θ5 (11)

Links AB and BC completely coincide where θ3 = θ2
+ π, as is shown in Fig. 5(b).

a2e
iθ2 + a3e

i(θ2+π) = a4e
iθ4 + a1e

iα + a5e
iθ5

(a2 − a3) cos θ2 = a4 cos θ4 + a1 cosα+ a5 cos θ5

(a2 − a3) sin θ2 = a4 sin θ4 + a1 sinα+ a5 sin θ5 (12)

Equations (13) and (14) are obtained by eliminating
θ3 from (11) and (12), respectively.

(a4 cos θ4 + a1 cosα+ a5 cos θ5)2

+(a4 sin θ4 + a1 sinα+ a5 sin θ5)2 = (a2 + a3)2 (13)
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(a4 cos θ4 + a1 cosα+ a5 cos θ5)2

+(a4 sin θ4 + a1 sinα+ a5 sin θ5)2 = (a2 − a3)2 (14)

Equation (10) can be converted into (15) and (16).

a9 cos(π − η) + a5 cos θ5 + a7 cos(θ4 − β)

= S cos γ + a8 cos θ8 (15)

a9 sin(π − η) + a5 sin θ5 + a7 sin(θ4 − β)

= S sin γ + a8 sin θ8 (16)

Equation (17) can be obtained by eliminating the
variable S.

a9 cos(π − η) + a5 cos θ5 + a7 cos(θ4 − β)− a8 cos θ8
cos γ

=
a9 sin(π − η) + a5 sin θ5 + a7sin(θ4 − β)− a8 sin θ8

sin γ

(17)

With tan θ82 designated as x8, sinθ8 equals 2x8

1+x2
8
; cosθ8

equals
1−x2

8

1+x2
8
. Equation (17) is converted into (18), which

can be seen as a quadratic equation.

A8x
2
8 +B8x8 + C8 = 0 (18)

In (18),

A8 = a9 sin(π − η − γ) + a5sin(θ5 − γ)

+a7 sin(θ4 − β − γ)− a8 sin γ

B8 = −2a8 cos γ

C8 = a9 sin(π−η−γ)+a5 sin(θ5−γ)+a7 sin(θ4−β−
γ) + a8 sin γ.

With A8 not equalling 0, the discriminant of (18) is
(19).

∆8 = B2
8 − 4A8C8 ≥ 0 (19)

Equation (19) can be converted into (20).

∆8 = 4K1K2 ≥ 0 (20)

In (20)

K1 = a8 − a9 sin(π − η − γ)− a5 sin(θ5 − γ)

−a7 sin(θ4 − β − γ) (21)

K2 = a8 + a9 sin(π − η − γ) + a5 sin(θ5 − γ)

+a7 sin(θ4 − β − γ) (22)

The value of x8 can be obtained via (23) and (24).

x8[1] =
−B8 −

√
∆8

2A8
(23)

x8[2] =
−B8 +

√
∆8

2A8
(24)

Figure 6. The branch graph of the planar two-DOF seven-
bar mechanism with a prismatic pair without branch
points.

Figure 7. The 3D model of (a) the type-1 and (b) the
type-2 singularity configurations.

3.2 Analysis of Branches

3.2.1 Analysis of Branches Without Branch Points

Table 3 enumerates the parameters for the two-DOF
seven-bar mechanism with a prismatic pair without branch
points.

Figure 6 shows the four singularity curves. Curves 1
to 4 are, respectively, obtained via (13), (14), (21)=0, and
(22)=0. The light-shaded area, fM, is the JRS of ABCDE
surrounded by curves 1 and 2. The dark-shaded area
surrounded by curves 3 and 4, fN, is the JRS of HEDFG.
Since fM completely covers fN and no branch points exist,
the proposed mechanism’s motion is only decided by fN
and has decoupled motion. Therefore, the branch is fN ;
branch curves are curves 3 and 4. Joints A, B, and C can
never be collinear. The mechanism can encounter two types
of singularity configurations; the displacements of all joints
in two singularity configurations, each of which belongs
to a type of singularity configurations, are displayed in
Table 4.

