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AN ANN-BASED INTEGRATED MODEL FOR
AUTONOMOUS UAV FLIGHT CONTROL
CONSIDERING EXTERNAL FORCES

Saewoong Min,* Chulwoo Rhim,** and Seongju Chang***

Abstract

This study presents an artificial neural network (ANN)-based
integrated model designed to tackle the challenges of autonomous
flight control in unmanned aerial vehicles (UAVs), with a particular
focus on external forces such as wind speed. The proposed model
offers multiple contributions to the field, including a reduction in
UAV operation costs, simplified UAV control model establishment,
and the ability to handle uncertainties and nonlinearities in different
system environments. The model achieves high prediction accuracy
(R? 0.9710 and 0.9480) for UAV acceleration and path prediction,
making it suitable for various UAVs including aviation systems. A
dual-model approach is introduced, with Model 1 predicting the
path with acceleration and wind speed, and Model 2 predicting
the acceleration of the UAV with path and wind speed. This
comprehensive approach enhances the autonomous flight control
process. The proposed model enables the prediction of future
UAV paths and stable control using established autonomous flight
mechanisms even when following a new path. Although the study
focuses on wind speed as the primary external force, there is potential
for further improvement by incorporating additional external forces
and data sources, such as gyro sensors, temperature, barometric
pressure, and image data. In conclusion, the proposed model provides
a valuable contribution to the field of autonomous UAV control,
and future work can include refining the model with other external
forces and data sources to enhance its accuracy and reliability in

various environments.
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Nomenclature

UAV
GPS
RADAR
LiDAR
IMU
LSTM
NN
ANN
PID
HVAC
RNN
NAR
NARX

Unmanned Aerial Vehicle

Global Positioning System

Radio Detection and Ranging

Light Detection and Ranging

Inertial Measurement Unit

Long Short-Term Memory

Neural Network

Artificial Neural Network

Proportional, Integral, Derivative
Heating, Ventilation, & Air Conditioning
Recurrent Neural Networks

Nonlinear Autoregressive

Nonlinear Autoregressive Network with Exoge-
nous Inputs

Nonlinear Input-Output

North East Down

The Coefficient of Determination
Standard Deviation

NIO
NED
RQ
Stdev

1. Introduction
1.1 Research Context

The research context of this study is focussed on the
challenges of autonomous flight control of unmanned aerial
vehicles (UAVs), particularly in the face of technical
and theoretical challenges posed by external forces and
limitations of global positioning system (GPS) signals.
As drones become increasingly commercialised for civilian
use in various fields, such as logistics, monitoring, and
agricultural operations, critical safety concerns arise with
the potential for GPS errors, bad weather conditions, and
unstable flight resulting in disastrous accidents. Moreover,
as drones are subject to aviation safety regulations and
various safety measures, such as no-fly zones and flight
approvals, studies on autonomous aerial manoeuvring have
become more prevalent [1]. Research on UAVs is being
conducted in various fields, encompassing logistics, farms,
indoor environments, agricultural operations, military
agencies, emergency situations, and disaster scenarios

[2]-[10].



In the pursuit of autonomous flight, UAVs heavily
rely on various equipments. To achieve autonomy, UAVs
employ sensors for environment perception, path planning,
and motion control [11]. Numerous sensors, including those
associated with the Internet of Things, computer vision
[12]-[16], radio detection and ranging (RADAR), and light
detection and ranging (LiDAR) [16]-[18], are being utilised
in research. Cameras are relatively accessible sensors,
which provide useful information similar to human vision.
However, extracting valuable information for autonomous
driving requires substantial AI processing capabilities
[19]. Moreover, the recognition ability of cameras varies
depending on light intensity [20]. Challenges, such as
hardware limitations and processing capacity, hinder the
widespread implementation of computer vision systems
[19]. Thus, some applications still encounter accuracy
challenges, and incorporating computer vision systems
into various systems and workflows introduces additional
complexities [11].

Due to the lower resolution in RADARs compared
to cameras, the sensors in RADARs are generally not
well-suited for object recognition applications [20]. As a
result, researchers in the field of autonomous vehicles often
integrate RADAR data with other sensory information,
such as cameras and LiDAR, to overcome the limitations
of the system’s sensors [20]. By combining multiple sensor
inputs, the researchers aim to compensate for the coarse
resolution of RADAR and enhance the overall object
recognition capabilities of the AV system [20].

