
International Journal of Robotics and Automation, Vol. 39, No. 5, 2024

DDETR-SLAM: A TRANSFORMER-BASED

APPROACH TO POSE OPTIMISATION

IN DYNAMIC ENVIRONMENTS

Feng Li∗,∗∗ Yuanyuan Liu,∗ Kelong Zhang,∗∗ Zhengpeng Hu,∗∗ and Guozheng Zhang∗∗

Abstract

Simultaneous localisation and mapping (SLAM) is a critical

technology for accurate robot localisation and path planning. It has

been an important area of research to improve localisation accuracy.

In this paper, we propose a transformer-based visual semantic

SLAM algorithm (DDETR-SLAM) to address the shortcomings

of traditional visual SLAM frameworks, such as large localisation

errors in dynamic scenes. First, by incorporating the deformable

Detection Transformer (DETR) network as an object detection

thread, the pose estimation accuracy of the system has been

improved compared to ORB-SLAM2. Furthermore, an algorithm

that combines the semantic information is designed to eliminate

outlier points generated by dynamic objects, thereby improving

the accuracy and robustness of SLAM localisation and mapping.

Experiments are conducted on the public TUM datasets to verify

the localisation accuracy, computational efficiency, and readability

of the point cloud map of DDETR-SLAM. The results show that in

highly dynamic environments, the absolute trajectory error (ATE),

translation error, and rotation error are reduced by 98.45%, 95.34%,

and 92.67%, respectively, when compared to ORB-SLAM2. In most

cases, our proposed system outperforms DS-SLAM, DynaSLAM,

Detect-SLAM, RGB-D SLAM, and YOLOv5+ORB-SLAM2. The

relative pose error (RPE) is only 0.0076 m, the ATE is only 0.0063

m, and the dense mapping also has better readability.

Key Words

Simultaneous localisation and mapping, deformable DETR, object

detection, dynamic environments

1. Introduction

Simultaneous localisation and mapping (SLAM) is com-
monly used in various fields, including indoor mobile

∗ School of Computer Science and Technology, Donghua Univer-
sity, Shanghai, China; e-mail: {lifeng, 2212490}@mail.dhu.edu.cn

∗∗ National Innovation Center of Advanced Dyeing and Finishing
Technology, Shandong, China; e-mail: zkl19911219@163.com;
huzp2019@foxmail.com; 1943220103@qq.com
Corresponding author: Yuanyuan Liu

Recommended by Raffaele Di Gregorio
(DOI: 10.2316/J.2024.206-1063)

robots, autonomous driving technology, virtual reality, and
mobile augmented reality [1]. As significant progress has
been made in visual SLAM methods, Davison et al. [2]
introduced the first entirely visual SLAM method using
monocular cameras, but with limited applicability to
smaller scenes; Klein and Murray [3] proposed a SLAM
system called PTAM and the method effectively reduces
the computational cost of monocular SLAM; Mur-Artal
et al. [4], [5] first proposed an open source monocular ORB-
SLAM system within the algorithmic framework of [4];
Mur-Artal et al. [5] then proposed an ORB-SLAM2 system
based on ORB-SLAM [6], which supports binocular and
RGBD cameras. Combining motion-compensated image
difference and maximum a posteriori estimation, Sun
et al. [7] proposed a method to roughly detect moving
objects.

However, before ensuring the robustness and effec-
tiveness of the system, most of the current visual SLAM
methods are based on static scenes [8]. This strict
assumption is not in line with the actual situation. When
there are dynamic objects in the indoor environment,
the traditional SLAM algorithm will fail, because the
SLAM system will produce errors in feature matching, pose
estimation, looping and mapping [8]. Therefore, it is a key
challenge to achieve high-precision visual SLAM to extract
high-quality feature points in a dynamic environment,
distinguish static points from dynamic points, remove
outliers, and use static points for fundamental pose
estimation and mapping. With the rapid advancement of
deep learning and the maturation of algorithms like object
detection [9] and semantic segmentation [10], the demand
for deep learning-based dynamic indoor scene (SLAM) is
growing [11], such as SOF-SLAM [12], DynaSLAM [13],
Detect-SLAM [14], Dynamic SLAM [15]. Chen et al. [16]
combined monocular SLAM with multi-object tracking
using an object detection algorithm to provide initial
semantic information to the SLAM system and eliminate
all feature points in the detection frame. Most of the
proposed methods use a combination of deep learning and
geometry. Most of the proposed methods use a combination
of deep learning and geometry. While some progress has
been made, the real-time performance and stability of the
slam system remain challenges in practical applications.

407

Figure 1. The SLAM framework proposed in this paper.

In this paper, an indoor dynamic environment
DDETR-SLAM algorithm is proposed, which uses feature
point method and fusion object detection algorithm to
solve the challenge of inaccurate positioning and poor
robustness of visual SLAM system in dynamic environment
mapping. The transformer-based object detection thread
has been added to ORB-SLAM2. At the same time, the
semantic information is input into the tracking thread. The
main contributions of this paper are as follows:
1. To solve the problem of poor localisation accuracy,

we propose an improved deformable DETR + ORB-
SLAM2 algorithm.

2. We propose a dynamic feature point elimination
algorithm to reduce the false rejection rate of feature
points.

3. We study and propose a dynamic feature point
elimination algorithm to reduce the false rejection rate
of feature points, and verify it in the actual scene, which
proves the validity of the algorithm.
Static background reconstruction [17] has improved

the legibility of the dense point cloud map in dynamic
scenarios, making it easier for future robots to navigate
and utilise the map. In addition, compared with other
methods, the proposed method has relatively lower
resource requirements.