The type-one singularity configuration is shown in
Fig. 7(a); the type-two singularity configuration is shown
in Fig. 7(b).
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Table 3
The Parameters for the Two-DOF Planar Seven-Bar Mechanism with a Prismatic Pair Without Branch Points

a1 a2 a3 a4 a5 a7 a8 a9 α η γ β

4.69 5.30 5.85 3.25 3.35 2.69 0.85 3.65 40◦ 60◦ 80◦ 60
◦

Table 4
The Precise Displacements of All Joints in the Two Singularity Configurations

Joints θ2 θ3 θ4 θ5 θ8 S

Type-1 109.193◦ 34.631◦ 132.221◦ 60.249◦ 170.000◦ 8.614

Type-2 92.801◦ 31.309◦ 112.909◦ 43.957◦ −10.000◦ 7.900

Figure 8. The branch graph of the planar two-DOF seven-
bar mechanism with a prismatic pair with branch points.

In the type-1 and type-2 singularity configurations, the
displacements of θ4 and θ5 are (132.221◦, 60.249◦) on curve
3 and (112.909◦, 43.957◦) on curve 4 shown in Fig. 6; θ2
was acquired via (4) and θ3 was acquired via (2) or (3); θ8
was obtained via (23) or (24); S was acquired through (15)
or (16). As per Table 4, when (21) or (22) equals 0, link
FG is vertical to prismatic pair GP, as is shown in Fig. 7.

3.2.2 Analysis of Branches with Branch Points

Table 5 lists the parameters for the planar two-DOF seven-
bar mechanism with a prismatic pair with branch points.

Fig. 8 shows 4 singularity curves.
Curves 1 to 4 are, respectively, obtained via (13), (14),

(21)=0, and (22)=0. The light-shaded area, fM, is the JRS
of ABCDE. The light-shaded area surrounded by curves 3
and 4 is represented by fN, which is the JRS of HEDFG.
The three dark-shaded shared areas of fM and fN are
the branches; the mechanism has coupled motion. The
intersection points of the 4 curves are called branch points
obtained via (13), (14), (21)=0, and (22)=0. There are 12
branch points shown in Table 6.

At each branch point, passive joints A, B, and C are
collinear. Since all 12 branch points are on either curve
3 or 4, ∆8 equals 0 at each branch point. Each joint’s
displacement at branch points can be obtained, which is
shown in Table 7. The displacement of θ2 was acquired via
(11) or (12) and the displacement of θ8 was obtained via
(23) or (24). Finally, S was obtained through (15) or (16).

Note: If S is a positive value, prismatic pair GP is
above AH in Fig. 4(a). If S is a negative value, GP is
below AH.

The 3D model of the proposed mechanism simulated
the mechanism’s motion and verified each joint’s displace-
ment at each branch point. The mechanism’s singularity
configurations at branch points are shown in Fig. 9.

As per Fig. 9, link FG is vertical to prismatic pair GP

at each branch point.

3.3 Identification of Sub-branches

If the proposed mechanism transforms between two
different sub-branches, it will encounter singularity
configurations where µ1 in Fig. 4(a) equals 0◦ or 180◦

and µ2 in Fig. 4(a) equals 90◦ or 270◦. A branch has
at most four sub-branches according to whether µ1∈(0◦,
180◦) or (180◦, 360◦), and whether µ2∈(−90◦, 90◦) or (90◦,
270◦). With a set of given values for θ4 and θ5, P, sub-
branches of the proposed mechanism with branch points
were identified. The results are shown in Table 8.

Note: When S has a positive value, prismatic pair GP

is above AH in Fig. 4(a). When S has a negative value,
prismatic pair GP is below AH.

The 3D model of the proposed mechanism also verified
the displacement of the mechanism’s each joint at each set
of input values. The four configurations of the proposed
mechanism at the given set of input values are shown in
Fig. 10.

