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Abstract

Rapidly-exploring random tree star (RRT*) is widely used in

path planning problems because of its probabilistic completeness

and asymptotic optimality. The bidirectional RRT* (B-RRT*) is

proposed to speed up finding the optimal path. However, both

algorithms perform blind exploration in space, which suffer from low

node utilisation and poor expansion orientation. To overcome these

problems, dynamic constrained sampling based on the bidirectional

RRT* (DCB-RRT*) is presented. The proposed DCB-RRT* grows

two random trees from the start and the end points for expansion,

respectively, and dynamically adjusts the sampling area (Dyn-

Sample) based on the number of collision detection failures,

improving the effectiveness of sampling points in the initial path.

In the convergence stage, a method of the dynamic angle to limit

the sampling area (Limit-Sample) is proposed to improve the path

convergence rate. The sampling point bias extension (DCB-Extend)

is developed to increase the mutual guidance between the dual-trees

and reduces the time to find the initial path. A dynamic step is

also used to improve node utilisation. Numerical simulations under

various environmental conditions demonstrate that DCB-RRT* has

certain advantages in terms of convergence rate.
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1. Introduction

Path planning is a key problem in robotics. Given an
initial position and a target position of a robot, the goal
of path planning is to find a feasible path such that there
is no intersection between the path and obstacles [1]–[3].
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Path planning has been widely used in our daily life,
such as unmanned driving [4]–[6], intelligent sorting [7]–
[9], robotic surgery [10], [11], agricultural picking [12]–
[14], and other fields. The optimisation criteria usually
vary with different tasks, such as time, distance, energy
consumption, and safety [15], among which, minimising
time consumption and achieving the shortest travel
distance are essential for all tasks. Extensive efforts
have been dedicated to enhancing the convergence of
path planning algorithms. The primary objective is to
discover the shortest feasible path in the least amount of
time. Effective path planning algorithms offer significant
potential for enhancing automation and intelligence across
diverse fields and contribute to the progress of artificial
intelligence. They play a crucial role in enabling unmanned
driving to navigate through increasingly complex road
environments and in optimising robot picking processes,
leading to greater efficiency.

Path planning algorithms are generally categorised
as intelligent optimisation algorithms and traditional
algorithms. Intelligent optimisation algorithms include
genetic algorithm (GA) [16], [17], memetic algo-
rithm (MA) [18], [19], particle swarm optimisation
(PSO) [20], [21], and ant colony optimisation
(ACO) [22], [23], etc., which originate from mimicking
biological behaviour. Such algorithms rely on heuristic
information, and the model parameters need to be tuned
several times to approach the optimal values. Traditional
algorithms include artificial potential field (APF) [24], [25],
A-star (A*) [26], D-star (D*) [27], probabilistic road
maps (PRM) [28], and rapidly-exploring random tree
(RRT) [29]. APF makes the expansion of random tree
directionally. The calculation of attraction and repulsion
forces is expensive in complex maps, and it is easy to
fall into local optima. A* is a direct search method to
find the shortest path. The map grid affects the path
convergence. D* is a local planning method that plans the
shortest path from the current coordinates to the target
coordinates by making assumptions about the unknown
part of the terrain. It is suitable for dynamic environments
because of its high search efficiency. PRM is a multi-query
method for constructing roadmaps using sampling, whose
performance is determined by the number of sampling
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points and domain settings. RRT is a random sampling
based algorithm that gradually explores a spatial region
by performing collision detection on sampling points until
a feasible path is found. This method has the advantages
of avoiding a large number of calculations associated with
modelling the space, eliminating the need for geometric
partitioning of the exploration area, and featuring fast
search speed, and high convergence.

Due to the randomness of RRT sampling, the final
generated path is often a feasible path rather than an
optimal path. Moreover, it requires a large time when
facing the maps with narrow passages. Therefore, several
improved RRT algorithms have been proposed in recent
years [30], among which RRT* [31] is a typical one.
Different from RRT, RRT* introduces a neighbourhood
search process for the newly generated nodes to select low-
cost parent nodes. There is also the process of rewiring to
further reduce the path cost of other branches, which makes
remarkable progress in solving the optimal path planning in
high-dimensional space. RRT* is asymptotically optimal,
i.e., it can always converge to an optimal solution by giving
enough running time.

Although RRT* solves the optimisation problem of
RRT to some extent, the search for new parent nodes
and the rewiring process also make the algorithm less
efficient. Recently, researchers have made improvement to
improve the efficiency of RRT*. Among them, a sampling
method with goal-biased strategy was proposed in [32].
The method treats the target point as a sampling point
with a certain probability, which makes the growth of
the random tree with a certain direction and accordingly
improve the speed of finding the initial path. It is
noted that the optimal probability cannot be dynamically
adjusted as the random tree grows. An algorithm called
informed RRT* was proposed in [33], which builds an
elliptical sampling region by using the start and goal
points as focal point, and the high-quality sampling points
are generated within a dynamically changing ellipse to
improve the path convergence rate. In the RRT*-smart
algorithm [34], the path is optimised by interconnecting
the visible nodes in the initial path and which generates
bias points for smart sampling. The path optimisation
process is accelerated by constrained sampling. In 2013,
an optimal bidirectional rapid random tree (B-RRT*)
algorithm was proposed in [35]. The dual-tree expansion
strategy grows two random trees from the start and
end points until they meet each other. It is highlighted
that B-RRT* does not change the blindness of the
random tree exploring the space, the idea of bidirectional
growth greatly improves the rate of convergence of
path. After that, the bidirectional dual-tree idea has
been prevailed in optimisation algorithms. For example,
intelligent bidirectional RRT* (IB-RRT*) [36] converges
quickly to the optimal path solution by introducing
an intelligent sample insertion heuristic using uniform
sampling heuristics. In [37], potentially guided IB-RRT*
(PIB-RRT*) and potentially guided bidirectional RRT*
(PB-RRT*) were proposed to overcome the blindness
issue in space exploration. An algorithm called GB-
RRT* by combining the principle of the RRT* with