2. System Framework

2.1 Structure of the DDETR-SLAM

The classical framework of visual SLAM consists of five
components: sensor data, visual odometry, back end opti-
misation, loop closure detection, and mapping [17], [18].
ORB-SLAM2 is a remarkable open-source SLAM system

that is compatible with monocular, binocular, and RGBD
cameras. It performs exceptionally well in static settings
by ensuring consistency between camera trajectory and
map construction [18]. References [13] and [19] used
Mask-RCNN [20] and SegNet [21] semantic segmentation
networks, respectively, which are time-consuming and
difficult to achieve real-time results in the whole SLAM
system.

ORB-SLAM2, a typical SLAM framework based on the
feature point approach, consists of three parallel threads:
tracking, local mapping, and loop closing.
1. The tracking thread extracts and matches features of

images using the ORB algorithm, optimises the camera
pose based on the information from the matches, tracks
the local map, and inserts the local map by selecting
key frames from all the frames.

2. Keyframes connect the local mapping thread to the
tracking thread, which removes redundant map points
and keyframes, and optimises the local map using the
bundle adjustment (BA) algorithm [22].

3. Loopback detection uses Bag of Word (BOW) [23] to
determine if the same scene is being reached and to
correct the camera pose, thus reducing the cumulative
error.
The DDETR-SLAM system, shown in Fig. 1, improves

the original threads of ORB-SLAM2 by incorporating
object detection and dense mapping threads. The input
image is processed by the deformable detection transformer
(DETR) network, which provides initial semantic infor-
mation for the tracking thread, including object position
and class. This semantic information, combined with the
dynamic feature point elimination algorithm, accurately
identifies dynamic feature points from static ones and
eliminates incorrect rejections from previous frames. The

408

Figure 2. DETR network architecture [25].

Figure 3. Deformable DETR network architecture [26].

remaining static points serve to enhance location precision
and improve the comprehensibility of the mapping results
in SLAM through camera position estimation.

2.2 Object Detection Algorithm

Transformer was first proposed for natural language
processing (NLP) [24]. Later, Facebook AI researchers
introduced DETR [25], which is the first application of
transformer in the field of vision. DETR is an end-to-end
network with a clear and efficient structure that replaces
the anchor mechanism with object query and the original
non-maximum suppression with bipartite graph matching.
Three components make up its structure: a forward
network FFN for prediction, a Transformer for encoding–
decoding , and a CNN for feature extraction [25]. The
DETR uses the global modeling capability of Transformer
to treat object detection as an ensemble prediction
problem, making model training, and deployment easier
and with comparable performance to the SOTA approach.
Figure 2 illustrates the structure of DETR.

After DETR, deformable DETR [26] emerged, a
new network model called deformable DETR [26] was
developed. This model reduces the required training
rounds, achieves faster convergence, and improves effi-
ciency. This network architecture addresses DETR’s
limitation of performing well on large objects but poorly
on small objects. The deformable DETR replaces the
transformer attention module that processes the feature
map with a multi-scale deformable attention module, which
solves the problem of excessive computing and memory
requirements [26].

Deformable DETR is selected to detect dynamic
objects. The pre-trained model is used to detect objects
in the image and extract semantic information from it.
The pre-trained model is trained on the COCO data set
(including 80 categories). Although this cannot cover all
object types, in indoor and simple outdoor scenarios, 80
categories are sufficient to meet the requirements. Figure 3
is the structure of Deformable DETR.

For the purposes of tracking, we consider “people” to
be dynamic objects and incorporate semantic information

409

into the process. Our proposed algorithm eliminates
dynamic feature points. In the experimental section, we
compare the performance of deformable DETR with the
latest YOLOv5 to show the advantages of our approach in
visual odometry.

3. Dynamic Feature Point Elimination

3.1 Dynamic Feature Point Elimination Algorithm

We use deformable DETR to detect objects in the image to
distinguish static and dynamic feature points. To improve
the tracking process, we integrate semantic information
and masks as inputs. However, if dynamic objects occupy
a significant portion of the scene, removing all feature
points within the detection bounding boxes could lead to
tracking failures and hinder pose optimisation. To solve
this problem, our algorithm differentiates feature point
characteristics to reduce the occurrence of false rejection
and improve overall performance.

Algorithmic Approach: The deformable DETR is
utilised for object detection in camera images. The objects
in the scene belong to three classes: high, low, and
static. Through classification of the detection boxes into
these categories, we can better process each category in
detail, which improves the flexibility and adjustability
of the system. Qualitative classifications of bounding
boxes as either dynamic or static are determined by
the semantic information obtained from object detection.
The elimination of feature points only occurs in specific
situations.

P = [p1, p2, . . . , pm]
T
,m = 1, 2 . . . (1)

E′
(
δ̂
)

= Ed

(
δ̂
)

&&Es

(
δ̂
)

(2)

where p is the feature point set, δ̂ ∈ [p1, p2, . . . , pm]
T

, Ed()
is the function to determine whether p i is a dynamic
feature point, and Es() is the function to determine
whether p

i
is a static feature point. E′() is a function

that assigns values to the state of the feature point p
i
.

The algorithm’s pseudocode is shown in Algorithm 1. The
pseudocode only explains the decision to classify points
as dynamic or static, because the algorithm focuses on
dealing with dynamic and static objects, rather than
directly dealing with detection boxes with “low” attributes.
Instead, we use the RANSAC algorithm in the original
system to filter feature points with “low” attribute in the
detection boxes to eliminate potential mismatches.

To guarantee the accuracy of outlier removal, we have
observed that reducing the count of feature points can
influence pose estimation in the tracking thread. Therefore,
except for human subjects, we utilise the following
algorithm to handle dynamic feature points. The dynamic
feature point elimination algorithm employs the same
approach to feature point quantity as this method. The
pseudocode is shown below.