P is in the branch that has 5th, 6th, 11th, and, 12th
branch points in Fig. 8. The first sub-branch, where µ1

is within 0◦ to 180◦, contains, P[3] and P[4]. The second
sub-branch, where µ1 is within 180◦ to 360◦, contains, P[1]

and P[2]. The third sub-branch, where µ2 is within −90◦ to
90◦, contains P[1] and P[3].The fourth sub-branch, where
µ2 is within 90◦ to 270◦, contains P[2] and P[4].
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Table 5
The Parameters for the Two-DOF Planar Seven-Bar Mechanism with a Prismatic Pair with Branch Points

a1 a2 a3 a4 a5 a7 a8 a9 α η γ β

3.69 3.30 1.85 2.25 3.35 2.33 0.85 3.45 25◦ 70◦ 85◦ 135
◦

Table 6
The 12 Branch Points in Fig. 8(a)

1 2 3 4 5 6 7 8 9 10 11 12

θ4 171.068◦ 251.955◦ 233.383◦ 181.800◦ 232.471◦ 153.939◦ 135.506◦ 67.897◦ 43.597◦ 102.282◦ 177.271◦ 245.047◦

θ5 465.052◦ 411.660◦ 386.794◦ 429.998◦ 322.051◦ 268.054◦ 264.808◦ 286.318◦ 272.924◦ 239.256◦ 248.116◦ 293.422◦

Table 7
The Displacement of the Joints in the Two-DOF Planar Seven-Bar Mechanism with a Prismatic Pair at Branch Points

Joints θ2 θ3 θ4 θ5 θ8 S

1 87.200◦ 87.200◦ 171.068◦ 465.052◦ 175.000◦ 7.804

2 23.429◦ 23.429◦ 251.955◦ 411.660◦ 175.000◦ 7.902

3 14.203◦ 14.203◦ 233.383◦ 386.794◦ −5.000◦ 7.158

4 64.203◦ 64.203◦ 181.800◦ 429.998◦ −5.000◦ 8.194

5 −26.339◦ −26.339◦ 232.471◦ 322.051◦ −5.000◦ 3.580

6 −33.490◦ 146.510◦ 153.939◦ 268.054◦ −5.000◦ 0.727

7 −7.925◦ 172.075◦ 135.506◦ 264.808◦ −5.000◦ 0.0003

8 4.779◦ 4.779◦ 67.897◦ 286.318◦ −5.000◦ −2.053

9 −2.611◦ −2.611◦ 43.597◦ 272.924◦ 175.000◦ −2.517

10 37.291◦ 217.291◦ 102.282◦ 239.256◦ 175.000◦ −0.975

11 −96.009◦ 83.991◦ 177.271◦ 248.116◦ 175.000◦ 1.633

12 −43.645◦ −43.645◦ 245.047◦ 293.422◦ 175.000◦ 2.291

Table 8
The Identification of Sub-branches of the Two-DOF Planar Seven-Bar Mechanism with a Prismatic Pair

Joints (θ4, θ5) θ2 θ3 µ1 θ8 S µ2

P[1] (217.724◦, 297.938◦) −66.750◦ 7.964◦ 254.714◦ −62.567◦ 3.361 −32.433◦

P[2] (217.724◦, 297.938◦) −66.750◦ 7.964◦ 254.714◦ 52.540◦ 1.926 212.460◦

P[3] (217.724◦, 297.938◦) −16.329◦ −88.980◦ 107.349◦ −62.567◦ 3.361 −32.433◦

P[4] (217.724◦, 297.938◦) −16.329◦ −88.980◦ 107.349◦ 52.540◦ 1.926 212.460◦

4. Kinematic Analysis of the Planar Two-DOF
Seven-Bar Mechanism with Two Prismatic Pairs

4.1 The Establishment of the Euler Loop Equation
Based on Euler’s Formula

Figure 11(a) shows the schematic diagram of the planar
two-DOF seven-bar mechanism with two prismatic pairs.
Figure 11(b) shows the 3D model of the mechanism.

