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ENHANCED EXTENDED STATE OBSERVER

BASED OUTPUT-FEEDBACK TRACKING

CONTROL OF WHEELED MOBILE

ROBOT WITH DISTURBANCE

Bo Qin,∗ Huaicheng Yan,∗ Lu Zeng,∗∗ Simon X. Yang,∗∗∗ and Meng Wang∗

Abstract

Considering the widespread disturbance in the wheeled mobile robot

system, an enhanced extended state observer (EESO) is deployed,

thus, the unmeasured states and disturbances can be estimated.

Based on the estimated states and disturbance, an output-feedback

controller is constructed. The estimated states and measured position

information are used for the feedback part, and the estimated

disturbances are used for the feedforward part. Lyapunov functions

are built to prove that the observer error dynamics and the control

error system satisfy input-to-state stable (ISS). All error signals are

uniformly and ultimately bounded (UUB). Simulation results reveal

the superiority of the designed method.
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1. Introduction

Wheeled mobile robot has rapidly developed for decades,
and it has been proven effective in many fields [1], such as
the national defense industry, the transportation industry,
etc. For a WMR system, trajectory tracking control is
one of the fundamental functions. After path planning
module generates the reference trajectory, the trajectory
tracking module will calculate the wheels’ moment to drive
the WMR system. In the beginning, only the kinematics
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model is considered when designing the tracking controller.
However, the WMR system relies on the dynamics model
to produce the ideal velocities [2]–[4]. Thus, the dynamics
model of WMR is not neglected. Due to the widespread
disturbance, it is necessary to deal with the disturbance in
the WMR dynamics model.

To conquer this problem, many control methods are
proposed for the WMR system with dynamics disturbance.
In [5], a model-free adaptive controller is constructed
based on the state error. An event-observer is designed
to estimate the unknown states, actuator faults, and
disturbances for the WMR system [6]. In [7], the state
error is estimated by an intermediate estimator, and a
virtual system is built to generate the reference trajectory.
An adaptive neural network is deployed to approximate
the unknown WMR system parameter matrix [8]. In [9],
the disturbance observer (DO) is applied for disturbances
and uncertainties. Active disturbance rejection control
(ADRC) can compensate for internal uncertainties, and
only a few plant details are required. In fact, it only
needs the system order of the plant. Dependent on that
reason, ADRC, nowadays, is widely applied in lots of
practical systems. Same to DO [10], the extended state
observer (ESO), as the core part of ADRC, is a powerful
method to estimate the lumped disturbance without any
specific disturbance information [11]–[13]. For a perturbed
system, the ESO-based control law has drawn much more
attention nowadays[14], [15]. The reduced-order ESO is
developed to estimate the unknown dynamic model of a
WMR system [16]. In [17], an adaptive law is developed to
resist the parameter uncertainties, and an ESO is developed
to resist the external disturbance. An ESO based slide
mode control method is deployed to estimate the unknown
uncertainties [18]. In [19], a time-varying fixed-time ESO
is designed for the leader WMR. In [20], the WMR model
is transformed to a linear one by feedback linearisation,
then, a finite-time ESO is developed to estimate the
lumped disturbance. To estimate the unknown states and
disturbance, neural networks or fuzzy-logic systems are
combined with observer-based control [21]. However, these
methods will consume more resources.

422



In [22], the authors mentioned that disturbance
denotes the difference between the system’s stable state
and its current state. As for a trajectory tracking system,
its stable state means that the tracking error is 0. Any
force that deviates the tracking error from its equilibrium
point should be seen as a disturbance. If the trajectory
tracking system is powered by an error feedback controller,
the control input will tend to be 0 when the error is 0.
Considering the randomness of the internal or external
disturbance, it can be supposed that there is a part of the
disturbance that acts as an input to stabilise the tracking
system. This part of the disturbance can be seen as a
favorable disturbance. And the other part of disturbance
can be seen as the negative disturbance, which enlightens
us that only the negative disturbance should be eliminated.
Thus, how to estimate and compensate for the negative
disturbance is another concern in this manuscript.

