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Abstract

Dynamical obstacle avoidance is a challenging problem in the field
of autonomous robot navigation. Current research in this field has
been mostly limited to single robots, thus, there exists a gap in
research in the field of dynamical obstacle avoidance in multi robot
systems. While rich literature is available on multirobot systems,
this paper attempts to propose a novel navigation framework
for an environment which includes multiple robots. The proposed
navigation framework applies certain behaviours to ensure a safe
trajectory for the multi-robot systems. As opposed to other
reported literature which focused on implementing their algorithms
on non-holonomic robots, the proposed navigation framework is
implemented on several holonomic robots. Simulations and real-
life experiments were carried out using the proposed framework.
Dynamic obstacles are considered in the environment and Khepera
IV robots are used to conduct real-life experiments. Two dynamic
obstacles were placed at different positions in the workspace. These
obstacles had linear movements, whereby each robot could move
horizontally and vertically across the workspace. Three experimental
trials were performed. Results show that the proposed navigation
framework is successful in navigating the multi-robot system to their

respective target locations while avoiding obstacles.
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1. Introduction

Navigation of multiple robots in a dynamic environment
with moving obstacles are exposed to the likelihood of
collisions. Most research reported focuses on dynamic
obstacle avoidance for single robots rather than multi-
robot and mostly considers static obstacles rather than
dynamical obstacles. This paper proposes a behaviour-
defined navigation framework for a multi-robot system
consisting of holonomic robots. The navigation framework
allows the robots to reach their destination while avoiding
collisions with the dynamic obstacles present in the
environment. The dynamical obstacles move in a linear
manner across the environment, and the multi-robot
system consists of two to three robots. Simulation results
are conducted, and the results show that the proposed
navigation framework is successful in guiding the multi-
robot system to their respective targets. The holonomic
robots being used for the experiment trials are the Khepera
IV robots. These are equipped with IR sensors, Ultrasonic
sensors, and Wi-Fi connectivity.

2. Literature Review

Rich literature is available in the field of navigation in
multi-robot systems. Literature survey had been conducted
and the literature collected has been grouped into five
categories, articles based on evolutionary and swarm-
based approaches, articles with the use of potential field
method, articles use the concept of multi-agent systems,
articles based on reinforcement learning approaches, and
a collection of other articles with other approaches are
grouped under collision avoidance in uncertain multi-robot
systems.

2.1 Evolutionary and Swarm-based Approach
Particle swarm optimisation was used to carry out obstacle

avoidance in multi-robot systems in a work reported by Di
Mario and Martinoli [1]. They implemented an adaptation



process to optimise the algorithmic parameters and the
experiments are conducted by considering the wheel speed,
the wheel speed difference, and the activation value of
proximity sensors using Khepera III robots. An Improved
artificial immune algorithm to avoid obstacles in multi-
robot systems was proposed by Yuan et al. [2]. Once
an obstacle attacks the network of B-cells (multi-robot
system), it triggers the formation of antibodies which
could result in stimulation and suppression. The authors
also consider deadlock situations in multi-robot systems,
whereby, a roulette wheel is used to choose another
antibody and to move out of a deadlock situation. A
combination of the artificial potential field (APF) method
and enhanced genetic algorithm (EGA) is used to plan
collision free paths for a multi-robot system by Nazarahari
et al. [3]. Researchers used bio-inspired algorithms to
handle dynamic obstacles in multi-robot systems. Xue and
Ma [4] used ant colony optimisation (ACO) to form a
navigation algorithm. Savkin and Wang [5] used simple
navigation rules that are often found in biology, which
use the concept of a vision cone to maintain a constant
avoiding angle from all obstacles.

2.2 Potential Field Method

Path planning using artificial potential field method is
implemented on multi-robot systems by Zhaofeng and
Ruizhe [6]. The destination unreachable problem arises
when an obstacle or several obstacles are close to a target.
Thus, making the robot unable to reach the destination as
the repulsive forces of the obstacles are then larger than
the gravitational force. APF method was extended to have
dynamical obstacle avoidance properties by Mbede et al. [7]
hereby a hybrid algorithm was presented which used fuzzy
logic and APFs together for robot navigation. The APF
method is prone to the local minima problem. This issue
was addressed by Ge and Cui [8] where a decision-making
capability was incorporated once the robot and target are
close to an obstacle. The vector field histogram method
was extended to avoid non-static obstacles by adding
a time dependent look ahead tree by Ge and Cui [8].
Pseudo-bacterial potential field (PBPF) method created
by Orozco-Rosas et al. [9]. This method allows for faster
convergence to an optimised path that avoids collisions
with obstacles.

