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Abstract

The invasion of alien plants has resulted in detrimental impacts

on the ecological, economic, and societal aspects. The current

fine-grained identification methods have not considered features of

different scales, which is crucial for extracting more discriminative

features. Additionally, the presence of small inter-class differences

and large intra-class differences in fine-grained classification tasks

significantly heightens the challenges of accomplishing accurate fine-

grained classification. To address these issues, we have designed a

dual-branch cross-fusion fine-grained network to integrate different-

scale features and enhance the discriminative ability of deep learning

features. Specifically, we have developed a multi-scale cross-fusion

attention module to fuse features of different scales and retain the

most important areas for classification and recognition. Moreover, we

have employed a simple and effective centre loss on the dual-branch

network to obtain deep features with key learning objectives, namely,

inter-class distribution and intra-class compactness. Experimental

results on the iNat2021-Plants, iNat2018-Plants, and FGVC-Aircraft

datasets demonstrate that the proposed method achieves recognition

accuracies of 76.8%, 73.8%, and 93.6%, respectively. This indicates

that the method is capable of more precise fine-grained recognition

and provides new insights for AI-assisted invasive plant identification

systems.
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1. Introduction

Alien species invasion refers to the introduction of non-
native species from other regions, either naturally or
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through human activities, that poses threats and cause
harm to ecosystems, habitats, and species. The high
similarity among alien invasive plants make the use of a
fine-grained algorithm highly effective in identifying more
discriminative regions from similar images. Consequently,
this recognition method finds widespread application in
the study of alien invasive plants. Figure 1 illustrates the
remarkable resemblance in the appearance, shape, and
colour distribution among various plant categories, leading
to minimal differences between classes. Furthermore,
within the same category, plants exhibit noticeable intra-
class variations at different growth stages, primarily due to
changes in flower colour and morphology.

Fine-grained classification aims to differentiate specific
subclasses within broader categories, such as different
subclasses of plants [inaturelist2018] [1], different types
of flowers [flowers102] [2], and different types of birds
[CUB-200] [3]. Fine-grained recognition, in comparison to
general classification, enables more accurate differentiation
among different types of invasive plants, thus making it
highly relevant in invasive plant management research and
practice. Moreover, the subtle variations within the same
class, observed across different subclasses, pose additional
challenges to fine-grained classification in contrast to
traditional classification methods.

Earlier fine-grained localisation methods commonly
relied on bounding boxes and local annotation information.
However, the use of candidate bounding boxes required
larger bounding boxes, resulting in potential confusion
due to the inclusion of more foreground objects. This
time-consuming and expensive approach is not widely
used in practice. Consequently, the research focus in
fine-grained recognition has gradually shifted towards
training models that primarily rely on weakly supervised
methods [4]–[6]. By relying primarily on locating more
discriminative regions for classification, weakly supervised
methods play a significant role. However, these models
rarely discuss the effective integration of information
from different granularities to improve classification
accuracy.

The fusion of information from different granularities
aids to mitigate the impact of large intra-class variations.
Invasive plants exhibit different morphological changes
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during different growth cycles. Merely recognising distinc-
tive features is often insufficient, and this often requires
combining the growth morphology of plants at different
stages and the overall shape of the plant to achieve more
accurate plant identification. Additionally, the distinct
inter-class differences and subtle intra-class differences
in fine-grained tasks necessitate the learned features
to be both separable and discriminative. However, the
softmax loss [7] solely promotes feature separability, poten-
tially leading to suboptimal effectiveness in fine-grained
tasks.

Based on the above analysis, this paper introduces
cross top-K attention (CTKA), a multi-scale cross-
attention fusion module based on the analysis conducted
above. CTKA is built upon the CrossViT model for
feature extraction. CTKA combines features from two
scales, guiding the network to fuse varied granularities and
learn enriched local and detailed features. CTKA achieves
adaptive selection of contribution scores by masking out
elements with lower weights. This process retains the
most important local regions while removing irrelevant
background regions, thus filtering out redundancies and
selecting distinctive key areas Furthermore, the dual-
branch structure incorporates the central loss. This
involves the construction of a unified category center
for clustering, which aims to mitigate the problem of
large disparities between features belonging to the same
class and the proximity of features belonging to different
classes.

The main contributions of this study are as follows:
1. We introduce a multi-scale cross-attention fusion

module known as CTKA. This module merges feature
information from various scales and utilises mask
operations to select important local regions.