This paper takes the kinematics model and dynamics
model into account and focuses on the disturbance
that mainly exists in the dynamics model. The original
system and the reference system are proposed to describe
the current state and the stable state of the WMR
trajectory tracking system. By constructing the ESOs
for both systems, the unmeasured states, the lumped
disturbance, and the favorable disturbance can be
estimated. An enhanced ESO (EESO) is constructed to
estimate the negative disturbance and the unmeasured
state errors. With these estimations, an output-feedback
controller is developed. The estimated state errors and
the negative disturbance make up the feedback part and
feedforward part. Both the purposes of trajectory tracking
and disturbance compensation are fulfilled. The main
contributions are summarised as follows. In contrast to
the conventional ESO based control methods [11]–[15], an
EESO is built based on both the reference system output
and the actual system output to estimate the tracking
error and negative disturbance. In addition, the designed
control strategy will address the tracking problem for
a more general system better than the classic ESOBC
technique [23].

2. Problem Formulation

2.1 Kinematic and Dynamic Model of WMR

Figure 1 illustrates the model of the WMR. [x, y ]T and
ϕ are the body positionin the earth coordinate and the
orientation between the X -axis and the WMR’s forward
direction. ν and ω denote the linear velocity and angular
velocity of the WMR. r is the radius of the wheel, and 2R
is the tread of the WMR.

Denote [x y ϕ]T as q, η = [ν ω]T , the kinematic model
of WMR is given as follows.

q̇ =


ẋ

ẏ

ϕ̇

 =


cosϕ 0

sinϕ 0

0 1


ν
ω

 = J(q)η (1)

Figure 1. The model of the WMR.

Considering the wheels purely roll without slipping
and skidding:

[
− sinϕ cosϕ 0

]
ẋ

ẏ

ϕ̇

 = 0 (2)

Denote [−sin ϕ cos ϕ 0] as S (q), the dynamic model of
WMR is given as follows.

M(q)q̈ = B(q)τ − ST (q)λ+ τd (3)

Where, M(q) =


m 0 0

0 m 0

0 0 j

 is the inertia matrix, B(q) =


cosϕ/r cosϕ/r

sinϕ/r sinϕ/r

R/r −R/r

, and m is the mass, j is the moment of

inertia of the body of WMR. τd = [τ1 τ2 τ3]T denotes the
external disturbance. τ = [τr, τl]

T is the input torque.
As JT (q)S (q) = 0, multiply JT (q) to both side of (3),

according to (1), the dynamic model is concluded as:

η̇ =

 1
mr

1
mr

R
jr
−R
jr

 τ +

τdr
τdl

 (4)

where, η =
[
ν ω

]T
,
[
τdr τdl

]T
=
[
τ1 cosϕ+τ2 sinϕ

m
τ3
j

]T
.

Choose a heading position (xl, yl) which is expressed
by xl

yl

 =

x
y

+ l

cosϕ

sinϕ

 (5)

where l is the distance between the body center position
and the heading position. Differentiating (5) twice and
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substituting(1)(4) yields:ẍl
ÿl

 =

cosϕ −l sinϕ

sinϕ l cosϕ

 η̇ +

−νω sinϕ− l cosϕω2

−νω cosϕ− l sinϕω2


=

1

r

 cosϕ
m − lR sinϕ

j
cosϕ
m + lR sinϕ

j

sinϕ
m + lR cosϕ

j
sinϕ
m − lR cosϕ

j

 (6)

+

−νω sinϕ− l cosϕω2 + 1
r (τdr cosϕ− lτdl sinϕ)

−νω cosϕ− l sinϕω2 + 1
r (τdr sinϕ− lτdl cosϕ)

n
Let:dτr
dτ l

 =

−νω sinϕ− l cosϕω2 + 1
r
(τdr cosϕ− lτdl sinϕ)

−νω cosϕ− l sinϕω2 + 1
r
(τdr sinϕ− lτdl cosϕ)