In Fig. 11, prismatic pair BP and revolute pair BR are
all on slider B; prismatic pair GP and revolute pair GR

are all on the slider G. Other revolute pairs include C, D,
E, and F. ai represents the length of a specific link or a
specific side of a link and θi represents the displacement of
a specific joint. The sides, AE and EH, of the triangular
link AEH are at ψ and η degrees with the horizontal line,
respectively. The angle that is formed by the two sides, CD
and DF, of the triangular link CDF is β. The translational
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Figure 9. The singularity configurations of the two-DOF seven-bar planar mechanism with a prismatic pair at each branch
point: (a) branch point 1; (b) branch point 2; (c) branch point 3; (d) branch point 4; (e) branch point 5; (f) branch point 6;
(g) branch point 7; (h) branch point 8; (i) branch point 9; (j) branch point 10; (k) branch point 11; (l) branch point 12.

Figure 10. The configurations of the two-DOF planar seven-bar mechanism with a prismatic pair at the given set of input
values: (a) P[1]; (b) P[2]; (c) P[3]; (4) P[4].

displacements of sliders B and G are represented by S1 and
S2, respectively. Each solid line with an arrow is a link or a
side of a link in the mechanism represented by a vector; the

two dotted lines with an arrow
⇀

AB and
⇀

HG are also vectors
that represent the translational motion created by B and

G respectively;
⇀

AB and
⇀

HG are at an angle of α1 and α2

degrees with the horizontal line, respectively. With θ3 and

θ4 being the input angles and link AEH being the fixed
link, the Euler loop equations based on Euler’s formula for
the two five-bar kinematic chains in the mechanism are
established. In the five-bar kinematic chain ABCDE, since
⇀

AB +
⇀

BC =
⇀

AE +
⇀

ED +
⇀

DC, (25) can be obtained.

S1e
iα1 + a2e

iθ2 = a1e
iψ + a4e

iθ4 + a3e
iθ3 (25)
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Figure 11. (a) The schematic diagram; (b) the 3D model of the planar two-DOF seven-bar mechanism with two prismatic
pairs.

In the five-bar kinematic chain HEDFG,
⇀

HE +
⇀

ED +
⇀

DF =
⇀

HG +
⇀

GF, (26) can be derived.

a8e
i(π−η) + a4e

iθ4 + a6e
i(θ3−β) = S2e

iα2 + a7e
iθ7 (26)

To analyse ABCDE, (25) is converted into (27) and
(28).

S1 cosα1 + a2 cos θ2 = a1 cosψ + a4 cos θ4 + a3 cos θ3 (27)

S1 sinα1 + a2 sin θ2 = a1 sinψ + a4 sin θ4 + a3 sin θ3 (28)

By eliminating S1, (29) is established.

a1 cosψ + a4 cos θ4 + a3 cos θ3 − a2 cos θ2
cosα1

=
a1 sinψ + a4 sin θ4 + a3 sin θ3 − a2 sin θ2

sinα1
(29)

With x2 designated as tan θ22 , sinθ2 equals 2x2

1+x2
2

and

cosθ2 equals
1−x2

2

1+x2
2
. (29) can be converted into (30), which

can be seen as a quadratic equation.

A2x
2
2 +B2x2 + C2 = 0 (30)

In (30),

A2 = a1 sin(ψ − α1) + a4 sin(θ4 − α1)

+a3 sin(θ3 − α1)− a2 sinα1

B2 = −2a2 cosα1

C2 = a1sin(ψ−α1)+a4sin(θ4−α1)+a3sin(θ3−α1)+
a2 sinα1.

When A2 does not equal 0, (31) is the discriminant of
(30).

∆2 = B2
2 − 4A2C2 ≥ 0 (31)

Equation (31) can be converted in (32).