2.3 Multi-agent Systems

Cifuentes et al. [10] proposed an algorithm wherein the
multi-robot systems maintain the formations by using
virtual fields. The virtual fields also consider the possibility
of collisions with obstacles. Pan et al. [11] proposed an
approach to maintain the formations in a multi-robot
system with a virtual spring model between the robots,
targets, and the static obstacles. Nascimento et al. [12] used
a nonlinear model predictive formation control (NMPFC)
as a controller for the multi-robot system, which has two
sub-blocks, namely an optimiser and a predictor. The
optimiser’s aim is to minimise the cost function which
includes the obstacle avoidance ability and formation
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maintenance ability. Li et al. [13] proposed an algorithm
which focused on the navigation control of a multi-
robot system in an environment with unknown static
obstacles. The multi-robot system maintains formation
while navigating through the environment. This method
also eliminates the deadlock and local minima problem.
Dai et al. [14] and De La Cruz and Carelli [15] proposed
an approach to maintain the multi-robot system formation
whilst moving to their target locations. Both approaches
could only avoid static obstacles, not dynamical obstacles.
Xu et al. [16] suggested to use artificial moments in the
robots’ controllers to induce repulsive moments away from
static obstacles. Simulation results involving three robots,
shows that the proposed algorithm successfully navigates
all three robots to their target points without any collisions
with the static obstacles in the environment.

Wei et al. [17] proposed an algorithm for a multi-robot
system’s self-assembly. An initial virtual region, where
robots are randomly placed, is shrunken until the target
virtual region is obtained. Cena et al. [18] assigned priorities
to the robots in the multi-robot system in their paper. Each
individual agent uses the A* algorithm for path planning.

Savkin and Wang [19] created navigation algorithm
whereby the robot uses a laser range finder and ultrasonic
sensors to determine if an obstacle falls within its sensing
range. Divya Vani et al. [20] proposed an autonomous
navigation system for a multi-robot transportation appli-
cation in indoor environments. Lafmejani and Berman [32]
presented an online nonlinear Model Predictive Control
(MPC) method for collision-free, deadlock-free navigation
by multiple autonomous nonholonomic Wang et al. [21]
proposed a collision avoidance algorithm based on velocity
obstacles (VO) is proposed for distributed mobile robots
to achieve oscillation-free autonomous navigation, which is
called as repulsion-oriented reciprocal collision avoidance
(RORCA). Wen Pang et al. [22] proposed a time-varying
formation reconfiguration and obstacle avoidance strategy
are investigated for a fleet of autonomous underwater
vehicles (AUVs) in the three-dimensional (3-D) ocean
environment.

2.4 Reinforcement Learning-based Approach

Neural networks and Q-learning were used to plan
safe trajectories for multi-robot systems in dynamic
environments [23]. Fan et al. [24] used a reinforcement
learning to plan the individual trajectories of robots in
a multi-robot system. These robots possessed no a priori
knowledge of the dynamic and unstructured environment
they were in. 3-D metric maps are updated using RGB-data
obtained by the robots in [25].

2.5 Collision Avoidance in Multi-robot Systems

Fiorini and Shiller [26] considered prediction of the
obstacles’ trajectories in the VO approach. This approach
involves using a velocity obstacle set that contains all the
velocities which may result in collision with an obstacle,
within a given time duration. Wu and How [27] improved
the velocity obstacle approach in their work. The velocity



obstacle approach was merged with a reachability set. The
reachability sets find the regions in the environment that
will result in a collision. This method allowed for several
obstacle trajectories’ to be included in the set rather than
a single trajectory. Otte and Frazzoli [28] extended the
RRT algorithm to the RRTX algorithm whereby the robot
generates a search-tree at each sampling time, rather than
iteratively growing the search-tree. The search tree contains
information about the obstacles’ potential trajectories.
Aoude et al. [29] proposed an algorithm known as the RR-
GP solution, wherein, the RRT method is implemented
with a Gaussian Process which gives it the ability to
predict the obstacle’s future trajectories by using pattern-
based approach. Shahriari and Biglarbegian [30] developed
a navigation methodology for a distributed scheme by
incorporating the robots’ dynamics through calculating the
time to collision (TTC) and designing a new controller
accordingly that avoids collisions.