the grid searching strategy was proposed in [38]. The
proposed hybridised algorithm takes advantage of the grid
searching strategy to make up for the weakness of RRT*
and is applicable in complex maps without relying on
pre-designed road networks. From the above algorithms,
the factors affecting the path convergence rate can be
summarised into three points. The first point is that it does
not provide a better initial solution for the convergence
stage, which increases the time consumption of path
convergence, such as literature [32], [33], [35], [37]. The
second point is that the growth of random trees lacks
guidance, which increases the time to find the initial path,
thereby increasing the time of the whole process, such
as literature [33]–[35], [38]. The third point is that the
sampling process is unconstrained and global sampling
leads to poor quality and low utilisation of the sampling
points, which severely affects the rate of path convergence,
such as literature [35]–[37].

In this paper, we propose a dynamic constrained sam-
pling based bidirectional RRT* (DCB-RRT*) algorithm.
The motivation of our method is to obtain high-quality
sampling points by constraining the sampling area, thereby
improving the convergence rate in finding the optimal
solution. The algorithm is composed of three parts (Dyn-
Sample, Limit-Sample and DCB-Extend), each of which
is to prepare for improving the path convergence rate.
Ablation experiments verify the enhancement of each part
of the work. Numerical simulations are conducted and
compared with other algorithms in various maps, and the
results show that DCB-RRT* has the best performance in
terms of path convergence rate. The main contributions of
the paper are as follows:
1) A Dyn-Sample method according to the number of

collision detection failures is proposed, which helps to
provide a good initial solution for the convergence stage.

2) A DCB-Extend is proposed to increase the mutual
guidance between the dual trees and improves the node
utilisation rate through the dynamic step.

3) A Limit-Sample solution is proposed to speed up the
path convergence process by improving the quality of
sampling points.

4) Compared with other methods, the proposed method
exhibits robustness and can better equipped to address
path planning challenges in multi-type environments.
The remainder of this paper is presented below.

Section 2 presents the problem definition and the B-
RRT* algorithm. The proposed DCB-RRT* algorithm is
described in Section 3. Section 4 explains the probabilistic
completeness, asymptotic optimality, time complexity,
and space complexity of the DCB-RRT* algorithm.
Experimental comparisons of several maps are performed
in Section 5, followed by conclusion in Section 6.

2. Background

2.1 Problem Definition

Given a configuration space X ⊂ Rn, where n represents
the dimension of the given space, i.e., n ∈ N , n ≥ 2. The
configuration space is further classified into obstacle and
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obstacle-free regions denoted by Xobs ⊂ X and Xfree =
X/Xobs, respectively. Xgoal ⊂ Xfree is the goal region. Let
Ta = (Va, Ea) ⊂ Xfree and Tb = (Vb, Eb) ⊂ Xfree represent
two growing random trees, where V denotes the nodes and
E denotes the edges connecting these nodes. xainit ∈ Xfree

and xbinit ∈ Xgoal represent the starting states for Ta and
Tb. In this study, we only consider Euclidean space and
positive Euclidean distance between any two states, e.g.,
x1 ∈ X and x2 ∈ X is denoted by EucDis (x1, x2). Let the
path connecting any two states x1 ∈ Xfree and x2 ∈ Xfree

be denoted by σ : [0, s], such that σ (0) = x1 and σ (s) = x2,
whereas s is the positive scalar length of the path. The
cost function for calculating the Euclidean distance of the
feasible path is c (·), and the set of all collision-free paths
σ is denoted as

∑
σfree

.
Problem 1 (Feasible path solution). Find a path σ :

[0, s] in obstacle-free space Xfree ∈ X such that σ (0) =
xinit ∈ Xfree and σ (s) ∈ Xgoal. If one exists, report success.
If no such path exists, report failure.

Problem 2 (Optimal path solution). Find the feasible
path c (σ∗) = min

{
c (σf ) , σf ∈

∑
σfree

}
, such that the cost

of the path σ∗ is minimum.

2.2 The B-RRT* Algorithm

The proposed algorithm is improved based on the existing
B-RRT* algorithm [35], so this section describes the basic
principles of the B-RRT* path planning algorithm. Its
pseudocode is shown in Algorithm 1.

The detailed expansion process of B-RRT* is shown
in Algorithm 1. The map space, obstacles, and parameters
used are first initialised. Tree Ta is initialised by xainit as its
root node, where xainit ∈ Xfree, and tree Tb is initialised by
xbinit as its root node where xbinit ∈ Xgoal. The tree growth
process first a node xrand is randomly sampled in Xfree,
inserting the xnew into the selected tree Ta and rewiring it.
Then, the node xconn closest to xnew is found from the tree
Tb. The function Connect tries to connect the two random
trees Ta and Tb, and forming a feasible path σnew. If the
cost of the new path c (σnew) is less than the previous best
cost c (σbest), σbest is overwritten by σnew. Finally, the trees
Ta and Tb are swapped, and the random tree continues to
expand until the maximum number of iterations nmax is
reached.

To describe the process of pseudocode more clearly,
some steps are explained as follows.

Nearest : It returns a node xnearest that is closest to
xrand in the Euclidean distance.

Extend : Extend (x1, x2, step) returns a new node xnew.
The node is generated along the direction from x1 to x2,
and the Euclidean distance from x1 is step.