However, despite LIDAR’s advantages in dealing with
light, the method has a weakness when it comes to adverse
weather conditions [21]. The primary drawbacks of LIDAR
are high cost and large size [21], [22]. These challenges
encompass factors, such as cost, meeting reliability
and safety standards, long measuring distances, adverse
weather conditions, image resolution, and compact inte-
gration size [21]. To address these challenges, researchers
have explored various solutions including different laser
sources, scanning methods, and ranging principles [21].
Recent efforts by companies have focussed on miniaturising
and reducing the weight of LIDAR, indicating the potential
future availability of compact and affordable LiDAR
systems for the general public [21].

Along with developments in LiDAR, there has also
been a recent surge in research on autonomous aerial
manoeuvring to develop UAVs capable of operating with-
out direct human intervention [23]—[25]. To overcome the
limitations of various sensors, this study proposes a novel
approach that focuses solely on acceleration, disregarding
traditional sensors. The proposed approach utilises an
artificial neural network (ANN)-based integrated model
to predict UAV acceleration, taking into account external
forces like wind speed to enable autonomous flight and
accurate path tracking. By considering these factors, the
proposed method aims to enhance the accuracy of path
tracking and ultimately improve the safety and efficiency
of UAV operations. The main objective of this study
is to introduce an innovative approach to tackle the
challenges associated with autonomous flight control in
UAVs, specifically emphasising the prediction of UAV
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acceleration while considering external forces such as wind
speed to facilitate autonomous flight and precise path
tracking.

UAVs have been a subject of extensive research in
the field of control systems. Numerous studies have been
conducted to enhance the manoeuvrability and control
precision of UAVs [26]. One study focussed on developing
a stable and accurate controller for achieving fast and agile
maneuver control of UAVs [27]. This was accomplished by
integrating ANN-based existing controller with advanced
capabilities. The proposed approach incorporated online
learning of system dynamics, which effectively addresses
challenges related to unmodelled dynamics and operational
uncertainties [27]. The experimental results demonstrate
the superior performance of the proposed controller
compared to conventional controllers, particularly in
enabling fast and agile manoeuvring even at high speeds
[27]. The study presented the details of the developed
controller, which highlighted its potential to advance
the field of UAV control [27], but did not account
for external forces. Thus, it remains unclear whether
the developed model can be effectively employed within
constrained environments or applied in specialised settings.
Another work proposed an intelligent UAV path planning
framework that combines ANN and artificial potential
fields (APF) [28] to generate optimal collision-free paths
[29]. The implementation results demonstrated improved
performance compared to existing methods, resulting in
optimal and safe paths for UAVs [29]. However, the
research was conducted under ideally limited conditions. In
another study, an adaptive neural network-based intelligent
control method is proposed to stabilise an UAV system
(UAS) in complex environments with uncertainties and
disturbances [30]. The controller, based on a radial basis
function (RBF) network [31], successfully handles system
dynamics uncertainties and disturbances as confirmed
through computer-based simulations [30]. These previous
studies focussed on achieving a stable UAV flight in a
constrained environment, but did not consider the influence
of external forces. Therefore, the current study investigates
the autonomous navigation of UAVs, considering external
forces such as wind.

The originality and novelty of this study lie in the
development of an integrated model based on ANNs. By
harnessing the capabilities of ANNs, UAV acceleration
can be accurately predicted and external factors can be
incorporated for enhanced flight control. This integrated
model offers a novel solution to the existing challenges in
autonomous UAV flight control. The contribution of this
research is threefold. Firstly, an ANN-based integrated
model that predicts UAV acceleration is proposed, which
takes into account external forces such as wind speed.
This model provides a more accurate understanding
of the UAV’s dynamics, enabling precise path tracking
and enhancing flight control. Secondly, a dual-model
structure is introduced, which further enhances the UAV’s
flight control capabilities. By integrating multiple models
where each type is specialised in handling specific flight
scenarios, the dual model can effectively adapt to changing
environmental conditions and ensure safe and efficient



Sensors Environment Recognition Module Flight Control
Position Module
GPS Position Information Position
Recognition Control
Location/Environment
Information
c nvironmen
Gt Recognition
Tilt Angle
Control
Path Plan Module
LIDAR
Actuator
(o )

Figure 1. Environmental recognition and path planning process for an autonomous flight of UAVs.

operations. Lastly, this research contributes to the field
of autonomous aerial manoeuvring by addressing the
technical and theoretical challenges posed by external
forces and GPS limitations. The study provides insights
and solutions that can be applied in the development of
autonomous UAVs, ensuring their reliability and safety in
real-world applications.