Lafmejani and Berman [31] presented an online
nonlinear MPC method for collision-free, deadlock-
free navigation by multiple autonomous nonholonomic
wheeled mobile robots (WMRs). Zhu et al. [32] proposed
a decentralised and communication-free method for
probabilistic multirobot collision avoidance in cluttered
environments. The method considers robot localisation
and sensing uncertainties and relies on the computation
of buffered uncertainty-aware voronoi cells (B-UAVC). Xin
Li et al. [33] proposed an adaptive sliding mode method to
track the formation for a multi-AUV system in the water
flow environment. Moghaddam et al. [34] addressed the
trajectory planning of a serial robot which is used in the
spot-welding process of an automobile industry.

A concurrent multi-objective dynamic optimisation
method is proposed for optimal selection and control of
synchronous ac servomotors. They optimised three main
objectives, such as energy consumption, tracking error, and
total weight of motors [35]. Optimisation algorithms such
as grey wolf optimisation have been utilised to fine tune
parameters in the field of mechanical applications.

Rigorous mathematical analyses are provided by
Belkhouche [36] where a concept of virtual plane is sug-
gested. Sezer and Gokasan [37] presented a mathematical
analysis-based algorithm where robots seek to navigate
through the obstacles rather than avoid them completely.
This is done by finding the largest gap between obstacles
and heading at an angle halfway through the gap.

2.6 Research Gap

Based on an extensive literature review, it is observed
that there exists a gap in research in the field of
autonomous robot navigation, with regards to dynamical
obstacle avoidance involving multi-robot systems. Most
of the research involving dynamical obstacle avoidance
has been limited to single robot systems. In addition,
the literature considering multi-robot systems is largely
focused on maintaining formations rather than the issue
of dynamical obstacle avoidance. Further research should
be done to create a navigation framework that allows
dynamical obstacle avoidance in a multi-robot system.
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2.7 Objectives of the Research

The main objective of this paper is to propose a navigation
framework for dynamical obstacle avoidance in multi-
robot systems. The proposed framework uses certain
behaviour-defining rules which set each robot’s motion to
move closer to the target and avoid dynamical obstacles.
In case of imminent collisions with the obstacles, a
heading is calculated so that the robot can safely move
away from the obstacle. This navigation framework also
considers a method to avoid robot-robot collisions. This
navigation framework was tested in real-life experiments
with Khepera IV robots. The following objectives have also
been considered in this paper:

1. Navigate a holonomic robot to its target location
without colliding with the moving obstacles and other
robots in the environment.

2. The path planning should be done in real-time at a
local level, without prior knowledge of the obstacles’
trajectories.

A few assumptions have been made which are
summarised below:

1. Each robot has a different target and starting location.

2. There are two moving obstacles in the workspace, and
they have simple motions. That is, they move only in
left and right directions.

3. There are only two robots being considered for the
multi-robot system.

This paper is structured as follows. Section 3
discusses the Navigation Framework, Section 4 presents
the simulation of the navigation framework and Section 5
discusses the implementation of the framework in real-life
experiments.

3. Navigation Framework
3.1 Sensing Disk Model

The navigation framework models the sensing region of the
robot as a disk, as shown in Fig. 1. The sensing region is
the region in which the sensors on the robot can detect
obstacles. The origin of the sensing region is denoted by
Diskzand Disk,. The coordinates of Disk, and Disk, are
found by (1) and (2), where z and y are the coordinates of
the robot and r represents the radius of the sensing disk.
0, is the current heading of the robot. In this case, the
sensing disk radius r is taken to be twice of the radius of
the robot.

Diskx =  + r * cos Or (1)

(2)

Disky =y + r * sin 0r

3.2 Linear Navigation Strategy

At every step of the movement, the framework checks
if there could be imminent collisions with the moving
obstacles present in the environment. If there aren’t
any dynamical obstacles near the robot, the robot’s
next heading is calculated using the equations shown in
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Figure 1. Sensing disk model.