 (7)

and Π = 1
r

 cosϕ
m − lR sinϕ

j
cosϕ
m + lR sinϕ

j

sinϕ
m + lR cosϕ

j
sinϕ
m − lR cosϕ

j

, thus,

ẍl
ÿl

 = Πτ +

dτr
dτ l

 (8)

To avoid the torques coupling in (8), a new control
inputs vector is assigned as:

U = Πτ (9)

where, U = [ux uy]T .
Thus, the state space model of WMR can be expressed

as:  q̇l1 = ql2

q̇l2 = U +D
(10)

where, ql1 = [xl, yl]
T , ql2 = [ẋl, ẏl]

T , and D = [dτr, dτl]
T .

Our purpose is to design a disturbance rejection
tracking control protocol to achieve prescribed time
tracking. Next, some assumptions are given as follows.

Assumption 1. The system (10) is controllable.

Assumption 2. Denote the derivative of the disturbance
D as H, where H = [hτr, hτl]

T , and hτr, hτl satisfy the
bounded condition, which means {|htr|, |htl| ≤ h̄}, where h̄
is a positive constant.

Remark 1. For state stabilising and signal tracking, the
system (10) must satisfy the condition of controllability.
Most common disturbances can be seen as a different
common signal combination. Thus, the derivative of the
external disturbance is continuous except for the step signal.
The step signal can’t be achieved in a practical system, which
can be taken over by a ramp signal with an extremely large
slope. So basically, the derivation of the external disturbance
is continuous and bounded in the practical system.

Lemma 1. In [24], consider:

ẋ = f(t, x, u) (11)

where, f(t, x, u): R×Rn × Rm → Rn is continuously
differentiable.

Suppose ∀x ∈ Rn,∀u ∈ Rm, there exists a continuous
differential function V : Rn → R+, which satisfies:

ζ1(|x|) ≤ V (t, x) ≤ ζ2(|x|) (12)

∂V

∂t
+
∂V

∂x
f(t, x, u) ≤ −W (|x|),∀|x| > γ(|x|) > 0 (13)

where ζ1 and ζ2 are class K∞ functions, γ is a K function,
and W ∈ Rn is a positive continuous differential function.
Then, the system (11) is input-to-state stable (ISS) with
ψ = ζ−11

◦ζ2
◦γ.

3. Output-Feedback Trajectory Tracking Control
Law Design

3.1 Enhanced Extended State Observer

Considering the position of WMR is the only available
information. The unavailable information and disturbance
can be estimated by the ESO. In the proceeding section,
two system models are developed based on the current and
target system states. Then, an EESO is designed according
to these two system models. The negative disturbance,
which destabilises the controlled tracking system, can be
estimated.

3.1.1 The Actual System

Define an actual system as: q̇l1a = ql2a

q̇l2a = U +Da

(14)

where, ql1a = ql1, ql2a = ql2, and Da = D.
Define Da as the system extended state ql3a , it yields:

q̇l1a = ql2a

q̇l2a = U + ql3a

q̇l3a = Ha

(15)

where, Ha is the derivative of Da.

Assumption 3. The extended system (15) is observable.

An ESO for (15) is proposed to estimate the
disturbance Da as follows:

˙̂ql1a = q̂l2a − ε1 (q̂l1a − ql1a)

˙̂ql2a = U + q̂l3a − ε2 (q̂l1a − ql1a) .

˙̂ql3a = −ε3 (q̂l1a − ql1a)

(16)

where, ε1, ε2, and ε3 are the observer gain matrix.
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3.1.2 The Reference System

For the WMR trajectory tracking system, the tracking
error is usually used for the error feedback controller. As
long as the error tends to 0, which means the system has
tracked the given trace, the control input tends to 0 as
well. Considering a perturbed system, some parts of the
disturbance act on the system to track the trajectory when
the control input tends to 0. These parts of disturbance
are favorable disturbances. In other words, the difference
between the total disturbance and favorable disturbance
is the negative disturbance, which needs to be eliminated.
Therefore, the reference system model is given as:q̇l1r = ql2r

q̇l2r = Dr

(17)

where, ql1r is actually the reference trajectory, Dr is
favorable disturbance.