1: Modify the number of feature points:
2: Original number of feature points: n
3: Modified number of feature points: 1.5n
4: Motion object discrimination method:

Algorithm 1 Dynamic Feature Point Elimination
Algorithm

Input: Semantic information from Deformable ETR detect
result; The extracted feature points of ORB, P
Output: É(δ̂)
p̂= PointWithinBoundingBox(P, box id);

Ed

(
δ̂
)

= FindPointIsInDynamicBox(p
i
);

Es

(
δ̂
)

= FindPointIsInStaticBox(p
i
);

for k = 0; k <p̂.size(); ++k do
if Ed (k) == true&&Es (k) == false then

vbPointInDynamickeys.push back(true);
p→ (-1,-1,-1);

else
vbPointInDynamickeys.push back (false);

endif
end for

5: Overlapping area threshold: T = 0.9
6: Bounding box information: d
7: The current frame area: p
8: For everyframe, compare the bounding box

information based on the category and deter-
mine whether to remove the feature points:

9: If the ratio of the bounding box information d to the
current frame area p exceeds the threshold value T ,
the feature points located in the border will not be
removed.

10: Else remove the feature points.

3.2 Systematic Evaluation Metrics

relative pose error (RPE) and ATE are commonly
used metrics to assess visual SLAM and odometry [27].
RPE quantifies translational and rotational drift in the
trajectory, whereas ATE specifically measures translational
error. RPE takes into account both translational and
rotational errors. RPE is described as follows:

ei :=
(
G−1

i Gi+∆

)−1 (
E−1

i Ei+∆

)
(3)

where E1, . . . , En ∈ SE (3) is the estimated camera
trajectory sequence and G1, . . . , Gn ∈ SE (3) is the true
camera trajectory sequence. ∆ is time interval. The root
mean square error (RMSE) is often used to evaluate the
performance of the SLAM system over the entire time
period, RMSE is described as follows:

RMSE (e1:n,∆) :=

(
1

m

m∑
i=1

‖trans (ei)‖
2) 1

2

(4)

RMSE (e1:n,∆) :=

(
1

m

m∑
i=1

‖rota (ei)‖
2) 1

2

(5)

Where trans (ei) is the translation error component of
RTE, rota (ei) is the rotation error component of RTE,
m = n −∆ is the relative pose error of individuals in the
sequence, and we set ∆ = 1 in the experiment. To average

410

Table 1
Dataset Details [27]

Sequence Duration Ground-truth trajectory length Avg. translational velocity Avg. angular velocity

freiburg3 walking xyz 28.83 s 5.791 m 0.208 m/s 5.490 deg/s

freiburg3 walking halfsphere 35.81 s 7.686 m 0.221 m/s 18.267 deg/s

freiburg3 walking rpy 30.61 s 2.698 m 0.091 m/s 20.903 deg/s

freiburg3 walking static 24.83 s 0.282 m 0.012 m/s 1.388 deg/s

freiburg3 sitting static 23.63 s 0.259 m 0.011 m/s 1.699 deg/s

all time intervals ∆, RMSE is defined as follows:

RMSE (e1:n) :=
1

n

n∑
∆=1

RMSE (e1:n,∆) (6)

ATE is used to evaluate the consistency of camera
trajectories and algorithmic stability. Unlike RPE, ATE
only contains translation errors. Under Time Step i, the
ATE is defined as follows:

θi := Gi
−1SEi (7)

RMSE (θ1:n) :=

(
1

n

n∑
i=1

‖trans (θi)‖
2) 1

2

(8)

Where S is a rigid transformation that maps G1:n to
E1:n using a least squares solution.

3.3 TUM Dataset

The TUM RGB-D dataset, provided by the University
of Munich, is a widely used evaluation tool for SLAM
system. The dataset was collected by Microsoft Xbox
Kinect sensor with a resolution of 640× 480 and a sampling
rate of 30 Hz. Its limitation is that it focuses only on
indoor scenes. Therefore, it is inadequate for representing
outdoor environments or other diverse settings. This
narrow emphasis might result in a bias in the dataset
that impairs the model’s capacity to generalise to real-
world settings. Nevertheless, despite these limitations, the
dataset provides a strong foundation for research in visual
and depth perception in indoor environments. It helps
to understanding the perception challenges in the indoor
environments and provides valuable data resources for
the domains of robotics and computer vision. Table 1
shows the dataset used in the experiment, categorised
by camera motion: xyz, half-sphere, rpy, and static.
The walking scenario aims to evaluate the effectiveness
of visual SLAM and odometry algorithms in handling
rapidly moving dynamic objects, while the sitting scenario
evaluates the performance of these algorithms with slowly
moving dynamic objects. Assessment metrics include RPE
and ATE, with RMSE, SD, mean, and median used for
evaluation.

4. Experiments and Analysis

In this section, we evaluate the feasibility of the
proposed method and perform several experiments on
the TUM RGB-D dataset to evaluate the effectiveness
of the proposed method. In addition, we compared the
performance of our method with OBR-SLAM2, DS-
SLAM, Dyna-SLAM, Detect-SLAM, RGB-D SLAM, and
YOLOV5+ORB-SLAM2 on the TUM RGB-D dataset.
It is worth noting that the system architecture of
YOLOv5+ORB-SLAM2 is identical to that of DDETR-
SLAM, including the dynamic feature point elimination
algorithm, except that the detection network is different.
All experiments were performed on a desktop with Intel(R)
Xeon(R) CPU and 4GB of memory running Ubuntu Linux
18.04 LTS.

4.1 Object Detection Algorithm Experiment

The object detection thread provides semantic information
for the ORB-SLAM2 tracking thread, including bounding
box masks and categories. The detection thread uses
consistent resolutions (640 × 480) for all images to
guarantee quantitative analysis. The inference threshold
for individual images is set to 0.35, and the non-maximum
suppression threshold for YOLOv5 is set to 0.5. As shown in
Fig. 4(b) and (c), deformable DETR is sensitive to smaller
objects. Moreover, under the same threshold, deformable
DETR performs better than YOLOv5 in long-distance
object detection, and the position accuracy of the object
selected by the bounding box is higher. It is worth noting
that deformable DETR can effectively detect smaller
objects on the desktop. Moreover, the experimental results
of dynamic point removal outlined in Section 4.4 show
that the proposed algorithm combined with the deformable
DETR thread is superior to other methods in optimising
the camera position, which proves the effectiveness of our
method.