Near : It returns a set of point sets Xnear, which are
contained in the hypersphere with a specific radius R
centred on xnew, and the points in the point set can pass
collision detection with xnew.

ChooseBestParent : This procedure is used to find the
xmin in Xnear, which provides the shortest, collision-free
path σ′ from the xinit to the xnew. Algorithm 2 illustrates
the procedure.

Algorithm 1 B-RRT*

Input: X,xainit , x
b
init , nmax , R, step

Output: (Ta, Tb) = (V,E)

1: V ←
{
xainit, x

b
init

}
;E ← φ;σbest ←∞;

2: Ta ← (xainit, E) ;Tb ←
(
xbinit, E

)
3: for i← 0 to nmax do
4: xrand ← Sample (i);
5: xnearest ← Nearest (xrand, Ta);
6: xnew ← Extend (xnearest, xrand , step);
7: Xnear ← Near (xnew, Ta, R);
8: xmin ← ChooseBestParent (xnew, Xnear);
9: if xmin 6= φ then

10: T ← Insert (xnew, xmin, Ta) ;
11: T ← Rewire (xnew, Xnear, E);
12: end if
13: xconn ← Nearest (xnew, Tb);
14: σnew ← Connect (xnew, xconn, Tb);
15: if σnew 6= φ&&c (σnew) < c (σbest) then
16: σbest ← σnew ;
17: end if
18: SwapTrees (Ta, Tb);
19: end for
20: return (Ta, Tb) = (V,E)

Algorithm 2 ChooseBestParent

Input: xnew, Xnear

Output: xmin

1: cbest ←∞;
2: for each xnear ∈ Xnear do
3: if c (xnear) + EucDis (xnear, xnew) < cbest then
4: cbest = c (xnear) + EucDis (xnear, xnew);
5: xmin ← xnear;
6: end if
7: end for
8: returnxmin

Algorithm 3 Rewire

Input: xnew, Xnear, E
Output: T

1: for each xnear ∈ Xnear do
2: if c (xnew) + EucDis (xnew, xnear) < c (xnear) then
3: xparent ← Parent (E, xnear);
4: E ← (E\ {(xparent, xnear)} ∪ {(xnew, xnear)}) ;
5: end if
6: end for
7: T

Rewire: Algorithm 3 gives the process of rewiring.
Here, the algorithm examines each vertex x′ ∈ Xnear lying
inside the ball region centred at xnew. If the cost of the
path connecting xinit and x′ through xnew is less than the
existing cost of reaching x′, then xnew is made the parent
of x′. Instead, no changes are made to the tree and the
next vertex will be checked.
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Figure 1. The flowchart of the DCB-RRT* algorithm.

Algorithm 4 Connect

Input: xnew, xconn, Tb
Output: σnew

1: xbnew ← Extend (xconn, xnew , step);
2: Xb

near ← Near
(
xbnew, Tb, R

)
3: xmin ← ChooseBestParent

(
xbnew, X

b
near

)
;

4: if xmin 6= φ then
5: E ← E ∪ (xmin, xnew) ;
6: σnew ← GeneratePath (xmin, xnew);
7: return σnew
8: end if
9: return NULL

Connect : Algorithm 4 outlines the implementation of
Connect heuristic of B-RRT*. The purpose of this function
is to generate an end-to-end feasible path σnew.

GeneratePath: This procedure ends with the gener-
ation of a feasible path solution between two points,
connecting xainit and xbinit.

SwapTrees: The iteration ends with a swap tree, and
in the next iteration, the same procedure is performed on
another tree.

3. The DCB-RRT* Algorithm

This section describes the principle of the DCB-RRT* path
planning algorithm, the dynamic constrained sampling
method, the biased extension strategy, the dynamic step,
and draws conclusions through analysis.

3.1 Proposed Algorithm

RRT* provides probabilistic completeness and asymptotic
optimality by optimising the parent nodes of the sampling
points and the surrounding region nodes. However, the

exploration process is blind and inefficient, resulting in
a very time-consuming algorithm. The dual-tree strategy
balances search efficiency and feasible path length to some
extent [39], but it does not solve the essential problem
that exists when exploring the space. Therefore, the DCB-
RRT* path planning algorithm is proposed to solve these
problems, and its pseudocode is shown in Algorithm 5.
Path planning can usually be divided into two stages:
finding the initial path and converging to the optimal
path. Its purpose is to use the least time to plan the
optimal path between two points. The dynamic constrained
sampling strategy proposed by DCB-RRT* in the stage
of finding the initial path and the stage of converging to
the optimal path, respectively, greatly improves the rate of
finding the optimal path. The random tree bias extension
strategy is proposed, which increases the mutual guidance
of the dual-tree growth and reduces the time required
for the encounter. The dynamic step is also used to improve
the node utilisation.

flag : The flag of whether the initial path is found or
not. If the flag is 0, the initial path has not been found yet.
If the flag is 1, the path is in the path convergence stage.

Collisionfree: Given two nodes, x1 and x2, it checks
whether the path σ from x1 to x2 is a feasible path, that is
∀τ ∈ [0, 1], σ (0) = x1, σ (1) = x2, σ (τ) ∈ Xfree.