The dual-model structure introduced in this study
consists of Model 1 for predicting the path with acceleration
and wind speed and Model 2 for predicting the acceleration
of the UAV with path and wind speed. This model provides
more precise predictions for both acceleration and path,
enhancing UAVs’ autonomous flight control. Furthermore,
the proposed model demonstrates high prediction accuracy
and can be easily applied to different UAVs and aviation
systems, making it a versatile solution for a wide range of
applications. By addressing uncertainty and nonlinearity
in varying system environments, the proposed model
simplifies the establishment of UAV control models, which
reduces operational costs. In summary, this study aims to
tackle the challenges of autonomous flight control of UAVs
in the face of technical and theoretical challenges posed
by external forces and limitations of GPS signals. This is
done by proposing an innovative ANN-based integrated
model that predicts the acceleration of UAVs and offering
a dual-model structure for enhanced flight control.
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The structure of this paper is organised as follows:
Section 1 provides a comprehensive review of related
literature in autonomous flight control and ANN-based
models. Section 2 presents the methodology, detailing the
proposed integrated model, and the dual-model structure.
Section 3 discusses the experimental setup and presents
the results and analysis. Finally, Section 4 explores the
implications of the findings and their significance in the
context of autonomous UAV flight control, and concludes
the paper.

1.2 UAV Flight Methods

UAV can perform autonomous flight through a combi-
nation of sensors, an environmental recognition module,
a path planning module, and a flight control module.
Figure 1 illustrates how these components work together
to enable autonomous flight [11]. In the context of
autonomous flight control, UAVs typically rely on a com-
bination of sensors, including GPS, cameras, LiDAR, and
inertial measurement units (IMU), to gather information
about their location and surrounding environment. After,
this information is processed by an environment recognition
module, which generates a path plan for the UAV to follow.
If obstacles are detected along the path, the path planning
module adjusts the plan accordingly. By integrating these



Table 1

Related Works

Authors Topic Method Contribution

Son [32] Predicting position in Vision This study proposed vision-based method for predicting
environments where GPS position in GPS-denied environments. Contribution to
signals are unavailable the development of autonomous navigation systems for

environments, such as tunnels and indoor spaces, where
GPS signals may not be available.

Zhong et al. [33] | Estimating the real-time Vision The proposed method utilises a single camera and
location of UAVs ArUco markers to achieve localisation accuracy within 8

cm of the target location in real time.

Hidaka et al. [34] | Autonomous flight control | Vision This study proposed a method for achieving
of UAVs autonomous flight control of UAVs in a wider space by

configuring a single coordinate system for combining
images from two cameras.

Ma et al. [35] Trajectory prediction for LSTM A model is proposed that predicts the trajectory of an
aircraft aircraft using time, altitude, longitude, latitude, speed,

and heading data.

Zeng et al. [36] Trajectory prediction LSTM This study proposed position trajectory prediction
model for aviation terminal method to prevent low altitude, collision, and flight path
safety deviation by incorporating input parameters such as

position, trajectory, speed, and aircraft type.

Conte et al. [37] | Predicting the orbital flight | NN The work developed a prediction model for the orbital
time of drones for efficient flight time of drones based on corner angle, relative
traffic management orientation, and wind strength to improve traffic

management of drones.

Collotta et al. [38] | Real-time control of NN This study developed a real-time system for controlling
hexacopter trajectory using the trajectory of a hexacopter using a neural network,

a neural network resulting in reduced errors in the coordinates of the
hexacopter.

Xue [39] 4D trajectory prediction of | ANN The model utilises the location, speed, and wind speed
small UAVs with wind data of small UAVs to predict their 4D trajectory with
speed consideration high accuracy, achieving a prediction error of less than

2.0 meters.

Wu et al. [40] Prediction of aircraft Backpropagation| The proposed model uses past position and velocity data

trajectory NN along with current altitude to predict the future position
and altitude of the aircraft with an accuracy of less than
1 min for time and less than 50 m for altitude.

various modules, the UAV’s flight can be controlled with
the primary driver of flight being the location of the UAV.