4.2 Dynamic Point Removal Experiment

In ORB-SLAM2, all feature points (both dynamic and
static) are used for matching and pose estimation. However,
in highly dynamic environments, unprocessed dynamic
points can compromise the accuracy of pose estimation.
In order to solve this problem, our proposed algorithm
eliminates external points in the dynamic scene when

411

Figure 4. Detection results of YOLOv5 and deformable DETR on the TUM dataset: (a) and (d) is the dataset of
fr3/walking half and fr3/sitting static; (b) and (e) is the detection result of the dataset using YOLOv5; and (c) and (f) is the
detection result of the dataset using deformable DETR.

Figure 5. Results of feature point extraction by ORB-SLAM2 and DDETR-SLAM for the TUM dataset: (a), (b), (c), (d),
and (e) are ORB-SLAM2 feature point extraction results with unfiltered dynamic feature points; (f), (g), (h), (i), and (j) are
dynamic feature point filtering results of the proposed method in different scenes, where the yellow border is the position of
the dynamic object identified by deformable DETR. Feature points on dynamic objects are removed in DDETR-SLAM.

extracting and matching feature points. By doing this,
only static feature points are preserved, enhancing the
reliability and stability of the system. Figure 5 shows the
result of feature point extraction from ORB-SLAM2 and
DDETR-SLAM in different scenarios, including unmanned
scenes, one-person scenes, and two-person scenes.

The improved SLAM system does not eliminate all the
feature points in the detection box classified as human,
but selectively eliminates the dynamic feature points. This
method is committed to selectively eliminating feature
points, which effectively avoids the elimination of all feature
points in the detection box when dynamic objects occupy
significant space. By doing this, the system maintains

a higher number of matched feature points, improving
camera tracking and maintaining the stability of the
SLAM system. Our proposed dynamic point elimination
algorithm defines object attributes as high, low, and static
based on semantic information provided by the detection
thread. Objects with low attributes are not processed, while
the RAndom SAmple Consensus (RANSAC) algorithm is
used to filter dynamic feature points from objects with
moderate attributes. In Fig. 5, we aim to retain static
feature points for camera pose estimation and mapping.
The experimental results show that the algorithm can
effectively and accurately remove the dynamic feature
points in the scene.

412

Figure 6. In the real dynamic scene, the RGB-D camera is used to perform dynamic feature point elimination experiments:
(a) real scene and (b) experiment scene.

Figure 7. The ATE and RPE results of ORB-SLAM2, DDETR-SLAM and YOLOv5-SLAM. The diagrams are computed
through the fr3/walking xyz sequence. The graphs (a), (b), and (c) are ATE results and (d), (e), and (f) are RPE results.

4.2.1 Evaluation in Real Environment

To demonstrate the efficacy of our algorithm, we conducted
experiments in a laboratory setting, capturing real-world
dynamic scenarios. Figure 6(a) shows the actual scene
captured using an RGB-D camera. In Fig. 6(b), the first
column displays the results of object detection. The third
and fourth columns of Fig. 6(b) show the feature point
extraction results of ORB-SLAM2 and our algorithm,
respectively.

As observed in the third column of Fig. 6(b), ORB-
SLAM2 extracts a large number of feature points, including
many dynamic feature points. However, in the fourth

column of Fig. 6(b), our proposed algorithm effectively
eliminates feature points on moving individuals, retaining
only those associated with the static background. This
observation underscores the viability of our proposed
algorithm.

4.3 Performance Evaluation on TUM RGB-D
Dataset

In this section, we select TUM RGBD datasets to evaluate
the performance of the proposed algorithm in different
scenarios. Figure 7(a) and (d) shows the visualisation of
ORBSLAM2 on the fr3/walking xyz , where the black

413

Figure 8. Ground truth and trajectories estimated by DDETR-SLAM, YOLOv5+ORBSLAM2 and ORB-SLAM2 in the
TUM sequence fr3/walking xyz: (a) fr3/walking xyz; (b) fr3/walking halfsphere; (c) fr3/walking static; (d) fr3/walking rpy;
and (e) fr3/sitting static.

line represents the actual camera trajectory, the blue
line represents the estimated value, and the red line
represents the difference between the two. Figure 7(b) and
(e) demonstrates the visualisation results with YOLOv5
as the object detection framework, while Fig. 7(c) and
(f) shows the results obtained using deformable DETR.
However, ORB-SLAM2 struggles to filter dynamic feature
points, leading to significant positioning and orientation
inaccuracies in dynamic environments. To address this
issue, we extended ORB-SLAM2 and compared it with
the original system, achieving reduced ATE and RPE in
camera pose estimation. This improvement enhances the
pose estimation accuracy of the DDETR-SLAM system.

Fig. 7(b) illustrates that YOLOv5 + ORBSLAM2
achieves better camera pose matching compared to
the ORB-SLAM2. However, the deformable DETR+
ORBSLAM2 result in Figs. 7(b) and (c) exhibits a more
accurate camera pose estimation. The ORB-SLAM2 sys-
tem initially produces a maximum relative positional inac-
curacy of 1.506343 m within 1 s. In contrast, the maximum
relative position deviation of the improved SLAM system is
less than 0.075971 m in the same period. This improvement
is attributed to our algorithm’s ability to effectively reduce
false elimination of dynamic points and remove dynamic
feature points from the scene, so as to obtain superior
localisation outcomes. Figure 8 shows a visualisation of
our proposed algorithm on the TUM dataset. The black
line represents the real trajectory, the red line represents
ORB-SLAM2, the green line represents our algorithm, and
the blue line represents YOLOv5+ORB-SLAM2.