The flowchart of the DCB-RRT* algorithm is shown
in Fig. 1. The whole process is divided into the stages
of finding the initial path and converging to the optimal
path. Different dynamic constrained sampling strategies,
i.e., Dyn-Sample and Limit-Sample, are used in the two
stages, which are the key works in this study. By using
the two strategies, the nearest points

{
xanearest, x

b
nearest

}
of

xrand are found on two random trees. Another work is to
guide the bias extension of the current random tree Ta
by sampling point xrand and the nearest point xbnearest of
the opposite random tree together, which is represented
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Algorithm 5 DCB-RRT*

Input: X,xainit, x
b
init, nmax, Tfail, R, θ0

Output: (Ta, Tb) = (V,E)

1: V ←
{
xainit , x

b
init

}
;E ← φ;σbest ←∞;

2: Ta ← (xainit, E) ;Tb ←
(
xbinit, E

)
;Tfail ← 0; flag← 0;

3: for i← 0 to nmax do
4: if flag == 0 then
5: θ = θ0 + Tfail · θ0
6: xrand ← Dyn - Sample

(
i, xainit, x

b
init, θ

)
;

7: else
8: xrand ← Limit - Sample

(
i, σbest, x

a
init, x

b
init

)
;

9: end if
10:

{
xanearest, x

b
nearest

}
← Nearest (xrand, Ta, Tb);

11: xnew ← DCB − Extend
(
xanearest, x

b
nearest, xrand

)
;

12: Xa
near ← Near (xnew, Ta, R);

13: if Xa
near == φ then

14: Xa
near ← Nearest&&Collisionfree (xnew, Ta);

15: if Xa
near == φ then

16: Tfail + +
17: continue
18: end if
19: Tfail ← 0
20: end if
21: xamin ← ChooseBestParent (xnew, X

a
near);

22: T ← Insert (xnew, x
a
min, Ta) ;

23: T ← Rewire (xnew, X
a
near, E);

24: Xb
near ← Near (xnew, Tb, R);

25: if Xb
near 6= φ then

26: xbmin ← ChooseBestParent
(
xnew, X

b
near

)
;

27: E ← E ∪
(
xbmin, xnew

)
;

28: σnew ← GeneratePath
(
xbmin , xnew

)
;

29: flag← 1;
30: end if
31: if σnew 6= φ&&c (σnew) < c (σbest) then
32: σbest ← σnew;
33: end if
34: SwapTrees (Ta, Tb);
35: end for
36: return (Ta, Tb) = (V,E)

by DCB-Extend. If there is no neighbourhood point Xa
near

around the newly generated point xnew or the nearest point
xanearest that can pass collision detection, it means that the
space occupied by obstacles in the sampling area is large
at this time, and the sampling area should be increased
by the angle constraint θ to make the random tree have
a large exploration space. If there are neighbour points{
Xa

near, X
b
near

}
or nearest points

{
xanearest, x

b
nearest

}
of xnew

in both dual-trees, it means that a feasible path σ can be
formed between two points. In the path convergence stage,
the sampling area is continuously reduced according to
the angles between the nodes in the path and the starting
point and the ending point to improve the convergence
rate. When the iteration time is greater than the set
threshold, the shortest path returned is the optimal path
σ∗ during this time. The Dyn-Sample, Limit-Sample, and
DCB-Extend work of this paper are highlighted in detail
below.

Figure 2. Schematic diagram of dynamic constraint
sampling.

3.2 Dyn-Sample

Different from RRT*, B-RRT*, informed RRT*, and
RRT*-smart, which are blind and inefficient, the dynamic
constraint sampling strategy is proposed to dynamically
adjust the sampling area based on the number of
collision detection failures during sampling. If the number
of collision detection failures increases cumulatively, it
indicates that the obstacles around the random trees are
dense so that the sampling area should be expanded to
increase the scalability of the random tree. Otherwise, a
small sampling area is used to reduce the exploration of
irrelevant regions by the random tree. Dynamic constraint
sampling schematic diagram is shown in Fig. 2, in which the
starting point and the ending point are connected to form
a line l, θ is the dynamic constraint sampling angle, so each
sampling point should be within the area constrained by
the angle (The range enclosed by dashed lines in the figure
is the sampling area, where the yellow dots are sampling
points and the black circles are obstacles). θ becomes large
as the number of collision detection failures increases, once
the collision detection is passed the value of Tfail is set
to 0. The relationship can be presented by the following
equation:

θ = θ0 + Tfail · ∆ when
{

Pass collision detection Tfail=0
Collision detection failed Tfail=Tfail+1 (1)

where θ0 is the initial angle, ∆ is the variation interval of
θ between θ ∈ [θ0, π].

3.3 Limit-Sample

The existing algorithms suffer from the same sampling
blindness in the path convergence stage, and the global
scope search largely reduces the probability of finding the
optimal solution. This problem can be solved using the
proposed Limit-Sample method. As shown in Algorithm 6,
considering that the initial path is close to the optimal
or sub-optimal solution, the path convergence can be
restricted to the region with a well-defined boundary. The
difference between the proposed Limit-Sample and the
dynamic ellipse idea of Informed RRT* is that we improve
it on the basis of dual-tree instead of single-tree, and
limit the sampling area by angle, so that the optimisation
process is carried out in a similar rhombus space. The
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Figure 3. Path optimisation by continuously shrinking the diamond region.

Algorithm 6 Limit-Sample

Input: σbest, i, x
a
init, x

b
init

Output: xrand

1: if mod(i, 7) == 0 then
2: xrand = sample (i);
3: else
4: θ1 = max angle (σbest , x

a
init ) ;

5: θ2 = max angle
(
σbest , x

b
init

)
;

6: θmax = max (θ1, θ2) ;
7: xrand = lim− sample (i, θmax , θ);
8: end if
9: return xrand

proposed solution is more direct and effective, and has
certain advantages in the convergence rate. The size of
the diamond is determined by the largest angle θmax in
the (θ1, θ2) between the farthest node in the current path
and the starting and ending points, and each sampling is
performed in the bounded diamond area. The process of
optimising the path by continuously shrinking the diamond
region is shown in Fig. 3. By gradually updating the θ,
the search space is significantly reduced. To ensure the
probabilistic completeness of the optimal solution in the
multi-channel map, we introduce the bias ratio parameter.
The bias ratio determines the number of random samplings
taken within the constrained region instead of globally, and
the ratio can affect the efficiency of reaching the optimal
solution. In this study, the ratio is selected according to
the recommendation in the paper [40].