Define Dr as the system extended state ql3r , it yields:
q̇l1r = ql2r

q̇l2r = ql3r

q̇l3r = Hr

(18)

where, Hr is the derivative of Dr.

Assumption 4. The extended system (18) is observable.

An ESO for (18) is proposed to estimate the
disturbance Da as follows:

˙̂ql1r = q̂l2r − ε1 (q̂l1r − ql1r)
˙̂ql2r = q̂l3r − ε2 (q̂l1r − ql1r)
˙̂ql3r = −ε3 (q̂l1r − ql1r)

(19)

where, ε1, ε2, and ε3 are the observer gain matrix.
One of our main purposes is to distinguish the

unfavorable disturbance that hinders the controlled system
output from the given trajectory. In [22], Gao proposed that
the disturbance can be deemed to be the difference between
what a controlled system actually is and what it should be.
Thus, an actual system (14) is defined to describe what a
controlled system actually is, and a reference system (17)
is defined to describe the “should-be” system. The two
systems defined above represent different system states of
the original controlled system (10). In fact, the reference
system model denotes the “expected” steady state of the
controlled system (10). Meanwhile, the reference model
should satisfy the following conditions.
1) The reference system and the actual system have the

same system matrices and structure.
2) A favorable disturbance replaces the control input signal

to stabilise the reference system.
3) The reference system output is equivalent to the given

reference signal.

3.1.3 Enhanced Extended State Observer

Based on (16)and (19), it is natural to substrate the
favorable disturbance from the total disturbance to get the
negative disturbance. Thus, an EESO is obtained:

˙̂ql1 = q̂l2 − ε1
(
q̂l1 − ql1a + ql1r

)
˙̄̂ql2 = U + q̂l3 − ε2

(
q̂l1 − ql1a + ql1r

)
˙̄̂ql3 = −ε3

(
q̂l1 − ql1a + ql1r

) (20)

where, ql1 = ql1a − ql1r, q̂l1, is the estimation of ql1, ql2 =
ql2a − ql2r, and ql3 = ql3a − ql3r.

Define the estimation error as:

eoa =


q̂l1a − ql1a
q̂l2a − ql2a
q̂l3a − ql3a

 eor =


q̂l1r − ql1r
q̂l2r − ql2r
q̂l3r − ql3r

 (21)

Thus,

eo =


q̂l1 − ql1
q̂l2 − ql2
q̂l3 − ql3

 =


q̂l1a − ql1a
q̂l2a − ql2a
q̂l3a − ql3a

−

q̂l1r − ql1r
q̂l2r − ql2r
q̂l3r − ql3r


= eoa − eor (22)

From (15), (16), (18), (19), (21), and (22), the observer
estimation error dynamic can be obtained:

ėo = ėoa − ėor = Aoeo + E (Ha −Hr) (23)

where Ao =


−ε1 I 0

−ε2 0 I

−ε3 0 0

 ∈ R6×6, E =


0

0

I

 ∈ R6×2, Ha and

Hr are the derivatives of Da and Dr, separately.
For (23), if the observer gain matrix ε1, ε2, and ε3 are

chosen properly such that Ao is Hurwitz, then, there exist
matrix M = MT > 0 and any given matrix PT = P > 0
satisfying

AToM +MAo = −P (24)

Lemma 2. If the Assumptions 1–4 are satisfied and (24)
stands, then, the error dynamic system (23) with input
being Ha −Hr, is ISS.