(3) and (4).

Horizontal Distance = x robot — x target (3)

Vertical Distance = y robot — y target

Where, Zrobot and yrobot are the current coordinates
of the robot. (Ztarget, Ytarget) Fepresent the target position
for the robot in question. The behaviour for the linear
strategy is summarised in Figs. 2 and 3. Figure 2 shows
how the linear navigation strategy chooses the heading for
the robot. The horizontal and vertical distance refers to the
distance to the target [shown in (3) and (4)]. Figure 3 shows
how the navigation strategy allows for linear motion in the
leftwards, rightwards, upwards, and downwards direction.
This is done to approach the target location and is only
used if there aren’t any obstacles nearby. The angles in
Fig. 3 represent the robot’s future headings in each of the
cases is shown in Fig. 2.

3.3 Obstacle Avoidance Strategy

When obstacles are nearby and there is a likelihood of
collision, the robot must calculate a new heading that
effectively removes the risk of collision. At every step,
the sensing disk and obstacle disk are checked to see if
they are intersecting, if they are, then, the respective z—
y coordinates of those intersection points are calculated.
The concept of “circle-circle” intersection was used. The
equations were derived using the methods explained in
Mathworld [38]. The distance between both circles is
found using the square root of dist in (5). There exists
a relationship among the a, b, h, and dist variables
(annotated on the diagram in Fig. 4). vy and ro are the
respective radiuses of the circles. The relationship among
the variables is defined in (6) and (7). The obstacle radius
(r1) is taken to be twice the radius of the robot (rg).
The obstacle’s center coordinates (e, f) are known in
this environment; hence, those values are used in the
equations. The rest of the parameters of an obstacle
disk such as intersection coordinates are then determined
using (16)—(19).

dist = (c—e)2+ (d— f)2 (5)

dist = a+b (6)

o = w (7)
2,/dist
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Figure 2. If-Else conditions for linear navigation strategy.
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Figure 3. The simple linear navigation strategy’s various
possible headings.
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Figure 4. Annotated diagram of two circles intersecting.
The h is further simplified in terms of 71, ro and dist
variables.

h?* =713 —a® =r} — b

(8)



2*dist(r%+r§)—(r§ —7"%)2 —dist?
dist

Where, h? =
be written as,

, and it could

L dist (12 +72) — (r3 — r2)2 — dist?
N dist

9)

The numerator of h can be further factorised to the
equation denoted by the variable ¢ (10). The numerator was
factorised for the purpose of simplicity. The relationship
between h and ¢ is summarised with the (10).

Vit
Vdist

(10)

Where,
t = ((r1 +ro)? — dist)  (dist — (1o — 71)?) (11)

The intersection points are defined by (12) and (13).
The variables (c,d) and (e,f) refer to the coordinates of
each circle’s origin.

h

Xintersection =Pl+t m(d - f) (12)

h
2+/dist
P1 and P2 refer to the coordinates that fall halfway

through the intersection points. These are calculated using
(14) and (15).

}/intersection = P2+ (6 - C) (13>

_ 2 2
Pl c+e (e c)(rQ. r7) (14)
2 2 x dist
d+f  (f=d)(r3—17)
P2 = 1
2 + 2 x dist (15)

Finally, after substituting ¢ and simplifying the
equations in (12) and (13), the resulting equations (16)—
(19) can help find the coordinates of the two intersection
points.

Vit

Xlintersect =Pl+ (d - f) (2 % diSt) (16)
Vit

X2intersect =Pl - (d - f) (2 % diSt) (17)
Vit

Ylintersect = P2 + (6 - C) (2 % diSt) (18)
t

Y2intersect = P2 — (6 - C) (2 *ﬁst) (19)

Where ¢, d correspond to the (z,y) coordinates of
the sensing disk, and e and f correspond to the (z,y)
coordinates of the obstacle. r; and ry correspond to the
radius of the circle.

The angle between the points of intersection and the
robot’s current position has to be determined because
this helps in calculating the robot’s heading for the next
iteration. The central angle theorem helps in determining
those angles. The theorem dictates that the central angle
will be twice the size of the angle in the triangles drawn on
the circle. The angles are found using the cosine formula.