3.4 DCB-Extend

The random trees in the DCB-RRT* algorithm are
expanded from the starting point xainit and the ending
point xbinit, respectively. If the guidance information is not

considered in the growth process, a large number of invalid
nodes are generated, resulting in randomness during path
planning. To improve the rate of meeting dual-trees, the
bias extension strategy (DCB-Extend) is proposed in this
study, and the growth process is shown in Algorithm 7.
Here we borrow the idea of target probability bias, which is
to take the target point as a certain probability of sampling
point, so that the random tree growth has a directionality,
which is usually used in single-tree generation model. In
this work, the proposed growth strategy is implemented in
the dual-tree growth model. The purpose is to make the
dual-tree has mutual guidance, which improves the speed
of the two trees to meet each other. This makes the current
random tree not only be guided by xrand when expanding
from xanearest to xnew but also by the co-guidance of xbnearest
on another random tree, as shown in Fig. 4. The method of
determining the extension direction and extension distance
by vector synthesis increases the directivity between the
dual-trees.

It is known that the expansion step of B-RRT* is
fixed, resulting in slow local expansion. In this work, the
dynamic step is adopted to speed up the growth of random
trees. xnew is generated by the synthesis of the two vectors,
where the vector v1 is formed from xanearest to xrand. It is
expanded according to the distance between them rather
than a certain step, thus reducing the useless search of the
blank area. The direction of another vector is from xanearest
to xbnearest, and the length of this vector indicates the
distance between the two random trees. Thus, the dynamic
step is expressed as below:

l = v1 + v2 · step (2)

where l is the growth step vector (xnearest grows to xnew
through the vector l), and step is the dynamic factor, the
size of which depends on the spacing distance between two
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Figure 4. Schematic diagram of biased growth.

Algorithm 7 DCB-Extend

Input: xanearest, x
b
nearest, xrand

Output: xnew

1: v1 = xrand − xanearest;
2: v2 =

(
xanearest − xbnearest

)
/ norm

(
xanearest − xbnearest

)
;

3: step = norm (v1)
+
(
norm

(
xanearest − xbnearest

)
− norm (v1)

)
/ norm (v1) ;

4: xnew = xanearest + I;
5: return xnew

random trees as shown in (3).

step = norm(v1)

+

(
norm(xanearest − xbnearest)− norm(v1)

)
norm(v1)

(3)

Finally xnew can be obtained from the following
equation:

xnew = xanearest + (v1 + v2 · step)

= xanearest + I (4)

4. Analysis of the DCB-RRT* Algorithm

4.1 Probabilistic Completeness

In a configuration space, probabilistic completeness means
that the algorithm must find a feasible path (if ones exist)
from the start to the end when the number of iterations
or the search time is infinite. In the process of finding the
initial path, all sampling points are located in the dynamic
sampling area constrained by the angle. Since all four angle
constraint ranges are θ ∈ [θ0, π], the sampling area also fills
the entire Xfree. A sampling sequence ςn

{
xainit, . . . , x

b
init

}
consisting of n nodes is obtained by random sampling.
These points are connected to form a feasible path σf from
the xainit to the xbinit, and problem 1 is finally solved. It is
well known that RRT* is a probability complete algorithm.
Since DCB-RRT* performs the same sampling range as
the above algorithm and the bias extension strategy allows
the algorithm to make two random trees meet with faster
efficiency, DCB-RRT* is probability complete.

4.2 Asymptotic Optimality

Asymptotic optimality means finding the optimal path
or sub-optimal path within a finite number of iterations
or search time. Since both RRT* and B-RRT* introduce
the ChooseBestParent and Rewire on the basis of RRT,
the path structure of the extended node xnew and other
nodes Xnear inside the sphere of certain radius around it

are optimised, resulting in a shorter current path after
each iteration. Therefore, both RRT* and B-RRT* are
asymptotically optimal.

For a dual-tree structure, the path of tree Ta from
the xainit to its end node xa (xa ∈ Va) as σfa : [0, 1], where
σfa (0) = xainit, σfa (1) = xa and ∀i ∈ [0, 1], σfa (i) ∈ Xfree.
Likewise, the path of tree Tb from the xbinit to its end node
xb (xb ∈ Vb) as σfb : [0, 1], where σfb (0) = xbinit, σfb (1) = xb
and ∀i ∈ [0, 1], σfb (i) ∈ Xfree. The entire path can be
represented by the following equation:

c (σf ) = c (σfa) + c (σfb) + EucDis (xa, xb) ≥ c (σ∗) (5)

The ChooseBestParent and Rewire strategies are also
used in DCB-RRT*, so the path structure will also be
optimised when the two random trees are expanded. This
means that the m-th iteration and the n-th iteration (m >
n) will satisfy the following relation:

c (σa)m ≤ c (σa)n

c (σb)m ≤ c (σb)n

EucDis (xa, xb)m ≤ EucDis (xa, xb)n

(6)

where m ∈ N , n ∈ N . Therefore, as the number of
iterations or search time increases, the current feasible path
c (σf ) can converge to the optimal path c (σ∗) and problem
2 is solved eventually. It can be concluded that DCB-RRT*
is asymptotic optimality.