Table 2 shows the comparison results of APE, where
the best result is indicated in bold font. “-” denotes that
the original paper does not provide the result. Compared
with ORB-SLAM2, DDETR-SLAM has a significant
improvement in both low-dynamic and high-dynamic
scenarios. Our algorithm achieves the best results on
fr3/walking xyz, fr3/walking rpy, and fr3/walking static
sequences. However, compared with ORB-SLAM2, this
improvement is not obvious in low dynamic sequences.
This can be attributed to the static characteristics of
the scene, where ORB-SLAM2 removes a small number
of dynamic feature points using the RANSAC algorithm.
DynaSLAM obtains optimal results in fr3/walking half
and fr3/sitting static sequences attributable to its precise
semantic segmentation. Nevertheless, our algorithm also
obtains almost the same results as DynaSLAM.

Tables 3 and 4 list the translation drift and rotation
drift results of each algorithm in the TUM dataset. Due
to the ability to identify objects and eliminate dynamic
feature points, DDETR-SLAM has obvious advantages
over other algorithms in reducing translation drift and
rotation drift errors in high dynamic scenes. The lower
RPE value indicates that the results generated by the
SLAM algorithm have better stability and consistency.
This is crucial for achieving precise positioning in real-time
applications like navigation and robot path planning.

Tables 5–7 show the percentage improvement in ATE
and RPE of DDETR-SLAM compared to ORB-SLAM2.
The results in these tables are calculated as follows:

∆ =
α− β
α
× 100% (9)

where ∆ is the improved value, α is the value of ORB-
SLAM2 and β is the value of DDETR-SLAM.

Table 5 shows that the proposed method significantly
reduces the ATE in the fr3/walking xyz dataset, with
RMSE of 98.45% and standard deviation of 98.44%. The
results of Tables 6 and 7 show that in the case of complex
camera motion, such as in a scene similar to fr3/walk rpy,
the improvement of rotation error is lower than that of
translation error. The main reason is that the fast motion
of the camera causes the image to be blurred, and the
camera cannot effectively track the key frame.

The results show that the DDETR-SLAM system can
improve the robustness and accuracy of visual SLAM
in high dynamic environments. In the field of robot
navigation, accurate camera pose is crucial for robot
navigation and obstacle avoidance tasks. Therefore, the
proposed method also improves the performance and
efficiency of the entire navigation system. As ORB-SLAM2
uses RANSAC algorithm to deal with low dynamic object
outliers, our algorithm has only a slight improvement
in dealing with low dynamic environment. However, in
dynamic scenes, the deviation result of camera pose
estimation is better than ORB-SLAM2.

4.4 Dense Point Cloud Mapping Experiment

For tasks such as robot navigation, the reconstruction of
the static background is crucial. In Fig. 9, The deformable
DETR is employed for image detection, specifically for
dynamic object detection. Subsequently, the detection

414

Table 2
Comparison of the RMSE of ATE(m) of DDETR-SLAM against OBR-SLAM2, DS-SLAM, DynaSLAM, Detect-SLAM and

YOLOV5+ORB-SLAM2 for TUM RGB-D Dataset

Sequences fr3/walking xyz fr3/walking half fr3/walking static fr3/walking rpy fr3/sitting static

ORB-SLAM2 RMSE 0.9749 0.6303 0.3953 0.9292 0.0085

S.D. 0.5199 0.2871 0.156 0.483 0.0042

mean 0.8247 0.5610 0.3632 0.7938 0.0074

median 0.7441 0.4568 0.3093 0.8166 0.0064

DS-SLAM [19] RMSE 0.0247 0.0303 0.0081 0.4442 0.0065

S.D. 0.0161 0.0159 0.0036 0.235 0.0033

mean 0.0186 0.0258 0.0073 0.3768 0.0055

median 0.0151 0.0222 0.0067 0.2835 0.0049

DynaSLAM [13] RMSE 0.0164 0.0296 0.0068 0.0354 0.0064

S.D. 0.0086 0.0157 0.0032 0.0190 –

mean – – – – –

median – – – – –

Detect-SLAM RMSE 0.0241 0.0514 – 0.2959 –

S.D. 0.0159 0.0231 – 0.1481 –

mean – – – – –

median – – – – –

YOLOv5+ORB-SLAM2 RMSE 0.0171 0.0356 0.0202 0.0312 0.0069

S.D. 0.0089 0.0188 0.0175 0.0194 0.0040

mean 0.0147 0.0296 0.0103 0.0243 0.0062

median 0.0123 0.0270 0.0075 0.0189 0.0057

The proposed approach RMSE 0.0151 0.0307 0.0067 0.0297 0.0063

S.D. 0.0081 0.0178 0.0031 0.0184 0.0032

mean 0.0139 0.0287 0.0069 0.0233 0.0061

median 0.0122 0.0214 0.0059 0.0176 0.0051

The bold fonts represent the best results

results of the current frame are used to remove dynamic
objects from the depth map. ORB-SLAM2 then integrates
the processed depth map and color image. The final output
is a concatenated 3-D point cloud.

Figure 10 displays the visualisation of the static
background reconstruction outcome in a highly dynamic
environment. The mapping results show that the improved
method effectively eliminates the appearance of dynamic
objects in the map and enhances the readability of the map.