Proof. Define a Lyapunov function:

V0 =
1

2
eToMeo (25)

which is bounded by:

1

2
λmin(M) |eo|2 ≤ V0 ≤

1

2
λmax(M) |eo|2 (26)

And its derivative is obtained:

V̇0 = −1

2
eTo Peo + eTo ME (Ha −Hr) (27)
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Based on Assumption 2, Ha, Hr are bounded. Thus,

V̇0 ≤ −
1

2
eTo Peo + 2heTo ME

≤ −1

2
λmin(P ) |eo|2 + 2h |eo| |M |n (28)

As:

|eo| >
4h|M |

λmin (P )a
(29)

V̇0 ≤ −
1

2
(1− a)λmin (M) |eo|2 n (30)

where 0 < a < 1. Therefore, from Lemma 1, the estimation
error dynamic system (23) with regard to the inputHa−Hr

is ISS, and:

|eo| ≤

√
λmax(M)

λmin(M)

×max

(
|eo (t0)| e−γ1(t−t0), 4h|M |

λmin(P )a

)
,∀t > t0. (31)

where γ1 = λmin(P )
λmax(M) (1− a).

3.2 Output-Feedback Controller Design

The output-feedback controller is designed:

U = k1 (ql1a − ql1r) + k2 (ql2)− ql3 (32)

where k1 ∈ R2×2, k1 ∈ R2×2 are the control gain matrix.
From (9), the controlled torque is obtained as:

τ = Π−1U = Π−1 (k1 (ql1a − ql1r) + k2 (ql2)− ql3) (33)

Define the control error as:

ec =


ql1a − ql1r
ql2a − ql2r
ql3a − ql3r

 (34)

From (14), (17), (20), and(32), it yields:

ėc = Acec +Bueo (35)

where, Ac =

 0 I

k1 k2

 ∈ R4×4, Bu =

0 0 0

0 k2 −I

 ∈ R4×6.

Lemma 3. If k1, k2 are chosen properly such that Ac is
Hurwitz, then, the control error dynamic system (35) with
the state being ec and input being eo is ISS.

Proof. As Ao is Hurwitz, there exists a matrix NT = N >
0 and any given matrix QT = Q > 0 satisfying:

ATc N +NAc = −Q (36)

Construct a Lyapunov function as:

V1 =
1

2
eTc Nec (37)

Its derivative is obtained as:

V̇1 = −1

2
eTc Qec + eTc NBueo

≤ −1

2
λmin(Q) |ec|2 + |ec| ‖NBu‖ eon (38)

As:

|ec| >
|NBu| |eo|
λmin(N)b

(39)

where 0 < b < 1. It makes:

V̇1 ≤ −
1

2
λmin(Q)(1− b) |ec|2 (40)

Therefore, from Lemma 1, the control error dynamic
system (35) with regard to eo is ISS, and:

|ec| ≤

√
λmax(N)

λmin(N)

×max

(
|ec (t0)| e−γ2(t−t0), |NBu| |eo|

λmin(Q)b

)
,∀t > t0. (41)

where γ2 = λmin(Q)
λmax(N) (1− b).

3.3 Main Results

Theorem 1. Consider that Assumptions 1–4 are satisfied,
the observer gain matrix ε1, ε2, ε3 and the control gain
matrix k1, k2 are chosen properly, (23) and (35) are ISS.
All the error signals are uniformly and ultimately bounded
(UUB).

Proof. From Lemmas 2 and 3, the estimation error dynamic
system (23) and the control error dynamic system (35) are
ISS as long as both Ao and Ac are Hurwitz.

|eo| ≤

√
λmax(M)

λmin(M)

×max

(
|eo (t0)| e−γ1(t−t0), 4h|M |

λmin(P )a

)
,∀t > t0 (42)

|ec| ≤

√
λmax(N)

λmin(N)

×max

(
|ec (t0)| e−γ2(t−t0), |NBu| |eo|

λmin(Q)b

)
,∀t > t0 (43)

As t →∞,

|eo| ≤

√
λmax(M)

λmin(M)

(
4h|M |

λmin(P )a

)
(44)

|ec| ≤

√
λmax(N)

λmin(N)

 |NBu|
√

λmax(M)
λmin(M)

(
4h|M |

λmin(P )a

)
λmin(Q)b

 (45)