Suppose σ to be the optimal path with the current
samples. All candidate nodes that can improve the current
solution are denoted as X̂ ∈ Xnew:

X̂ = {x ∈ X |f (x) < c (σ)} (7)

where f(x) represents the path cost. The probability of
path improvement from the m-th iteration and the n-th
iteration (m > n) can be calculated as follows:

P (c (σm) < c (σn)) ≤ P
(
xm ∈ X̂

)
≤ P (xm ∈ Xnew) =

S (Xnew)

S (X)
(8)

where the function S (·) represents the area of the sampling
range, the S (Xnew) represents the area of the selected
diamond region, the S (X) represents the planning domain.
Equation (8) indicates that the probability of solution
improvement approaches zero as the current path tends
toward the optimal solution.

If sampling is limited to a defined diamond region, (8)
can be reformulated as:

P (c (σm) < c (σn)) ≤
S (Xnew)m
S (Xnew)n

(9)

S (Xnew)m
S (Xnew)n

<
S (Xnew)

S (X)
(10)

From (10), there are more opportunities to improve
the current solution in the selected diamond region.
Furthermore, the diamond area continually shrinks with
the runtime of our method, which speeds up the
optimisation of path planning.
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Table 1
Time and Space Complexity of the Algorithms

Complexity Algorithms

RRT* Informed-RRT* RRT*-Smart B-RRT* IB-RRT* DCB-RRT*

Time complexity O (N ∗ logN) O (N ∗ logN) O (N ∗ logN) O (N ∗ logN) O (N ∗ logN) O (N ∗ logN)

Space complexity O (N) O (N) O (N) O (N) O (N) O (N)

4.3 Time Complexity

Time complexity can qualitatively describe the running
time of an algorithm, which is usually expressed in big-
O notation, excluding the low-order terms and leading
coefficients of this function. The time complexity of both
RRT and RRT* algorithms is O (N ∗ logN) [41]. The time
complexity depends on some main steps in the algorithm.
The main steps of the DCB-RRT* algorithm include Dyn-
Sample (Line 6), Limit-Sample (Line 8), Nearest (Line
10 and 14), DCB-Extend (Line 11), Near (Line 12 and
24), Collisionfree (Line 14), ChooseBestParent (Line 21
and 26), Insert (Line 22), and Rewire (Line 23). Let
the time complexity of the above steps be TDyn−Sample,
TLimit−Sample, TNearest, TDCB−Extend, TNear, TCollisionfree,
TChooseBestParent, TInsert, and TRewire. The total time
complexity of the DCB-RRT* algorithm is TDCB−RRT∗.

The number of sampling points is nmax. Since Dyn-
Sample, Limit-Sample, DCB-Extend can be completed in
linear time, their complexity can be considered O (N).
The time complexity of Nearest, Near, and Collisionfree is
proved to be O (N ∗ logN) [42]. ChooseBestParent is to
select the best parent node xmin for the extended node
xnew, Insert is to insert node xmin into the random tree,
and Rewire is to optimise the path structure of nodes
within the sphere with a certain radius. Since the number of
nodes in the sphere is small relative to the total number of
samples, they can be considered to have a time complexity
ofO (N). In general, the time complexity of the DCB-RRT*
algorithm can be expressed by the following equation:

TDCB−RRT∗ = TDyn−Sample + TLimit−Sample + TNearest

+TDCB−Extend + TNear + TCollisionfree

+TChooseBestParent + TInsert + TRewire

= O (N) +O (N) +O (N ∗ logN)

+O (N) +O (N ∗ logN) +O (N ∗ logN)

+O (N) +O (N) +O (N)

= 3O (N ∗ logN) + 6O (N)

→ O (N ∗ logN) (11)

Therefore the time complexity of the DCB-RRT*
algorithm is O (N ∗ logN).

4.4 Space Complexity

Space complexity is a measure of the temporary storage
space occupied by the algorithm during its operation,
which can also be represented by big-O notation. The
space complexity of the DCB-RRT* algorithm is mainly

composed of the nodes and edges on the random tree.
According to the total number of sampling points nmax,
the space complexity of the DCB-RRT* algorithm can be
calculated by the following equation:

SDCB−RRT∗ = S (V ) + S (E)

= O (N) +O (N − 1)

= 2O (N)− 1→ O (N) (12)

Therefore, the space complexity of the DCB-RRT*
algorithm is O (N), which is the same as that of the RRT*
algorithm. To understand the time and space complexity
of the algorithms more intuitively, the results are shown in
Table 1. Through the comparison of results, it can be seen
that the proposed DCB-RRT* algorithm does not increase
the time and space complexity.

5. Experimental Simulations

The proposed DCB-RRT* algorithm is used to solve
path planning problems in complex environments with
multi-obstacles, narrow passages, and mazes, and to
verify the effectiveness of the algorithm based on the
characteristics of different environments. The maps used
for the simulation experiments are shown in Fig. 5, where
Fig. 5(a) and (b) are scattered maps with multi-obstacles,
the optimal paths in Fig. 5(c) and (d) are through narrow
passages, and Fig. 5(e) and (f) are maze-like maps. Each
map is composed of 500× 500 pixels, where the black area
represents obstacles, the starting point xainit is a purple
point and the ending point xbinit is a green point, to test the
ability to find the optimal path while avoiding obstacles.