The next step involves calculating the heading of the
robot using the angles a and [. « refers to the angle
between the nearest intersection point and the robot, and
(a + B) refers to the angle between the furthest intersection
point and the robot. The two possible formulas are given
below. The latter one (21) is only applicable when the
robot isn’t intersecting the first quadrant of the sensing
disk.

Heading = a+ (20)
21— 20, —a—f3
4

heading = (21)

Where, 6, is the robot’s current orientation, « is the
angle to the nearest intersection point, and [ is the angle
between both intersection points. The heading chosen by
the robot will ensure that no collision takes place with any
nearby dynamic obstacle in the next iteration.

The heading equation (20) is only chosen when the
obstacles are in the 4" quadrant. In all other cases, (21) is
used to calculate the heading.

3.4 Robot-Robot Collision Avoidance Strategy

As each robot in the system plans their path individually,
there is a likelihood of collisions among themselves. Hence,
an avoidance strategy is implemented to mitigate that
possibility. In the proposed framework, one robot has a
higher priority than the other one. The robot’s priority
is assigned arbitrarily beforehand. The Euclidean distance
between the higher priority robot’s future location and
lower priority robot’s future location is calculated, if it is
less than a safe distance, then, the lower priority robot
stops and recalculates its heading at the next iteration.
However, if the higher priority robot has reached its
location, then, the navigation framework will treat them
like an obstacle and calculate their new heading using the
“obstacle avoidance strategy”.

3.5 Go-To-Target Mode
Afterwards, the angle between the target location and

robot’s current location is calculated using (22)—(25). The
variables used are shown in Fig. 5.

A= \/(Tx—m+2)2+(Ty—y)2 (22)
B =2+ + -y (23)
0 = (T, — 2 + (T, —y? (24)

The robot then changes its current heading to move
towards the target location. The Go-To Target mode is
only applied if the robot is sufficiently close to the target
location.
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Figure 5. Image displaying the variables used to calculate
the angle 6,.

3.6 Novelty of Proposed Navigation Framework

The proposed navigation framework was established while
considering the capabilities of the Khepera IV robot and
the size of the workspace. It alters differently from the other
algorithms as it uses IR sensors, as opposed to laser range
finders and isn’t computationally expensive. In addition, it
can cater for multi-robot systems and as the Khepera IV
robot is holonomic, the consideration of angular velocities
is eliminated as the robot can rotate on its own axis. One
lesser known and recently proposed algorithm in Savkin
and Wang [24] is also used for comparison purposes. This
is used because it serves as an inspiration to the proposed
navigation framework, however, the proposed navigation
framework has considerable differences from it. Such as
the original algorithm works on the condition that the
obstacles’ velocities are less than that of the robots. This
condition doesn’t exist in the Navigation Framework, as
unlike the algorithm mentioned, the robot avoids the
obstacle by moving away at a certain angle. In addition,
as the navigation framework will be implemented on a
holonomic robot, it does not require the need to consider
angular velocities, but rather moves in a linear motion
parallel to either the X or Y axis.

4. Simulation of Proposed Navigation Framework

Simulations were carried out using C++ on a 4GB RAM
computer powered with Intel(R) Core 15-4200U CPU with
1.6GHz. In all simulations, the robots could converge close
to their respective target locations. If a robot is within 0.2
cm of the target location, then, it has reached its target.
The dynamical obstacle’s motions differ in each simulation.
Each simulation has different starting positions and target
positions. In simulation 1, the obstacles move upwards and
downwards and move parallel to each other. In simulations
2 and 3, the obstacles move in different directions. One
moves upwards/downwards and the other leftwards and
rightwards. The experiments are repeated for 20 runs for
all the three simulations. The average results of 20 runs
obtained from these experiments are reported in this study.

4.1 Simulation 1

It takes a total of 25 steps for the simulation to conclude.
Robot 1 reaches first, robot 2 reaches second followed
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by robot 3. In step 3, robot 2 and 3 have moved
away from obstacle 1. In step 11, robot 1 has reached
their target. In step 22, robot 2 has reached its target.
Meanwhile, robot 3 keeps moving closer to its target until
step 25.