Letting er = ql1 − qr = ql1a − ql1r =
[
I 0 0

]
ec, From

(35), one can get:

er =
[
I 0 0

] [
A−1c ėc −A−1c Bueo

]
(46)
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It shows that er is immune from the disturbance D. As
t →∞, from(46), it yields:

|er| ≤ |ec|

=

√
λmax(N)

λmin(N)

 |NBu|
√

λmax(M)
λmin(M)

(
4h|M |

λmin(P )a

)
λmin(Q)b

 (47)

4. Simulation

In this part, the proposed output-feedback controller is
demonstrated by a WMR trajectory-tracking system. The
reference trajectory is given by:

xr = 5 cos t

yr = 5 sin t

ϑr = arctan
(
ẏr
ẋr

) (48)

The initial values of WMR and the reference trajectory
are fixed as [310]T and [5 0 π/2]T . The observer gain
matrix ε1 = diag{−90, −90}, ε2 = diag{−2700, −2700},
and ε3 = diag{−27000, −27000}. The output feedback
controller parameters are chosen as k1 = diag{103, 103}, k2
= diag{20, 20}. The external disturbance τdr = 1.5 sin (t),
τdl = −1.5 sin (t). As shown in (7), with proper observer
gains and controller gains, ν and ω are bounded. Thus, dτr
and dτl are bounded and differentiable. The derivatives of
dτr and dτl are bounded too. Assumption 2 is satisfied.

Figure 2 depicts that the WMR can follow the given
trajectory regardless of the disturbance. The x, y, and
ϕ tracking results in Fig. 3 show that the WMR can
track the given trajectory fast without any overshoot. The
tracking errors xe, ye, and ϕe are plotted in Fig. 4, and all
the error signals converge to 0 in a short time. Different
initial conditions are considered and the simulation results

are shown in Fig. 5, where, q1(0) =
[
−2 0 0

]T
, q2(0) =[

0 −2 π
2

]T
, q3(0) =

[
0 0 0

]T
, q4(0) =

[
0 2 −π2

]T
, and

q5(0) =
[
3 1 0

]T
.

To show the superiority of the proposed method,
an ESO based output-feedback controller is designed as
a comparative. The results are given in Figs. 6–8. The
controlled errors of x and y of the ESO based controller are
greater than the proposed method. With the same observer
gain matrix, the proposed control method can achieve more
precise tracking than the ESO based control method. By
introducing the favorable disturbance into EESO, EESO
can take advantage of the active part of the disturbance.
EESO has the same structure and follows the same design
procedure as ESO. It just introduces the reference signal
as correction compared with ESO. To achieve the same
control performance, the ESO needs more energy than
the EESO. The ESO-based controller will consume more
computing resources.

Figure 2. The trajectory of the proposed method.

Figure 3. The tracking errors of the proposed method.

Figure 4. The tracking results of the proposed method.

Figure 5. The tracking results of different initial condi-
tions.
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Figure 6. The trajectory of ESO based method.

Figure 7. The tracking errors of ESO based method.

Figure 8. The tracking results of ESO based method.

5. Conclusion

Through the discussion of the function of disturbance for
a perturbed trajectory tracking system, an actual system
and the reference system are proposed in this paper.
Meanwhile, considering that only position information x,
y, and ϕ are available, the use of a state observer is
necessary. By designing ESOs for these systems, the total
disturbance, favorable disturbance, and unmeasured states
are estimated. Then, an EESO is constructed to estimate
the negative disturbance, which disturbs the stable tracking
system. Thus, an output feedback controller is developed
to compensate for the negative disturbance and ensure that
tracking error er is uniformly and UUB. The simulation
results verify that the trajectory tracking and disturbance
rejection can be balanced.

To demonstrate the superior performance of the
designed EESO in this manuscript, the controller is
constructed as a relatively simple one. To achieve more
precise tracking performance, many control strategies are
proposed based on different convergence times of the
tracking errors, such as finite-time control or prescribed
performance control [25], [26]. The finite-time controller
will be considered in future work.
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