Simulation experiments were implemented on an
Intel(R) Xeon(R) CPU E5-2620 v4 @2.10GHz×2 with
64GB RAM. The Windows 10 operating system based on
the x64 processor is adopted, and the simulation software
is MATLAB R2022b. The performance of DCB-RRT* is
compared with other five existing algorithms, where RRT*
is selected as the baseline, both the informed RRT* and
the RRT*-smart algorithms speed up approaching the
optimal solution by selecting high-quality sampling points,
and are classic improved algorithms of RRT*, B-RRT*
is a milestone dual-tree strategy algorithm, and IB-RRT*
algorithm improves path convergence rate by introducing
a heuristic strategy, which is similar to the improved idea
of the proposed algorithm in this paper. For each map,
each algorithm was run 50 times independently under the
same conditions to reduce chance errors. In addition, the
parameter settings used in the experiment are as follows:
the initial angle of dynamic constrained sampling in DCB-
RRT* was θ0 = 20◦, the variation interval of θ was set to
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Figure 5. Maps for the simulations.

Figure 6. Convergence curves of the B-RRT* algorithm under different steps.

∆ = 20◦, R = 50 was set for all algorithms, the step of
RRT* and B-RRT* was set to 10. The selection of step
has a great influence on the convergence performance of
the algorithms using step, such as RRT* and B-RRT*.
The optimal step of the algorithm in different types of
maps is also different. The proposed algorithm is improved
based on B-RRT*. To select the optimal step, the B-RRT*
algorithm was used to test the convergence in three types of
maps (Map(a), Map(c), and Map(e)) under different steps.
As shown in Fig. 6, the convergence curves show that B-
RRT* exhibits the best comprehensive performance among
the three types of maps when the step is 10. To compare
the convergence of the six algorithms mentioned in this
paper, each algorithm was executed for 100 s, returning
once per second the shortest feasible path at this time. The
shortest path found by RRT* within 100 s is considered
as the optimal path in this paper, and the parameter
T1% is used to compare the convergence rate of the four
algorithms. T1% is the time to find a sub-optimal solution

of 1.01Coptimal, where Coptimal is the length of the optimal
solution.

5.1 Ablation Experiments

To authenticate the enhancements of the three proposed
aspects (Dyn-Sample, Limit-Sample, and DCB-Extend)
in this paper, ablation experiments were conducted. The
ablation experiments are the time for the algorithm to
converge to the sub-optimal path. The proposed algorithm
is improved based on B-RRT*, so the results of B-RRT*
are used as a benchmark and verified in Map(a). In
the ablation experiment, Limit-Sample, Dyn-Sample, and
DCB-Extend are combined with B-RRT*, respectively, to
verify the effectiveness of the proposed three aspects on
path convergence. The results of the ablation experiment
are shown in Table 2. For the convenience of marking, Dyn-
Sample is represented by A, Limit-Sample is represented by
B, and DCB-Extend is represented by C. The experimental
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Table 2
The Time to Converge to Sub-Optimal Path

Time/s Algorithms

B-RRT* B-RRT*+A B-RRT*+B B-RRT*+C DCB-RRT*

T1% 28.33 24.53 19.45 25.68 13.24

Figure 7. Representative results in multi-obstacle maps: (a) RRT*; (b) informed RRT*; (c) RRT*-smart; (d) B-RRT*; (e)
IB-RRT*; (f) DCB-RRT*; (g) RRT*; (h) informed RRT*; (i) RRT*-smart; (j) B-RRT*; (k) IB-RRT*; and (l) DCB-RRT*.

results prove that the three proposed aspects have
enhanced functions and can reduce the time required for
the algorithm to converge to sub-optimal path.

5.2 Path Convergence Experiments

A representative set of results in the multi-obstacle map
is shown in Fig. 7, where the green line is the initial

path, the red line is the final path after the algorithm
runs for 100 s, and the red points are random sampling
points. It can be seen from the figure that since the
expansion way of the random tree in RRT* and B-RRT*
is a fixed step, the expansion efficiency is low and the
path convergence rate is slow. Informed-RRT* improves
the path convergence rate by establishing a dynamic ellipse
sampling area, but the algorithm is globally randomly
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Figure 8. Path convergence curves in multi-obstacle maps.

sampling when finding the initial path with RRT*, so the
initial ellipse is affected by the initial path. RRT*-smart
optimises the path by generating bias points near the nodes
of the initial path, and the final path generated is also
greatly affected by the quality of the initial path. IB-RRT*
improves search efficiency by introducing an intelligent
sample insertion heuristic, but the search range is also
global, so there is also the problem of sampling blindness.
However, DCB-RRT* can greatly improve the quality of
sampling points by dynamically constraining the sampling
strategy. By forming a local convergence effect in the map,
the path convergence rate is accelerated. Even in such
maps with multiple channels, the algorithm has no missing
probabilistic completeness, so it eventually converges to
the optimal path in the case of a poor initial path. Figure 8
shows the path convergence curves of the six algorithms in
two multi-obstacle maps. From the figure, it can be seen
that DCB-RRT* is the fastest path convergence rate.

A representative set of results from the map with
narrow passages is shown in Fig. 9. The presence of narrow
passages in such maps leads to an increased probability of
random tree expansion failure. The experimental results
show that RRT*-smart is more advantageous in single-
channel maps, because the algorithm does not need to
spend more time exploring other channels to optimise
the path in such maps. Compared with informed-RRT*,
DCB-RRT* can make the random tree growth directional
through the bias expansion strategy and can dynamically
adjust the sampling area by the number of collision
detection failures, which shortens the time for two trees to
meet and thus reaches the path convergence stage faster.
Figure 10 shows the path convergence curves of the six
algorithms in narrow passage maps. It can be seen from the
figure that compared with other algorithms, DCB-RRT*
and RRT*-smart have certain advantages in the path
convergence rate in such maps.