4.5 Real-time Performance Evaluation

The evaluation of algorithm performance involves not
only assessing localisation accuracy but also evaluating
real-time performance. Tracking time refers to the time

required for the tracking thread to complete tasks, such
as single-frame image extraction, feature matching, and
pose estimation. Table 8 shows the time consumption
for processing a single image by different networks.
Tables 9 and 10 provide the average tracking times
for various systems. For our algorithm, the time spent
on semantic extraction is relatively minimal. In high-
dynamic scenes, the tracking time is slightly higher than
that of ORB-SLAM2. In low-dynamic scenes, such as
fr3/walking static and fr3/sitting static, the per-frame
tracking time is comparable to the original system. Overall,
in terms of tracking thread efficiency, our proposed system
significantly outperforms DynaSLAM [13], which utilises
Mask-RCNN for semantic segmentation. In terms of
tracking time, this system is on par with ORB-SLAM2,

415

Table 3
Comparison of the Metric Translational Drift (m/frame) of DDETR-SLAM against OBR-SLAM2, DS-SLAM, DynaSLAM,

RGB-D SLAM, and YOLOV5+ORB-SLAM2 for TUM RGB-D Dataset

Sequences fr3/walking xyz fr3/walking half fr3/walking static fr3/walking rpy fr3/sitting static

ORB-SLAM2 RMSE 0.4395 0.4222 0.2099 0.3917 0.0089

S.D. 0.3004 0.3207 0.1905 0.2787 0.0044

mean 0.3208 0.2746 0.0883 0.2752 0.0078

median 0.1961 0.1031 0.0142 0.1494 0.0069

DS-SLAM [19] RMSE 0.0333 0.0297 0.0102 0.1503 0.0078

S.D. 0.0229 0.0152 0.0048 0.1168 0.0038

mean 0.0238 0.0256 0.0091 0.0942 0.0068

median 0.0181 0.0226 0.0082 0.0457 0.0061

DynaSLAM [13] RMSE 0.0218 0.0272 0.0102 0.0529 0.0085

S.D. 0.0121 0.0102 0.0041 0.0342 0.0079

mean – – – – –

median – – – – –

RGB-D SLAM [28] RMSE 0.1210 0.167 0.084 0.175 –

S.D. – – – – –

mean 0.089 0.108 0.045 0.136 –

median – – – – –

YOLOv5+ORB-SLAM2 RMSE 0.0219 0.0333 0.0275 0.0447 0.0079

S.D. 0.0111 0.0227 0.0239 0.0268 0.0038

mean 0.0189 0.0288 0.0135 0.0358 0.0070

median 0.0166 0.0252 0.0093 0.0287 0.0062

The proposed approach RMSE 0.0205 0.0305 0.0099 0.0412 0.0076

S.D. 0.0101 0.0169 0.0039 0.0241 0.0043

mean 0.0178 0.0243 0.0089 0.0333 0.0080

median 0.0161 0.0233 0.0082 0.0272 0.0068

The bold fonts represent the best results

Figure 9. Mapping process.

but excels in terms of localisation accuracy. The system
achieves a frame rate of 18 frames per second on the
CPU hardware platform, primarily due to the introduction
of object detection threads and dynamic feature point

elimination algorithms. These additional computations
consume some processing time. It is worth noting that the
system’s performance speed can be enhanced through the
utilisation of GPU acceleration.

416

Table 4
Comparison of the Metric Rotational Drift (deg/frame) of DDETR-SLAM against OBR-SLAM2, DS-SLAM, DynaSLAM,

RGB-D SLAM, and YOLOV5+ORB-SLAM2 for TUM RGB-D Dataset

Sequences fr3/walking xyz fr3/walking half fr3/walking static fr3/walking rpy fr3/sitting static

ORB-SLAM2 RMSE 8.3994 8.7824 3.8036 7.5574 0.2867

S.D. 5.8007 6.5599 3.4272 5.3568 0.1247

mean 6.0747 5.8393 1.6497 5.3309 0.2582

median 0.0563 0.0415 0.006 0.0511 0.0043

DS-SLAM [19] RMSE 0.8266 0.8142 0.2690 3.0042 0.2735

S.D. 0.5826 0.4101 0.1182 2.3065 0.1215

mean 0.5836 0.7033 0.2416 1.9187 0.2450

median 0.4192 0.6217 0.2259 0.9902 0.2351

DynaSLAM [13] RMSE 0.6284 0.7842 0.2612 0.9894 –

S.D. 0.3848 0.4012 0.1259 0.5701 –

mean – – – – –

median – – – – –

RGB-D SLAM [28] RMSE 3.2350 5.0100 2.0490 4.3750 –

S.D. – – – – –

mean 2.2560 3.2880 1.0550 3.3600 –

median – – – – –

YOLOv5+ORB-SLAM2 RMSE 0.6356 0.8809 0.5365 0.9699 0.2729

S.D. 0.3890 0.4477 0.4273 0.5745 0.1182

mean 0.5037 0.7586 0.3243 0.7814 0.2459

median 0.0075 0.0116 0.0043 0.0111 0.0041

The proposed approach RMSE 0.6159 0.8189 0.2743 0.9372 0.2745

S.D. 0.3715 0.4158 0.1296 0.5444 0.1231

mean 0.5027 0.7054 0.2417 0.7751 0.2454

median 0.0072 0.0113 0.0039 0.0110 0.0040

The bold fonts represent the best results

Table 5
Improvement Results of ATE Performance (unit:m)

Sequences ORB-SLAM2 The proposed approach Improvements

RMSE S.D. RMSE S.D. RMSE S.D.

fr3/walking xyz 0.9749 0.5199 0.0151 0.0081 98.45% 98.44%

fr3/walking half 0.6303 0.2871 0.0307 0.0178 95.13% 93.80%

fr3/walking static 0.3953 0.156 0.0067 0.0031 98.31% 98.01%

fr3 walking rpy 0.9292 0.483 0.0297 0.0184 96.80% 96.19%

fr3/sitting static 0.0085 0.0042 0.0063 0.0032 25.88% 23.81%

417

Table 6
Improvement Results of Translational Error (unit:m)

Sequences ORBSLAM2 The proposed approach Improvements

RMSE S.D. RMSE S.D. RMSE S.D.

fr3/walking xyz 0.4395 0.3004 0.0205 0.0101 95.34% 96.64%

fr3/walking half 0.4222 0.3207 0.0305 0.0169 92.78% 94.73%

fr3/walking static 0.2099 0.1905 0.0099 0.0039 95.28% 97.95%

fr3 walking rpy 0.3917 0.2787 0.0412 0.0241 89.48% 91.35%

fr3/sitting static 0.0089 0.0044 0.0076 0.0043 14.61% 2.27%

Table 7
Improvement Results of Rotation Error (unit: deg)