1.3 Related Works

Table 1 presents a summary of various studies conducted
on UAV trajectory control. A wide range of approaches has
been proposed for UAV trajectory prediction, which can
be categorised into state estimation, aerodynamic model-
based, data-based, and combination methods [36]. Initially,
UAVs were controlled using mathematical models in which
the Newton—Oiler equation was used to calculate the
flight path, and the proportional-integral-derivative (PID)
control model was used for stable conditions [41]. However,
despite being the most widely used technique currently,
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the mathematical model has its limitations. Thus making
it difficult for the model to maintain stability without the
assistance of experienced experts [42]. Non-linear control
methods have been widely used for the control system of
UAVs [38]. Various methods, such as Lyapunov function
[43], backstep [44], and nonlinear dynamic inversion [45],
have been applied to improve the posture, trajectory,
and control of UAVs. However, these methods that rely
only on approximate nonlinear models may degrade the
performance of UAVs [38] and are often too complex to
design. To address these challenges, a study proposed
a real-time system based on ANNs [46] for controlling
the trajectory of UAVs [38]. ANN has the advantage
of reducing economic costs and effort in identifying and
modeling dynamics, as well as designing real-world control
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Figure 2. Typical structure of LSTM model.

®

laws to handle uncertainty and nonlinearity in systems and
environments.

On the other hand, GPS and IMU sensors are not
effective in tunnels, indoors, and under bridges due to
GPS instability [33]. Although some methods use GPS
for autonomous flight control, GPS is often not available
on bridges [34]. To address this issue, researchers such as
Zhong et al. [33], Hidaka et al. [34], and Son [32] have
utilised camera images for UAV localisation. Zhong et al.
utilised [33] only one camera and ArUco markers to achieve
real-time UAV localisation with an error of less than
8 cm while Hidaka et al. demonstrated autonomous flight
control in a wider space by creating a coordinate system
that combines images from two cameras [32]. In addition,
Son studied image-based location prediction in indoor
environments where GPS signals are not detected [39].

Furthermore, Ma and Tian [35] and Zeng et al. [36]
predicted UAV trajectories using long short-term memory
(LSTM) models (Fig.2). In particular, Ma and Tian
utilised one-dimensional convolution to extract spatial
correlation and LSTM to extract temporal and spatial
correlation for trajectory prediction [35]. Zeng et al.
applied LSTM for trajectory prediction to prevent aviation
accidents at air terminals with inputs such as location,
trajectory, speed, and aircraft type [36]. The approach
used in these two studies reduces accidents during flight
operations at air terminals.

In the meantime, some studies have utilised neural
networks to predict UAV trajectories. Collotta et al.
[38] proposed a real-time system based on a neural
network model for controlling UAV trajectory, showing
improved accuracy in the predicted path. In addition, Xue
[39] predicted trajectories using angular velocity, angular
acceleration, tilt angle, external force, and inertia of the
UAV, highlighting the difficulty in creating control models
due to intellectual property issues and manufacturing
cost constraints. Furthermore, Wu et al. [40] predicted
longitude, latitude, altitude, and velocity values for the
next time step using data from previous time steps with an
error rate of less than 1 min for time and less than 50 m for
altitude. Lastly, Conte et al. [37] predicted the trajectory
flight time for drone traffic management based on corner
angle, relative direction, and wind strength of the UAV.

Neural networks are capable of handling uncertainty
and nonlinearity in various systems and environments
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Table 2

Data Set
Classification |Parameter
Time time
Acceleration | accx
Acceleration | acc_y
Acceleration acc_z
Position latitude
Position longitude
Position altitude
Position North
Position East
Position Down
Wind speed wind_speed
Wind direction | wind_direction

[38]. These characteristics allow for accurate trajectory
predictions even in GPS-unutilized environments [33],
address the instability of PID control [42], and help
overcome manufacturers’ reluctance to share control
models [39].

2. Methodology
2.1 2.1. Dataset Description

In this study, the data set used for training and testing the
proposed model consists of sensor readings from UAVs. The
data set includes five variables: time, acceleration, angular
velocity, position, and tilt angle. Table 2 shows the specific
parameters for each variable, including the accelerations
along z, y, and z axes (acc_z, acc_y, and acc_z); latitude;
longitude, altitude; positions in North, East, and Down
directions; wind speed; and wind direction. The data set
consists of 7,618 sets of 12 typed data obtained from 262
test flights. The data was averaged over 1 min and 27 s
with a time interval of 3 s, resulting in a cumulative flight



time of approximately 6.40 h. The data set was obtained
from ShawnWuPlus [47].