Table 1 shows the initial positions and the results of
simulation 1. It is observed that the standard deviation for
the distance to target values for Robots 2 and 3 are very
small, this is because the robots are able to consistently
converge towards to the target. Robot 1’s distance to target
values have a slightly higher standard deviation because
there are more fluctuations in the values.

4.2 Simulation 2

Table 2 shows the initial positions and the results of
simulation 2. Robot 3’s standard deviation is slightly on
the higher side. This can be owed to the fact there were
some runs where Robot 3 would converge to values larger
than threshold (0.2 m). Robot 2’s values are consistent
and always reach very close to the target. The values of
the final positions have been rounded in the table. Robot
1’s average distance to target was less than the threshold,
yet the standard deviation was low as the values were
consistent.

4.3 Simulation 3

Table 3 shows the initial positions and the results of
simulation 3. It takes a total of 24 steps for all the
robots to reach their target locations. At iteration
24, robot 2 undergoes the “Go-To-Target” mode and
reaches its target location. There were some runs in
Simulation 3 where Robot 2 and 3’s final distance was
exceeding the threshold. Robot 3’s standard deviation
is 0.1660.

4.4 Effects of Velocity on Number of Steps

While carrying out the simulations, it is observed that
sometimes the robots had trouble converging to their
respective target positions. Hence, the following simulation
results aim to identify the relationship between the velocity
values and the number of steps it took for the robot to
reach the target position. Robots’ velocities were altered
in simulations as shown in Table 4. If the distance to
target was greater than 2 units, the speed was set to 2
unit/step. In this case the robot converges to the target
location. However, when the speed was set to 5 units/step,
to robot doesn’t seem to converge and keeps on oscillating
between two locations. Thus, showing that the velocity
of the robot’s also affects the efficiency of the navigation
framework.

5. Implementation of Navigation Framework

The robots used to conduct the experiments are Khepera
IV. The programming was carried out in the Eclipse IDE
for C/C++ Programmers. The codes were then sent via
Wi-Fi to the robot’s Linux environment. Also, the robots



Table 1
Initial Positions and Results of Simulation 1

Robot Starting Target Final Position of in | Number of | Final Distance | Average Distance | Standard
Number | Point (cm) | Location (cm) | Simulation (cm) Steps to Target (cm) | to Target (cm) | Deviation
Robot 1 20,12 8,10 7.89,10.06 11 0.1253 0.1308 0.0160
Robot 2 18,20 9,12.5 9.02,12.58 22 0.0825 0.0809 0.0085
Robot 3 1,5 10,25 9.86,24.95 25 0.1487 0.1480 0.0029
Table 2
Initial Positions and Results of Simulation 2
Robot Starting Target Final Position in | Number of | Final Distance | Average Distance | Standard
Number | Point (cm) | Location (cm) | Simulation (cm) Steps to Target (cm) to Target (m) | Deviation
Robot 1 13,2 4,10 4.21,10.05 48 0.2159 0.1388 0.0686
Robot 2 12,2 12,12 11,12 9 3.5900E-08 3.5900E-08 0.0000
Robot 3 18,12 10,5 10,5.3 15 0.0900 0.2000 0.2966
Table 3
Initial Positions and Results of Simulation 3
Robot Starting Target Final Positioning | Number of | Final Distance | Average Distance | Standard
Number | Point (¢cm) | Location (cm) | Simulation (cm) Steps to Target (cm) to Target(m) Deviation
Robot 1 1,2 4,20 4,20 7 3.5900E-08 3.5900E-08 6.8344E-16
Robot 2 2.4 17,12 16.83,12.10 24 0.1972 0.1995 0.0916
Robot 3 10,1 13,10 12.67,10.71 9 0.7829 0.1722 0.1660
sent their coordinates via Wi-Fi using a TCP /IP protocol. Table 4

The Khepera IV robots can carry out speed control and has
Wi-Fi connectivity as well. They are also equipped with
sensors, such as gyroscopes, IR sensors, ultrasonic sensors,
and encoders.

The multi-robot system has levels of priority assigned
to each robot. These allow for a robot-robot collision
avoidance strategy to be enabled. In the experiments, only
two robots were being used, one of them has the higher
priority and the other one has a lower priority with slight
variations in their navigation framework.