2. In our dual-branch structure, we incorporate centre
loss and construct unified clustering centers for both
the coarse-grained and fine-grained branches. This
approach is designed to minimise the distances between
features belonging to the same class while maximising
the distances between features belonging to different
classes by bringing them closer to their respective centre
points.

3. We conduct comprehensive experiments on two exten-
sive plant datasets, namely, iNat2021-Plants, iNat2018-
Plants, and FGVC-Aircaraft to showcase the efficacy of
our method. Additionally, through visualisation results,
we demonstrate how our network model accurately
identifies and localises crucial local regions, thereby
enhancing our understanding of its ability to make
accurate predictions.

2. Related Work

In this section, we will briefly review previous works in
three aspects: multi-scale fusion, attention mechanisms,
and vision transformer (ViT).

2.1 Multi-Scale Fusion

Multi-scale fusion is a common practice in computer
vision, widely used in tasks, such as object detection,

semantic segmentation, and image dehazing. In fine-
grained recognition, PMG [8] employs a progressive
training strategy, incorporating additional network layers
in each iteration to refine the existing smaller-scale
features. Training images are constructed through block
mixing and stitching. The original image is shuffled using
a jigsaw generator according to various specified scales,
and training occurs in stages. Outputs are obtained
after each layer of the backbone network, with different
training processes corresponding to different token sizes.
Parameters are updated at each stage. In RA-CNN [9],
the network is divided into three subnetworks, all
sharing the same structure but with distinct parameters.
Convolutional features from the preceding subnetworks
pass through an attention proposal network to capture
region attention. The attention regions are subsequently
scaled and interpolated to serve as inputs for the next
subnetwork, generating convolutional features recursively
for all three networks, which are then fused.

2.2 Attention Mechanism

The key to fine-grained recognition methods lies in finding
critical local regions [10], [11]. Attention-based methods
can automatically detect the discriminative regions of an
image through self-attention mechanisms. This approach
eliminates the need for manual annotation of discriminative
regions, making learning attention distinctions one of
the most popular directions. Currently, various attention
mechanisms are also applied in fine-grained methods [12].
MA-CNN [13] consists of convolution, channel grouping,
and component classification sub-networks. Generally,
each feature channel corresponds to a type of visual
pattern, and the network clusters spatially correlated
patterns. Then, it weights these patterns into the attention
maps of neighbouring externally peak-responding channels.
Different response positions generate different attention
maps, and through cropping, it further extracts target
boxes of different components. The classification network
categorises the image based on the features of these
components. Finally, through two optimised loss functions,
the network is forced to learn critical local regions and
enhance the learning of more locally fine-grained feature
areas through mutually reinforcing optimisation. However,
the number of generated component attentions is limited,
which restricts the flexibility of the network and hinders
the learning of more component areas. TASN [14] expresses
rich fine-grained features through a convolutional neural
network, which includes a trilinear attention module
for fine-grained localisation, an attention-based sampling
module for detail extraction, and a feature distiller
for detail optimisation. By employing weight sharing
and feature preservation strategies, partial features are
distilled into a global feature, enabling the learning of
hundreds of proposed boxes. This is a common teacher-
guided approach. However, variations in lighting, object
background, and pose make it challenging for the network
to learn a consistent attention map. Moreover, if each
component is recognised individually, this method does not
offer significant efficiency advantages.
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Figure 1. Overall framework diagram.

2.3 Vision Transformer

Due to the powerful expressive capabilities of transform-
ers [15] in the field of natural language processing (NLP),
they have gradually been migrated to the domain of
computer vision, giving rise to the application of ViT [16].
Transformers have been widely applied in tasks, such
as image retrieval [17]–[19], image dehazing [20]–[22],
and face recognition [23], [24]. However, their application
in fine-grained tasks is not as common. Considering
that transformers’ self-attention mechanism aggregates
and weights information from all patches onto the
classification token, and given their superior performance
on large-scale datasets, they are well-suited for fine-grained
recognition tasks. TransFG [25] is the first method to
apply transformer to fine-grained visual classification,
providing an alternative to dominant CNN backbones with
RPN model designs. By utilising multi-head self-attention
(MSA) mechanism, TransFG proposes a part selection
module to calculate discriminative regions and remove
redundant information. The integrated tokens and global
classification tokens are connected and input into the last
transformer layer. In addition, to enlarge the distance
between feature representations of different categories and
reduce the distance between feature representations of the
same category, contrastive loss is introduced. Since the
block operations of ViTs may result in the loss of local
information, which is crucial for fine-grained tasks, and
selecting critical regions for precise classification is of great
importance to our work, we attempt to design a CTKA
mechanism for multi-scale fusion in the dual-branch ViT.
This is done to pinpoint key regions in the image and
enhance the network’s classification accuracy.