∆2 = 4R1R2 ≥ 0 (32)

In (32),

R1 = a2 − a1 sin(ψ − α1)− a4 sin(θ4 − α1)

−a3 sin(θ3 − α1) (33)

R2 = a2 + a1 sin(ψ − α1) + a4 sin(θ4 − α1)

+a3 sin(θ3 − α1). (34)

The exact values of x2 can be obtained via (35) and
(36).

x2[1] =
−B2 −

√
∆2

2A2
(35)

x2[2] =
−B2 +

√
∆2

2A2
(36)

To analyse HEDFG, (26) is converted into (37) and
(38).

a8 cos(π − η) + a4 cos θ4 + a6 cos(θ3 − β)

= S2 cosα2 + a7 cos θ7 (37)

a8 sin(π − η) + a4 sin θ4 + a6 sin(θ3 − β)

= S2 sinα2 + a7 sin θ7 (38)

By eliminating S2, (39) is established.

a8cos(π − η) + a4 cos θ4 + a6cos(θ3 − β)− a7 cos θ7
cosα2

=
a8sin(π − η)+a4 sin θ4 + a6sin(θ3 − β)−a7 sin θ7

sinα2
= S2

(39)

With x7 designated as tan θ72 , sinθ7 equals 2x7

1+x2
7

and

cosθ7 equals
1−x2

7

1+x2
7
; (39) can be converted into (40), which

can also be seen as a quadratic equation.

A7x
2
7 +B7x7 + C7 = 0 (40)

In (40),

A7 = a8 sin(π − η − α2) + a4 sin(θ4 − α2)

+a6 sin(θ3 − β − α2)− a7 sinα2

B7 = −2a7 cosα2

C7 = a8 sin(π− η− α2) + a4 sin(θ4 − α2) + a6 sin(θ3 −
β − α2) + a7 sinα2.

When A7 does not equal 0, (41) is the discriminant of
(40).

∆7 = B2
7 − 4A7C7 ≥ 0 (41)
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Table 9
The Parameters for the Two-DOF Seven-Bar Mechanism with Two Prismatic Pairs with Branch Points

a1 a2 a3 a4 a6 a7 a8 α1 α2 ψ η β

2.69 3.85 6.25 3.35 5.33 3.85 2.45 130◦ 70◦ 25◦ 15◦ 135
◦

Table 10
The Four Branch Points in Fig. 12

Branch points 1 2 3 4

θ3 149.515◦ 97.534◦ 248.903◦ 183.807◦

θ4 395.470◦ 271.108◦ 293.047◦ 154.785◦

Figure 12. The branch graph and the 3D model of the
planar two-DOF seven-bar mechanism with two prismatic
pairs with branch points.

Equation (41) can be converted into (42).

∆7 = 4Q1Q2 ≥ 0 (42)

In (42),

Q1 = a7 − a8 sin(π − η − α2)− a4 sin(θ4 − α2)

−a6 sin(θ3 − β − α2) (43)

Q2 = a7 + a8 sin(π − η − α2) + a4 sin(θ4 − α2)

+a6 sin(θ3 − β − α2). (44)

The exact values of x7 can be obtained via (45) and
(46).

x7[1] =
−B7 −

√
∆7

2A7
(45)

x7[2] =
−B7 +

√
∆7

2A7
(46)

4.2 The Analysis of Branches

Table 9 enumerates the parameters for the mechanism
with branch points.

Figure 12 shows the branch and branch points of the
proposed mechanism.

Curves 1 to 4 are, respectively, obtained via (33)=0,
(34)=0, (43)=0, and (44)=0. The light-shaded area
surrounded by curves 1 and 2, fM, is the JRS of ABCDE.
The light-shaded area surrounded by curves 3 and 4, fN,
is the JRS of HEDFG. The dark-shaded shared section of
fM and fN is the branch of the mechanism. The branch
points can be identified via (33)=0, (34)=0, (43)=0 and
(44)=0, respectively. There are four branch points shown
in Table 10.

At each branch point, both ∆2 and ∆7 equal 0. The
displacements of other joints can be obtained and are
shown in Table 11.

Note: if S1 has a negative value, prismatic pair BP
is below AH in Fig. 11(a). If S1 has a positive value,
BP is above AH. If S2 has a negative value, prismatic pair
GP is below AH. If S2 has a positive value,GP is above AH.

Equations (35) and (36) were utilised to obtain θ2; (27)
and (28) were employed to acquire S1; (45) and (46) were
used to obtain θ7; (37) and (38) were deployed to obtain S2.
According to Table 11, at each branch point, links BC and
FG are, respectively, vertical to prismatic pairs BP and Gp.
The 3D model of the proposed mechanism simulated the
mechanism’s singularity configurations at branch points,
which are shown in Fig. 13.