2.2 Artificial Neural Network

In the current paper, ANNs were employed to predict the
path of UAVs. Previously, ANNs have been extensively
utilised to address a variety of problems and have
shown their effectiveness in numerous research areas.
For instance, they have been applied to HVAC defect
detection in buildings [48], photovoltaic prediction [49],
airtightness measurement in buildings [50], prediction for
wheel loading [51], and heating energy prediction [52].
Time series data analysis is an inherent part of daily
life, and various algorithms exist to predict such data.
Notable neural network structures for time series prediction
include recurrent neural networks (RNNs), nonlinear
autoregressive (NAR) models, NAR with exogenous inputs
(NARX) models, and nonlinear input-output (NIO)
models [53], [54]. Each of these structures exhibits
distinct advantages and disadvantages depending on the
characteristics of the data being used.

These neural network structures excel at handling
dynamic input data, particularly time series data, and
have demonstrated exceptional performance in predicting
nonlinear patterns. Dynamic models derived from these
networks find utility in predicting and controlling
various systems, ranging from robotics and manufacturing
engineering to chemical processes and aviation systems.
Moreover, beyond the realm of engineering, past data-
driven predictions find applications in diverse fields, such as
financial analysis, consumption analysis, and biology [55].

Time series prediction encompasses various fields,
including information processing, dynamic systems, and
digital signal processing. Systems that can represent all
their objective functions and constraints linearly are
referred to as linear systems, while those that cannot are
considered nonlinear models [56]. Time series data can
be categorised as discrete or continuous data, where the
future values are stochastically determined based on past
conditions [57]. The time series condition function of the
NIO model is classified according to (1) below:

yO) = f@-1),z(t=2),...,zt-d) (1)

The NIO model shares a neural network structure that
is highly similar to NARX Fig. 3, which is an equation
that involves the variables y(t) and z(¢). NARX is a
valuable neural network for predicting the value of y(t)
based on the preceding value of z(¢). In contrast, the NIO
model comprises tapped delay lines, layered feed-forward
networks, and sigmoid transfer functions within its hidden
layers [57].

NARX, an RNN, incorporates feedback connections
across multiple layers within the network [58]. In this
study, the NARX network model was implemented using
the MATLAB, as depicted in Fig. 4. The predictions were
obtained by training ten hidden neurons with Bayesian
regulation [59], employing a delay count of 2, and utilising a
sigmoid transfer function [60]. The structure of the NARX
neural network comprises of tapped delay lines, a two-layer
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Figure 3. Predictive flowchart diagram for NARX and
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feed-forward network, and a sigmoid transfer function in
the hidden layer [57].

The NARX process is illustrated in Fig. 5. The NARX
model is represented by (2), where y(t) is predicted based
on the historical data of z(t) and y(¢) with a lag of d.

yt) = flzt—1),...,x(t —d),y(t = 1),...,y{t = d)) (2)

2.3 Experimental Framework

In this study, an ANN model was utilised to predict
the acceleration of UAV for path tracking with given
desired flight paths and wind speeds. The accuracy of
the predicted acceleration profile was verified through a
series of experiments for on-track flights. Among the data
entries summarised in Table 2, acceleration was identified
as the most critical variable for UAV control. This is
because position, angular velocity, and tilt angles are all
directly affected by acceleration. Therefore, the position
was predicted solely by acceleration and wind speed. Since
the utilised data sets were in the format of time series,
historical data was used to predict position.

In the first experiment, the input data set for the
ANN was X7 and output data was Y7, which indicated the
position of the UAV:

X, = [acc_z, acc_y, acc_z, wind_speed, wind_direction]

Y7 = [north, east, down]
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As shown in Fig. 6, the input data of X; consisted of
acceleration to z, y, and z axes, as well as wind speed,
which is an external force used to predict the position
of the UAV. Of the total input data, 85% was used for
training and testing, with the remaining 15% reserved for
validation. The resulting ANN model was named Model 1.

In the second experiment, the input data set for the
ANN model was X5 and output data was Y5:

X5 = [north, east, down, wind_speed, wind_direction]

Y3 = [acc_zx, acc_y, acc_z]

As shown in Fig. 7, the input data of X5 was composed
of the position of the UAV and wind speed, which is an
external force used to predict the acceleration of the UAV.
Of the total input data, 85% was used for training and
testing, with the remaining 15% reserved for validation.
The resulting ANN model was named Model 2.