Sequences ORB-SLAM2 The proposed approach Improvements

RMSE S.D. RMSE S.D. RMSE S.D.

fr3/walking xyz 8.3994 5.8007 0.6159 0.3715 92.67% 93.60%

fr3/walking half 8.7824 6.5599 0.8189 0.4158 90.68% 93.66%

fr3/walking static 3.8036 3.4272 0.2743 0.1296 92.79% 96.22%

fr3 walking rpy 7.5574 5.3568 0.9372 0.5444 87.60% 89.84%

fr3/sitting static 0.2867 0.1247 0.2745 0.1231 4.26% 1.28%

Figure 10. The dense mapping results of ORB-SLAM2 and DDETR-SLAM. On the left is the ORB-SLAM2 mapping result;
on the right is the DDETR-SLAM mapping result. The improved system successfully removes the dynamic feature points: (a)
ORB SLAM2; (b) DDETR-SLAM.

5. Conclusion

In this paper, we introduce DDETR-SLAM, a new system
for visual SLAM designed specifically for dynamic indoor
environments. To improve accuracy and stability in such
environments, DDETR-SLAM uses a dynamic feature
point elimination algorithm and combines Deformable

DETR for object detection. The experimental results show
that compared with the traditional visual SLAM frame-
work, DDETR-SLAM shows significant improvements in
positioning accuracy and map readability. In particular,
the performance of the algorithm is better than other
advanced SLAM systems, showing advantages in both low-
dynamic and high-dynamic scenarios. Simulation results

418

Table 8
Comparison of Detection Times

Algorithm Network Model Time of single
image processing

(ms/image)

YOLOv5+ORB-SLAM2 YOLOv5 51.0

DynaSLAM Mask R-CNN 198.0

DDETR-SLAM Deformable DETR 42.0

Table 9
Comparison of Tracking Time on the TUM Datasets

Sequence Algorithm Track each frame time (ms)

fr3/walking xyz ORB-SLAM2 65.1

The proposed approach 66.0

fr3/walking half ORB-SLAM2 60.2

The proposed approach 63.0

fr3/walking rpy ORB-SLAM2 51.7

The proposed approach 48.9

fr3/walking static ORB-SLAM2 56.9

The proposed approach 51.5

fr3/sitting static ORB-SLAM2 52.4

The proposed approach 51.6

Table 10
The Tracking Thread Time and Per Frame Time of the Improved Algorithm and Other Algorithms

Method Tracking the Average Time of
Each Frame of Image (ms)

Tracking Thread Time
Consuming (ms)

Hardware Platform

ORB-SLAM2 57.26 37.36 Intel (R) Xeon (R) CPU

DynaSLAM 672.38 345.3 GeForceRTX1650

The proposed approach 56.20 45.60 Intel (R) Xeon (R) CPU

show that compared to ORB-SLAM2 and other leading
SLAM methods, the proposed method has significantly
improved positioning accuracy, computational efficiency,
and readability of point cloud images. Although progress
has been made in positioning accuracy and real-time
performance, the following problems still exist. On the one
hand, the real-time performance of the system needs to
be improved and further optimised. On the other hand,
we intend to test different environments on the Turtlebot
robot to further strengthen its position.

Conflict of Interest

The authors declare no conflict of interest with any
commercial entity or other organization in conducting this
study.

Acknowledgement

We would like to thank all those who contributed to this
paper. We are also grateful for the support of the project of
“Introducing Urgently Needed Talents into Key Supporting
Regions of Shandong Province, Construction of Intelligent
System for Textile Printing and Dyeing Products” and
“National Innovation Center of Advanced Dyeing and
Finishing Technology”.

References

[1] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J.M. Rendón-
Mancha, Visual simultaneous localization and mapping: A
survey, Artificial Intelligence Review, 43 (1), 2015, 55–81.

[2] A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse,
MonoSLAM: Real-time single camera SLAM, IEEE

419

Transactions on Pattern Analysis and Machine Intelligence,
29 (6), 2007, 1052–1067.

[3] G. Klein and D. Murray, Parallel tracking and mapping for
small AR workspaces, Proc. 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, Nara, 2007,
225–234.

[4] R. Mur-Artal, J.M.M. Montiel, and J.D. Tardós, ORB-SLAM:
A versatile and accurate monocular SLAM system, IEEE
Transactions on Robotics, 31 (5), 2015, 1147–1163.

[5] R. Mur-Artal and J.D. Tardós, ORB-SLAM2: An open-source
SLAM system for monocular, stereo, and RGB-D cameras,
IEEE Transactions on Robotics, 33 (5), 2017, 1255–1262.

[6] T. Taketomi, H. Uchiyama, and S. Ikeda, Visual SLAM
algorithms: A survey from 2010 to 2016, IPSJ Transaction on
Computer Vision Applications, 9 (1), 2017, 1–11.

[7] Z. Chang, H. Wu, Y. Sun, and C. Li, RGB-D visual SLAM based
on Yolov4-tiny in indoor dynamic environment, Micromachines,
13 (2), 2022, 230.

[8] X. Gao, X. Shi, Q. Ge, and K. Chen, An overview of visual
SLAM for dynamic object scenes, Robotics, 2021.

[9] T. Diwan, G. Anirudh, and J.V. Tembhurne, Object detection
using YOLO: Challenges, architectural successors, datasets
and applications, Multimedia Tools and Applications, 82, 2022,
9243– 9275.

[10] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz,
and D. Terzopoulos, Image segmentation using deep learning:
A survey, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44 (7), 2022, 3523–3542.

[11] L. Kenye and R. Kala, Improving RGB-D SLAM in dynamic
environments using semantic aided segmentation, Robotica,
40 (6), 2022, 2065–2090.

[12] L. Cui and C. Ma, SOF-SLAM: A semantic visual SLAM for
dynamic environments, IEEE Access, 7, 2019, 166528–166539.