4.3 Analysis of Sub-branches

With a set of given values for θ3 and θ4, P, the sub-branches
of the proposed mechanism with parameters in Table 10
were identified. The results are in Table 12.

Note: if S1 has a negative value, prismatic pair BP

is below AH in Fig. 11(a). If S1 has a positive value,
BP is above AH. If S2 has a negative value, prismatic pair
GP is below AH. If S2 has a positive value, GP is above AH.

Figure 14 enumerates the four configurations of the
mechanism at the given set of input values, which were
simulated and verified by the 3D model of the mechanism.

The first sub-branch, where µ1 is within −90◦ to 90◦,
contains P[1] and P[3]. The second sub-branch, where µ1

is within 90◦ to 270◦, contains P[2] and P[4]. The third
sub-branch, where µ2 is within −90◦ to 90◦, contains P[3]

and P[2]. The fourth sub-branch, where µ2 is within 90◦ to
270◦, contains P[3] and P[4].
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Table 11
The Displacement of the Joints in the Planar Two-DOF Seven-Bar Mechanism with Two Prismatic Pairs at Branch Points

Branch Points S1 θ2 θ3 θ4 θ7 S2

1 4.930 40.000◦ 149.515◦ 395.470◦ −20.000◦ 5.566

2 1.970 40.000◦ 97.534◦ 271.108◦ −20.000◦ −4.938

3 −6.921 −140.000◦ 248.903◦ 293.047◦ 160.000◦ 1.179

4 6.036 −140.000◦ 183.807◦ 154.785◦ 160.000◦ 5.061

Figure 13. The singularity configurations of the two-DOF planar seven-bar mechanism with two prismatic pairs at each
branch point: (a) branch point 1; (b) branch point 2; (c) branch point 3; and (4) branch point 4.

Table 12
The Identification of Sub-Branches of the Planar Two-DOF Seven-Bar Mechanism with Two Prismatic Pairs

Positions (θ3, θ4) θ2 S1 µ1 θ7 S2 µ2

P[1] (143.239◦, 171.887◦) −66.119◦ 11.580 −16.119◦ −125.420◦ 5.330 15.420◦

P[2] (143.239◦, 171.887◦) 146.104◦ 4.183 196.104◦ −125.420◦ 5.330 15.420◦

P[3] (143.239◦, 171.887◦) −66.119◦ 11.580 −16.119◦ 85.428◦ −2.093 164.572◦

P[4] (143.239◦, 171.887◦) 146.104◦ 4.183 196.104◦ 85.428◦ −2.093 164.572◦

Figure 14. Configurations of the two-DOF seven-bar planar mechanism with two prismatic pairs at the given set of input
values: (a) P[1]; (b) P[2]; (c) P[3]; and (d) P[4].

5. Conclusions and Discussion

This paper extends research on planar complex mecha-
nisms with only revolute pairs to the research on planar
complex mechanisms with not only revolute pairs but
also prismatic pairs. Proposed in this paper are the
two-DOF planar seven-bar mechanisms with a prismatic
pair and two prismatic pairs to produce translational
output movement. On the basis of the rotatability laws
for N-bar kinematic chains, the concept of JRS, and the

discriminant method, the motion characteristics of the
two proposed mechanisms were systematically analysed
via the kinematic analysis methodology proposed in this
paper. The kinematic analysis methodology successfully
identified and verified the branches, branch points,
and sub-branches of the two proposed mechanisms;
the method also accurately obtained and verified the
displacements of revolute and prismatic joints of the
two proposed mechanisms at branch points and in
sub-branches.
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However, the study into planar multi-loop mechanisms
needs to be more thorough. Prismatic pairs can be
introduced into single-DOF planar eight-bar mechanisms
and three-DOF planar eight-bar mechanisms to create
translational motion. Prismatic pairs can also be employed
in two-DOF spherical seven-bar mechanisms to diversify
their motion. Future research should focus on those
mechanisms with prismatic pairs.
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