A representative set of results from the maze map is
shown in Fig. 11. The complexity of such a map leads
to the low quality of the initial paths produced by the
six algorithms. The initial path causes informed-RRT* to
form a larger initial ellipse area at the convergence stage,
resulting in increased convergence time consumption.
Similarly, the initial path generated by DCB-RRT* forms
a larger angle with the starting point and ending point,

resulting in a larger sampling area during the convergence
stage. RRT*-smart is difficult to converge to the optimal
path in such a short time due to the limitation of
the sampling point method. Figure 12 shows the path
convergence curves of the six algorithms in the maze
maps. Despite the complexity of such maps, DCB-RRT*
maintains an advantage in finding the optimal path, and
the algorithm is able to find a shorter feasible path in the
same running time.

The time and standard deviation of each algorithm to
find the optimal path in the six maps are given in Table 3.
It can be seen from the table that the path search efficiency
of B-RRT*, IB-RRT*, and DCB-RRT* is higher than that
of RRT* in most cases, which proves the advantage of the
bidirectional strategy. Since informed-RRT* and RRT*-
smart limit the sampling area in the path convergence
stage, the high-quality sampling points make the path con-
vergence rate higher than that of RRT* in multi-obstacle
maps and narrow channel maps. Because the sampling
points of the RRT*-smart algorithm in the convergence
stage are often at the inflection points of obstacles, which
makes the algorithm show great advantages in single-
channel maps, RRT*-smart has the fastest convergence rate
and the smallest standard deviation in map (c). However,
the RRT*-smart constraint approach can make it difficult
to converge in maze maps for short periods of time. The
DCB-RRT* has a certain advantage in the convergence
rate in different maps due to the three enhancements
proposed. Among them, the proposed algorithm in the
multi-obstacle map improves the average convergence rate
by 61.90% over the classical B-RRT* algorithm, the
proposed algorithm in the narrow passage map improves
the average convergence rate by 57.96% over the classical B-
RRT* algorithm, and the proposed algorithm in the maze
map improves the average convergence rate by 78.44% over
the classical B-RRT* algorithm. It can be seen from the
standard deviation that since the convergence performance
of DCB-RRT* is affected by the initial diamond size, the
convergence time in maps (a) and (f) fluctuates greatly. But
in general, the proposed algorithm has strong robustness,
can better solve path planning problems in multiple types
of complex environments, and can approach the optimal
path with high search efficiency. This is of great significance
to areas such as unmanned driving and intelligent sorting,
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Figure 9. Representative results in narrow passages maps: (a) RRT*; (b) informed RRT*; (c) RRT*-smart; (d) B-RRT*; (e)
IB-RRT*; (f) DCB-RRT*; (g) RRT*; (h) informed RRT*; (i) RRT*-smart; (j) B-RRT*; (k) IB-RRT*; and (l) DCB-RRT*.

Figure 10. Path convergence curves in narrow passages maps.

402



Figure 11. Representative results in maze maps : (a) RRT*; (b) informed RRT*; (c) RRT*-smart; (d) B-RRT*; (e) IB-RRT*;
(f) DCB-RRT*; (g) RRT*; (h) informed RRT*; (i) RRT*-smart; (j) B-RRT*; (k) IB-RRT*; and (l) DCB-RRT*.

Figure 12. Path convergence curves in maze maps.
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Table 3
The experimental Results on the Time of Convergence to the Optimal Path and Standard Deviation

Algorithms RRT* Informed-RRT* RRT*-Smart B-RRT* IB-RRT* DCB-RRT*

Maps Time/s

T1% σ1% T1% σ1% T1% σ1% T1% σ1% T1% σ1% T1% σ1%

(a) 27.65 19.46 17.40 3.93 26.02 16.66 28.33 26.37 22.04 13.12 13.24 7.11

(b) 29.82 10.11 11.87 7.63 24.25 41.51 24.87 13.03 11.63 8.07 7.33 2.70

(c) 53.25 18.12 32.46 34.43 14.72 3.71 38.19 25.68 31.52 17.53 19.23 7.01

(d) 25.19 13.26 9.53 8.97 33.14 27.38 26.48 9.83 34.52 18.18 8.93 4.36

(e) 89.21 23.39 18.77 9.98 / / 75.24 38.18 66.50 22.44 15.41 7.07

(f) 69.78 34.45 23.96 24.19 / / 59.79 35.10 20.23 4.00 13.54 7.48

and at the same time promotes the development of artificial
intelligence in various fields.

6. Conclusion

Dynamic constrained sampling based bidirectional RRT*
is proposed in this paper, namely, DCB-RRT*, which has
improved the convergence rate. The main work of DCB-
RRT* can be divided into three points: the first point is
to propose a method to dynamically adjust the sampling
area according to the number of collision detection failures
in the stage of finding the initial path, which improves the
quality of sampling points. The second point is to propose
a method of dynamic angle to limit the sampling area
in the path convergence stage, which improves the path
convergence rate. The third point is to propose a sampling
point bias extension strategy, which increases the mutual
guidance between the dual-trees and also employs dynamic
steps to improve the utilisation of nodes. Compared with
other classical path planning algorithms, DCB-RRT* has
a more efficient convergence rate and better robustness
when dealing with path planning problems in complex
environments with multi-obstacles, narrow passages, and
mazes. It is proved by numerical simulation experiments
that it can obtain sub-optimal or optimal paths with high
operational efficiency.

In the future, we will continue to research the
mathematical model in Dyn-Sample. It would be mean-
ingful on how to adapt the parameters according to the
characteristics of the map, which would make the model
perform well in different types of maps. In addition, real-
time path planning in dynamic maps is a difficult and
challenging task in the current research field, and we will
also think about how to improve the performance of the
algorithm to realise the application in dynamic maps.
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