For the third experiment, the input data of the ANN
model was X3 and output data was Yj:

X3 = [predicted_acc_z, predicted_acc_y, predicted_acc_z,
wind_speed, wind_direction]

Y3 = [north, east, down]

As shown in Fig. 8, the input data of X3 consisted of
the acceleration of the known dataset (i.e., the predicted
acceleration of the UAV from the second experiment) and
wind speed, which is an external force used to predict
the position of the UAV. The training data predicted the
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position of the UAV at known acceleration and wind speed,
while the test data were the acceleration values predicted in
the third experiment. The purpose of this experiment was
to predict the acceleration for a desired path not included
in the training data and to verify the actual flight path
through Model 2.

The fourth experiment involved using Model 1 and
Model 2 to generate a predicted path based on the desired
flight path of the UAV. The desired and predicted flight
trajectories were then compared and verified for accuracy.

In the present study, the ANN approach is utilised
to predict the acceleration of UAVs during autonomous
flight along a specified path and assess the accuracy of
the path achieved based on the predicted acceleration
as illustrated in Fig. 9. The proposed methodology
involves the development of two models: Model 1, which
predicts the path using acceleration and wind data, and
Model 2, which predicts the acceleration using path and
wind data.

To evaluate the performance of the models, the desired
path is input into Model 2 to predict the corresponding
acceleration. This predicted acceleration is then fed into
Model 1 to compare the resulting predicted path with the
desired path.

This study leveraged ANN models to predict
UAV acceleration and evaluate path accuracy during
autonomous flights. The subsequent chapters delve into the
theoretical foundations, data analysis, and experimental
results to substantiate the effectiveness of the proposed
approach.

3. Result

Pearson’s correlation analysis was conducted to analyse the
relationship of the selected variables as shown in Fig. 10.
The results showed a high correlation between North and
latitude, East and longitude, and Down and altitude, as
they are represented in the same coordinate system. The
acceleration of x showed a high correlation with pitch,
and the acceleration of y showed a high correlation with
roll. This suggests that controlling the force of x and y
is necessary to balance the aircraft. The acceleration of z
and yaw were expected to show a high correlation, but a
weak correlation was observed, possibly due to the little
change in the center of gravity in the direction of z. Since
the UAV can be viewed as a flat hexahedron, even if a force



Data Set Input data

Acceleration x, y, =

Position North, East, Down .
Acceleration x, y, z

Pitch
)
Roll
Wind Speed, Direction
Yaw
Wind Speed, Direction
’
‘\ L ‘\ /

Data Analysis &
ANN Prediction Model

Output data (Model 1)

=,
-

Variables Correlation
Analysis

Predicted Position

Train & Test Data Split North, East, Down

ANN

Figure 6. Position prediction process with acceleration and wind data (Model 1).

| Data Set | Input data
A ’
Acceleration x, y, =
Position North, East, Down Position

North, East, Down

Pitch
-
Roll
Wind Speed, Direction
Yaw
Wind Speed, Direction
\ l
AN v N s

Data Analysis &
ANN Prediction Model

Output data (Model 2)

=~
-

Variables Correlation
Analysis

Acceleration
X, )z

Train & Test Data Split

Figure 7. Acceleration prediction process with position and wind data (Model 2).

is applied to the direction of z, the turning force is small,
resulting in a weak correlation.

3.1 Position Prediction by Acceleration and Wind

The accuracy of the position prediction model using
acceleration and wind as input variables was evaluated.
Table 3 presents the statistical values of the predicted
position variables including North, East, and Down. The
R? values for North, East, and Down are 0.9930, 0.9917,
and 0.9780, respectively. The scatterplots of the actual
and predicted values for each component are shown in
Fig. 11. The maximum and minimum values for North,
East, and Down are also presented in Table 3, as well as the
standard deviations for each component. The accuracies of
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the position predictions are in the order of North, East,
and Down.

The plots of the actual and predicted values for
North, East, and Down are shown in Fig. 12. The North
component was sufficiently predicted with only a slight
error where the slope sign changed. The East component
showed some errors where the slope sign changed and in
areas with slight slope in early and mid-term flight states.
However, relatively less error was found in areas with a
steep slope. The Down component showed a slight error
within the first 180 s, with a maximum error of 0.53 m at
90 s. The error profile in areas with no other movement was
0.25 m or less, showing only an average error of 0.0998 m.