3. Method

In this paper, we adopt CrossVit as the baseline model.
CrossVit is a dual-branch image classification algorithm
based on the ViT model. The model consists of K multi-
scale encoders, with each encoder comprising a coarse-
grained branch and a fine-grained branch. Each branch
takes image patches of different sizes as input. The two
branches cross-fuse features of different granularities, and
the category scores are computed using two classification
tokens.

Our design is based on the baseline model and
incorporates the CTKA attention module and introduces
centre loss. The CTKA is introduced in the multi-
scale fusion module to filter out non-essential background
information and focus on subtle differences in local regions,
thereby preserving local regions with more informative
details for fine-grained recognition. The centre loss,
introduced for handling challenging samples, helps to
increase the feature distance between different categories
of images and decrease the feature distance within the
same category, thus making samples of the same category
closer in the same feature space. This section provides
a detailed description of the overall framework of the
proposed method, as shown in Fig. 1.

3.1 Basic Architecture of ViT

The ViT divides an image x with a size of x ∈ H ×W ×C
into image patches of size P × P × C, resulting in
N = HW/P 2 image patches with dimensionsN×P×P×C.
Each image patch is then flattened, resulting in a dimension
of N × P 2 × C, where W is the height of the input
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image, H is the width of the input image, N is the
length of the input sequence, C is the number of input
channels, and P is the size of the image patch. The image
patches are then embedded, and a linear transformation
is applied to each flattened image patch vector to output
token embeddings xipE ∈ RD, where (i = 1, 2, . . . , L ).

Among them, E ∈ Rp2×D. In addition, an additional
category token xclass is added for category prediction,
which is inputted into the transformer encoder together
with other tokens for feature extraction. To maintain
the coherence between images, corresponding positional
vectors EPOS ∈ R(L+1)×S need to be added to the
embedding of image blocks, resulting in the input token
x0 ∈ R(L+1)×D. The obtained tokens are processed by
stacked transformer encoders, and finally classified using
the classification token. The transformer encoder consists
of a MSA layer, layer normalisation (LN) layer, and feed-
forward network (FFN). During the normalisation layer of
the input sequence, residual connections are used for each
LN layer. The input of vit and the processing of the k -th
block are shown in (1)–(3):

x0 =
[
xclass;x

1
pE;x2pE; . . . ;xlpE

]
(1)

yk = xk−1 + MSA (LN (xk−1)) (2)

xk = yk + FFN (LN (yk)) (3)

3.2 Cross Top-K Attention

In this section, we will introduce the basic idea of the
proposed CTKA module, which takes the query-key-
value matrices generated by the transformer encoder from
the coarse-grained branch and fine-grained branch as
input, and fuses different scales of image features through
permutation classification heads. The fused classification
token is then returned to the original branch as the
output of the CTKA module. Compared to the original
classification head, the permutation classification token has
learned abstract information in its own branch patches,
so interacting with the patches tokens of other branches
contributes to, including more information at different
scales. After fusion and interaction with tokens from other
branches, the classification token interacts again with its
own branch tokens, enriching the representation of each
patch token. The core of fine-grained recognition tasks is
to locate local features with discriminative and diverse
characteristics, so the fusion of image features of different
granularities is crucial for learning and locating key local
regions.

Figure 2 depicts the fundamental concept of our
CTKA module, which involves the integration of the
classification token from the coarse-grained branch and the
patch tokens from the fine-grained branch. Subsequently,
the classification head, containing abstract information
at various scales, is fed back to the coarse-grained
branch for training. In the subsequent sections, we
predominantly utilise the coarse-grained branch as an
illustrative example to elucidate the multi-scale cross-
attention module, while the fine-grained branch follows an
analogous process. In particular, subsequent to the dual-
branch network performing MSA using the transformer

Figure 2. Structure diagram of the CTKA module.

encoder, the coarse-grained branch generates query-key-
value matrices WQ

L , WK
L , WV

L , and the fine-grained

branch generates query-key-value matrices WQ
S ,W

K
S ,WV

S .
The query-key-value matrices of the dual-branch network
serve as the input for the CTKA module. Initially,
we extract the classification head of the coarse-grained
branch as the query key, ensuring its dimensionality aligns
with the image tokens from the fine-grained branch, and
subsequently concatenate them, as denoted in (2).

x
′l =

[
f l
(
xlcls
)∥∥xspatch] (4)