[13] B. Bescos, J.M. Facil, J. Civera, and J. Neira, DynaSLAM:
Tracking, mapping, and inpainting in dynamic scenes, IEEE
Robotics and Automation Letter, 3 (4), 2018, 4076–4083.

[14] F. Zhong, S. Wang, Z. Zhang, C. Chen, and Y. Wang, Detect-
SLAM: Making object detection and SLAM mutually beneficial,
Proc. IEEE Winter Conf. on Applications of Computer Vision
(WACV), Lake Tahoe, NV, 2018, 1001–1010.

[15] L. Xiao, J. Wang, X. Qiu, Z. Rong, and X. Zou, Dynamic-
SLAM: Semantic monocular visual localization and mapping
based on deep learning in dynamic environment, Robotics and
Autonomous Systems, 117, 2019, 1–16.

[16] W. Chen, M. Fang, Y.-H. Liu, and L. Li, Monocular semantic
SLAM in dynamic street scene based on multiple object
tracking, Proc. IEEE International Conf. on Cybernetics and
Intelligent Systems (CIS) and IEEE Conference on Robotics,
Automation and Mechatronics (RAM), Ningbo, 2017, 599–604.

[17] Y. Hu, S. Ma, B. Li, M. Wang, and Y. Wang, Dynamic
modelling of reconfigurable robots with independent locomotion
and manipulation ability, International Journal of Robotics
and Automation, 32 (3), 2017, 206–4381.

[18] G. Yang, Z. Chen, Y. Li, and Z. Su, Rapid relocation method
for mobile robot based on improved ORB-SLAM2 algorithm,
Remote Sensing, 11 (2), 2019, 149

[19] C. Yu, Z. Liu, X.–J. Liu, F. Xie, Y. Yang, Q. Wei,
and Q. Fei, DS-SLAM: A semantic visual SLAM towards
dynamic environments, Proc. IEEE/RSJ International Conf.
on Intelligent Robots and Systems (IROS), Madrid, Oct. 2018,
1168–1174.

[20] K. He, G. Gkioxari, P. Dollár, and R. Girshick, Mask R-CNN,
Proc. of the IEEE International Conf. on Computer Vision,
Venice, 2017, 2961–2969.

[21] V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A
deep convolutional encoder-decoder architecture for image
segmentation, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39 (12), 2017, 2481–2495.

[22] B. Triggs, P.F. McLauchlan, R.I. Hartley, and A.W. Fitzgibbon,
Bundle adjustment—A modern synthesis, Proc. International
Workshop on Vision Algorithms, Corfu, 1999, 298–372.

[23] C.–F. Tsai, Bag-of-words representation in image annotation:
A review, ISRN Artificial Intelligence, 2012, 2012, 1–19.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A.N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you
need, Dec. 05, 2017, arXiv:1706.03762.

[25] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, End-to-end object detection with transformers,
2020, arXiv:2005.12872.

[26] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai,
Deformable DETR: Deformable transformers for end-to-end
object detection, 2021, arXiv:2010.04159.

[27] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D.
Cremers, A benchmark for the evaluation of RGB-D SLAM
systems, Proc. IEEE/RSJ International Conf. on Intelligent
Robots and Systems, Vilamoura-Algarve, 2012, 573–580.

[28] Y. Sun, M. Liu, and M.Q.–H. Meng, Improving RGB-D SLAM
in dynamic environments: A motion removal approach, Robotics
and Autonomous Systems, 89, 2017, 110–122.

Biographies

Feng Li received the Ph.D. degree
in automation and intelligent
monitoring from Southwest
Jiaotong University, Chengdu,
Sichuan, China, in 1998. He is
currently a Professor with the
School of Computer Science and
Technology, Donghua University,
Shanghai, China. His current
research interests include image
processing, artificial intelligence,
embedded systems, body sense
networks, and intelligent hardware.

Yuanyuan Liu received the B.S.
degree from the Henan University
of Chinese Medicine, in 2020, She is
currently pursuing the M.S. degree
with Donghua University. Her
research interests include Visual
SLAM and machine vision.

Kelong Zhang was born on Decem-
ber 1991. He received the B.S.
degree from the School of Automa-
tion, Heilongjiang University of
Science and Technology. He is
currently an Engineer and with
the National Innovation Center of
Advanced Dyeing and Finishing
Technology, Shandong, China.

420

Zhengpeng Hu was born on April
1980. He received the B.S. degree
from the School of Information-
Technology. He is an Engineer with
the National Innovation Center of
Advanced Dyeing and Finishing
Technology, Shandong, China. His
research interests focus on fabric
defect detection and computer
vision.

Guozheng Zhang was born on
February 1997. He received the
B.S. degree from the School of
Automation. He is an Engineer
and with the National Innovation
Center of Advanced Dyeing and
Finishing Technology, Shandong,
China. His research interests focus
on fabric defect detection, image
retrieval, and computervision.

421

	DDETR-SLAM: A TRANSFORMER-BASED APPROACH TO POSE OPTIMISATION IN DYNAMIC ENVIRONMENTS
	Feng Li,, Yuanyuan Liu=1, Kelong Zhang=2, Zhengpeng Hu=2, and Guozheng Zhang=2
	1 Introduction
	2 System Framework
	2.1 Structure of the DDETR-SLAM
	2.2 Object Detection Algorithm

	3 Dynamic Feature Point Elimination
	3.1 Dynamic Feature Point Elimination Algorithm
	3.2 Systematic Evaluation Metrics
	3.3 TUM Dataset

	4 Experiments and Analysis
	4.1 Object Detection Algorithm Experiment
	4.2 Dynamic Point Removal Experiment
	4.2.1 Evaluation in Real Environment

	4.3 Performance Evaluation on TUM RGB-D Dataset
	4.4 Dense Point Cloud Mapping Experiment
	4.5 Real-time Performance Evaluation

	5 Conclusion