5.1 Navigation Framework for Higher
Priority Robot

Once the IR sensors detect the presence of an obstacle, the
dynamical obstacle avoidance mode is initiated, whereby, it
either rotates at a heading of 135 degree or 225 degrees. If
the IR sensors do not detect the presence of obstacles, the
navigation framework checks to see it is close to the target,
if that is not the case either, but the robot’s distance to
the target is less than 15 cm, then, the speed is reduced.
If the robot’s distance to the target is more than 15 cm,
then, it enters the simple linear navigation mode, where it
tries to cover the maximum horizontal or vertical distance
to reach the target.
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Effect of Changing the Velocity Affects Results.

Velocity if distance | Number of steps

to target is <2

Velocity if distance
to target is >2

2 1 33

5 1 Doesn’t Converge

5.2 Navigation Framework for Lower
Priority Robot

It is like the navigation framework of the higher priority
robot, however, the only difference is that, if the obstacle
detection condition is not true, then, it calculates and
checks if the distance between the lower and higher-priority
robot is less than a threshold distance, which is set to
50 cm. If it is less than the threshold distance, the lower
priority robot stops for a single step, and recalculates its
heading in the next step.

5.3 Minor Adjustments to Theoretical Navigation
Framework to Conduct Real Life Experiments

To implement the Navigation Framework in real life
experiments, the constraints of the experimental workspace



Figure 6. Workspace where the robots moved around.
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Figure 7. Icons for robots and obstacles.

have to be taken into consideration. In addition, during the
experimentation phase, there were certain inaccuracies that
were discovered, which led to the navigation framework for
real-life experiments is to be altered slightly, this involved
simply eliminating the Go-To Target Mode, having the
lower priority robot stop if there is imminent danger of it
colliding with the higher priority robot, and restricting the
obstacle avoidance mode to only two possible orientations.
The navigation frameworks use the simple linear navigation
strategy to get closer to the target position.

The sensing region was modelled as a disk in the
theoretical framework, but in the experiments the sensing
region was as per the IR sensor’s sensing region. The
former was modelled as a disk so that it would be easier
to calculate obstacles’ position in a MATLAB simulation
as there is no sensor doing the ”detection” in the virtual
world. In experiments, this constraint is no longer there,
IR sensors can directly sense distance to the obstacles.
Ultimately, the guiding principle in both are the obstacles’
positions. That is what triggers the dynamical obstacle
avoidance mode. Hence, minor adjustments made do not
alter the working principle of navigation framework.

5.4 Experimental Results

Three real-life experiments were carried out using Khepera
IV robots. The initial positions of the robots were changed
each time. The threshold for the minimum distance
between the target and robots was set to 15 cm. The
experiments were carried out on the work bench made from
wooden board which is shown in Fig. 6. Two robots were
placed at differing locations in the workspace, and the other
two served as the dynamical obstacles. The dynamical
obstacles moved in a linear motion, moving from left side
of the board to the right end constantly through each trial.
The icons used to distinguish higher priority robot, lower
priority robot, and dynamic obstacles for the robots used
in the experiments are shown in Fig. 7.
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Figure 8. Images of Experiment 1.

5.4.1 Experiment 1

In Fig. 8, one can see that the higher priority robot was
placed in the top-middle part of the workspace, while
the lower priority robot was placed at the bottom of the
workspace. In image 2, the higher priority robot moves
forward. Images 3 and 4 show the higher priority robot
detecting the dynamical obstacle in front and moving away
at 225 degrees. In images 4-8, both robots start moving
closer to their target using the simple linear navigation
strategy. Throughout the trial, the lower priority robot
keeps checking the risk of imminent collisions and as there
are none, it completes the whole trial run using only
the simple linear navigation strategy. The final distance
between the lower priority robot and target was 12.076 cm.
While the distance between the higher priority robot and
its target was noted to be 9.610 cm.