The path of the UAV according to the North—
East-Down (NED) coordinate system is presented in
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Table 3

Statistical Values of Predicted Position Variables

North East Down
R? 0.9930 0.9917 0.9780
Maximum (m) 51.692 13.658 2.2439
Minimum (m) | —132.27 —67.826 | —30.490
Range (m) 183.96 81.484 32.732
Stdev (m) 23.081 | 18.229 6.4848

Fig. 13. The actual and predicted position differences were
not significant, indicating that the performed position
prediction was successful.

Table 4 shows the average distance difference values
for North, East, and Down, as well as for the total distance.
The average error values for North, East, and Down are
1.303 m, 1.207 m, and 0.5834 m, respectively, with a
total average error of 2.2637 m. The standard deviations
for North, East, and Down are also presented in Table 4,
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with a small standard deviation for the Down component.
Overall, the error rate is within 1.3 m, and the R? values
for North, East, and Down are 0.9930, 0.9917, and 0.9780,
respectively. These results indicate that the path prediction
accuracy is satisfactory.

In conclusion, the proposed model evaluated the
accuracy of position and acceleration predictions for a
UAV using an acceleration and wind input variables. The
results showed that the model was successful in predicting
the position of the UAV, with R? values of 0.9930,
0.9917, and 0.9780 for North, East, and Down components,
respectively. The scatterplots of the actual and predicted
values indicate that the North component was sufficiently
predicted, while the East component had some errors in
areas with slight slope. The Down component had a slight
error in the first 180 s with a maximum error of 0.53 m at
90 s. Overall, the error was within 1.3 m, indicating that
the path prediction accuracy was satisfactory. Therefore,
this study provides a useful framework for predicting UAV
position and acceleration with acceleration and wind input
variables, which could be valuable for various applications
in the field of UAVs.
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Table 4

Statistical Values of Position Difference

Distance Difference(m)

North Difference (m) | East Difference (m) | Down Difference (m)

Average

2.267

1.303

1.207 0.583

Stdev

1.561

1.430

1.157 0.834

3.2 Acceleration Prediction by Position and Wind

Acceleration prediction using position and wind data is
evaluated in this study. The R? value for the z, y, and
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z components of acceleration are shown in Table 5, with
values 0f 0.9119, 0.8974, and 0.3669, respectively. Fig. 14(a)
shows the scatterplot of actual and predicted values of
the x component of acceleration, which represents linearity
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Table 5
Coefficient of determination of accelerations

Acceleration z

0.3669

Acceleration x

0.9119

Acceleration y

0.8974

R2

and a performance level of 0.9119 as indicated in Table 5.
Fig. 14(b) represents that the prediction performance
regarding the magnitude of z-acceleration is somewhat low
although the prediction on the direction of acceleration
was feasible to some extent.

Similarly, Fig. 15(a) shows a performance level of
0.8974 for the y component of acceleration. Fig. 15(b)
shows that the prediction performance regarding the
magnitude of y-acceleration is somewhat low even
though the prediction on the direction of acceleration is
feasible.

On the other hand, Fig. 16(a) shows the scatterplot
of actual and predicted values of the z component of
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acceleration, which does not represent linearity compared
to the  and y components. The R? value for the z
component of acceleration in Table 5 indicates the lowest
performance level of 0.3669. Fig. 16(b) suggests that the
prediction of z-acceleration was the worst. The reason for
this poor performance is that it is difficult to learn patterns
regarding the direction of the wind, which is parallel to
the xy plane and not related to the z-plane. Therefore,
the z-acceleration prediction was shown to be less accurate
than anticipated. However, if the direction of the z-axis is
applied to the direction of wind speed, it is expected to
improve the prediction performance.

In conclusion, the proposed model exhibits high
accuracy in predicting the x and y components of
acceleration although the prediction performance regarding
the magnitude of acceleration is somewhat low. The
prediction of the z component of acceleration is the worst
due to the difficulty in learning patterns regarding the
direction of wind. However, if the direction of the z-axis
is applied to the direction of wind speed, it is expected to
improve the prediction performance.
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Table 6
Coefficient of Determination Desired and Predicted Path

North
0.9710

East
0.9480

Down

0.8788

R2

3.3 Predicted Path vs Desired Path by Predicted
Accelerations and Wind

The accuracy of the predicted path using the predicted
accelerations and wind data is evaluated in this study.
The R? value for the desired and predicted paths in the
North, East, and Down directions are shown in Table 6,
with values of 0.9710, 0.9480, and 0.8788, respectively.
Figure 17(a) shows the North values of both desired and
predicted paths with an R? value of 0.9710, indicating no
significant difference between the desired and predicted
paths. Similarly, Fig. 17(b) shows the East values of both
desired and predicted paths with an R? value of 0.9480,
which is slightly lower than the North and desired paths.
However, the predicted path seems to be more accurate.
The R? value of the East component in Model 1 Table 6
was 0.9480, indicating no significant difference between the
desired and predicted paths. On the other hand, Fig. 17(c)
shows the Down values of both desired and predicted paths,
with an R? value of 0.8788. Although the value is less
accurate than the North and East components, it shows
higher results than expected considering that wind speed
did not affect the z-direction.

Figure 18(a) shows the path of North-East in 2D,
considering low accuracy of Down. The accuracy of the
predicted path was high. Figure 18(b) is expressed as a path
graph in 3D using NED’s geographic coordinate system.
The graph is shown for the duration of 210 s, and the
predicted path has high accuracy especially for the desired
path.

In conclusion, the proposed model accurately predicts
the desired path in the North and East components with
slightly lower accuracy in the Down component. However,
the predicted path presents higher accuracy than expected
considering the wind speed did not affect the z-direction.
The proposed model can be used to predict the path of
UAVs with high accuracy, especially for the desired path.
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4. Discussion

The outcome interpretations of this study focussed on
the evaluation of the accuracy of a model in predicting
the position, acceleration, and path of a UAV using
input variables, such as acceleration, path, and wind.
In Section 3.1, it was shown that the model accurately
predicted the position of the UAV. The R? values were
reported as 0.9930, 0.9917, and 0.9780 for the North,
East, and Down components, respectively. The scatterplots
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of the actual and predicted values indicated that the
North component was accurately predicted, while the East
component had some errors in areas with a slight slope.
The Down component represented a small error in the first
180 s, with a maximum error of 0.53 m at 90 s. Overall,
the errors were within 1.3 m demonstrating satisfactory
path prediction accuracy. This study provides a valuable
framework for predicting UAV position using acceleration
and wind input variables.

In Section 3.2, it was found that the proposed
model achieved high accuracy in predicting the x and
y components of acceleration. However, the prediction
performance regarding the magnitude of acceleration was
somewhat low. The z component of acceleration had the
worst prediction performance due to the challenge of
learning patterns related to wind direction. Nevertheless,
the current paper suggests that by considering the
direction of the z-axis in relation to the direction of wind
speed, the prediction performance could be improved.
In Section 3.3, a conclusive statement was suggested
that the proposed model accurately predicted the desired
path of the UAV in the North and East components,
with slightly lower accuracy in the Down component.
Surprisingly, considering that wind speed did not affect
the z-direction, the predicted path showed higher accuracy
than expected. The proposed model can be utilised to
predict UAV paths with high accuracy, particularly for the
desired path.

The study emphasises the successful application of the
proposed model in predicting the acceleration of a UAV for
achieving its desired path utilising input variables, such as
acceleration, wind, and path. The findings suggest that the
model has potential for various applications in the field of
UAV.

5. Conclusion

In conclusion, this study proposes an ANN-based inte-
grated model addressing the challenges of autonomous
flight control in UAVs, especially considering external
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forces such as wind speed. The proposed model contributes
significantly to the field in several ways:

(1) The model reduces the cost of UAV operations and
simplifies the difficulty of establishing UAV control
models by addressing uncertainty and nonlinearity in
varying system environments.

The model achieves high prediction accuracy (R?
0.9710 and 0.9480), demonstrating its effectiveness
in predicting UAV acceleration and path for various
UAVs including aviation systems.

The study introduces a dual-model approach, with
Model 1 predicting the path with acceleration and
wind speed, and Model 2 predicting the acceleration
of the UAV with path and wind speed. This
comprehensive approach enhances the control process
of UAVs’ autonomous flight.

The proposed model enables the prediction of future
UAV paths and stable control using established
autonomous flight mechanisms even when following
the desired path.

While the external force was limited to wind speed
in this study, the model offers potential for further
improvement by incorporating additional external
forces and data sources, such as gyro sensors, GPS,
temperature, barometric pressure, and image data.

In summary, the proposed model can be applied
to predict the position of UAVs and provide crucial
information for necessary decision making of auto-flight
even if the desired path is designated. By addressing
the challenges of autonomous flight control, this study
contributes valuable advancements to the field. Future
work can include further testing and refinement of the
proposed model with other external forces and data sources
to enhance the accuracy and reliability of the model for
autonomous UAV control in various environments.

(2)
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