5.4.2 Experiment 2

In Fig. 9, both the higher and lower priority robots were
placed at the bottom of the workspace. Initially, the higher
priority robot moves first and then goes into the obstacle
avoidance mode in image 2. It then moves upwards again
and engages in the obstacle avoidance mode again, as
shown in image 6. This was a false positive because of the
noise present on the IR sensors. It then engages in the
Simple Linear Navigation Mode and reaches its target in
image 10. Likewise, the lower priority robot uses the same
strategy and gets close to its target in image 9. However,
there is some distance between the two because the robot
accumulated rotation errors during the trial, as sometimes
it wasn’t parallel to the X or Y axis. In addition, the robot
goes into obstacle avoidance mode once again because of



Figure 9. Images of Experiment 2.

the fluctuations in the IR sensor values. It is observed that
there were rotation errors during the run and thus, there
is still some gap between the robot and target at the end
of the run.

5.4.3 Experiment 3: Trials without Obstacle Avoidance
Modes

Two experiment trial images are shown in Figs. 10 and
11. This is to show two instances where the robots moved
around the workspace and reached their respective targets
without engaging into the obstacle avoidance modes. In
Fig. 10, in images 1-4, both the lower priority and higher
priority robots are moving upwards in the workspace. In
image 5, the higher priority robot uses the simple linear
navigation strategy and moves rightwards, to get closer to
its target. In image 6, the lower priority robot has reached
its target. Throughout the whole run, neither robot goes
into obstacle avoidance modes. The robots had the same
initial positions as in experiment 2, yet their trajectory
was different. Thus, every trial run would be different each
time. Figure 11’s first image shows the initial positions of
the two robots. In this trial run, they all move upwards
and reach their respective targets. Once again, they do not
encounter any dynamical obstacles in their path and thus
do not engage in the obstacle avoidance mode.

6. Discussion

The robots were able to reach their target locations without
colliding with the moving obstacles or other robots in all
the three experiments. Furthermore, robots were able to
navigate in the environment without any prior knowledge
of the obstacles’ trajectories. There are cases where the
robots don’t fully converge to their target locations. This
can be attributed to the rotation inaccuracies that don’t
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Figure 10. Images of trial where robots did not encounter
obstacles.

Figure 11. Images of trial where robots moved in a straight
line.

allow the robot to fully align itself parallel to the axes,
which would lead to the accumulation of errors. This causes
the robot to drift from its perceived path. The odometer
sensors sometimes couldn’t perceive their exact position as
they were unable to discern if the robot had made errors in
its rotation. The “distance-to-target” values calculated did
not take the rotation errors and position errors into account
and thus, the robots were not always able to converge
completely to their target locations. In addition, there was
noise present on the IR sensors which gave fluctuating



results and sometimes gave false positives. Eventually
leading the robots to start the obstacle avoidance mode,
even if there were no robots present in its path.

7. Conclusion

The challenge in the field of autonomous robot navigation
with regards to dynamical obstacle avoidance was
addressed in this paper. The navigation framework was
implemented on Khepera IV robots and the constraints of
the workspace and inaccuracies in rotation were considered,
and alterations were made in the theoretical navigation
framework to make it suitable for implementation in a
real-life experiment. In most cases, the robots converge
to the target location, however, there have been cases where
the rotation errors have hindered the robot from reaching
the target location. There also have been rare instances in
real-life experiments where collisions occurred with one of
the dynamical obstacles. These are due to the noise present
on the IR sensors. The theoretical navigation framework,
however, fares better in navigating the robots in a dynamic
environment.

There is an accumulation of rotation errors that affect
the accuracy of the results. A trade-off had to be found
between the sampling time and the speed of the robot.
If the robot’s speed is kept slow, it may be more likely
to detect the presence of obstacles nearby, however that
increases the duration of the experiment. If it is too fast,
it may fail to detect the presence of obstacles, and this
might result in collision. Due to workspace constraints and
the rotation errors that arose, there was a considerable
amount of difference between the experimental navigation
framework and the theoretical navigation framework.

For future improvements, one could consider eliminat-
ing the limitations of the experimental setup to improve
the accuracy of the navigation framework and implement
the framework in its true form. Using a smoothing filter
such as a Kalman filter on the IR sensors would most likely
reduce the inaccuracies by a large margin. The current
study considers the obstacle movement in horizontal and
vertical movements only. Obstacle movements in arbitrary
directions could be considered in future work. To conclude,
the navigation framework is mostly successful in guiding a
multi-robot system to its target locations while moving in
a dynamic environment.
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