In this equation, f l (·) represents the projection
function. xlcls is the class token extracted from the
coarse-grained branch, and xspatch represents the image
block token from the fine-grained branch. The tokens are
then concatenated and subjected to cross-attention fusion
operations, as shown in (5)–(7):

Q = x
′l
clsW

Q
S ,K = x

′lWK
S , V = x

′lWK
S (5)

δ =
QKT√

c
h

(6)

A = softmax (θkδ) (7)

Where Q,K are all learnable parameters, c, h are the
dimensional parameters of the classification head and indi-
vidual head. Based on the similarity between Q and K, the
element area with top-k scores is retained, and for other
elements with scores lower than top-k, their probabilities
are replaced with 0 using a scatter function. θk is a learnable
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top-k selection operator, as shown in the (8):

[θk(S)]ij =

 Sij Sij ∈ top− k (row j)

0 otherwize.
(8)

Then, the top-k values within the selected range are
normalised, while computing the softmax to obtain weights
A. Finally, the weights are multiplied with matrix V, as
shown in (9):

CA
(
X

′l
)

= AV (9)

Where V = WvX
′l, after cross-attention module, we

do not use feedforward network. Therefore, the output zl of
a given multi-scale cross fusion module can be represented
as (11).

ylcls = f l
(
xlcls
)

+ MSA (LN (xk−1)) (10)

zl =
[
gl
(
ylcls
)∥∥xlpatch] (11)

Among them, gl (·) is the projection function in the
alignment dimension. In the Section 4.2 experimental anal-
ysis, we further prove the effectiveness of CTKA module
through ablation experiments. Finally, the classification
tokens that have fused information from different scales
are returned to their original branches as the output of
the CTKA module. Since the classification tokens have
learned abstract information in their own branches after
multiple iterations of transformer encoder, they can learn
feature information at different scales during interaction
with other branches, thus more effectively fusing features
at different scales.

3.3 DC Loss

Centre loss [26] was originally designed as a loss function
to address the issue of high similarity between different
class features in face recognition. Similar problems also
exist in fine-grained recognition tasks, where images within
the same category exhibit significant variations, while the
differences between images from different categories are
relatively small. Therefore, in this study, the centre loss
is applied to fine-grained recognition tasks to enhance the
network’s classification ability. This is achieved by making
samples from the same category more compact in the
feature space while increasing the feature distance between
different categories. In classification tasks, cross-entropy
loss is commonly used to calculate the classification loss,
as shown in (12):

Lcl = Lce (softmax (FC (xclass)) , y) (12)

In this formula, FC is a fully connected layer that maps
xclass to the label space, softmax transforms the output
of FC into a probability distribution over the classes,
and y represents the true class label of the sample. Lce

(cross-entropy) is used to calculate the error between the
predicted probability values and the true label values.
However, as the number of required classes increases,
the linear matrix of the classification layer also grows.

Cross-entropy loss can only reduce the differences between
different class features but it cannot effectively increase
the differences within classes. Therefore, we incorporate
centre loss into fine-grained classification tasks to address
the issues of feature diversity within the same class and
subtle differences between different class images.

Due to the high confusion between images of invasive
plant species and the small differences between images of
different categories and large differences between images of
the same category, it is challenging for cross-entropy loss
alone to optimise the network to an ideal state. Centre loss
addresses this issue by increasing the similarity between
deep features and their class centres, making them more
compact in the feature space. This can be represented by
(13):

Lcl =
1

2
‖xclass − C‖

2

(13)

In this formula, C represents the class centres of the
samples, which have the same dimension as the xclass
feature. As the centre loss gradually decreases, the feature
mapping of each sample gets closer to its corresponding
class centre. The class centres are continuously updated
as the deep features change. In this paper, by separately
constructing clustering centres on the dual-branch network,
the dual-branch centre loss is averaged with weights,
resulting in the final center loss of the network, denoted as
Ldc. This can be represented by (14):

Ldc =
1

2
(Lcl1 + Lcl2) (14)

In the formula, Lcl1 represents the centre loss of the
coarse-grained branch, Lcl2 represents the centre loss of the
fine-grained branch. Therefore, the overall loss function of
the network is represented by (15):

L = Lcl + β ∗ Ldc (15)

Where β is a hyperparameter which is set to 0.001 in
our experiments to give more weight to the classification
loss in the optimisation process.

4. Experiment

4.1 Experimental Background

4.1.1 Dataset

Since this paper mainly focuses on the recognition of
invasive species in Yichang City, Hubei Province, a fine-
grained plant dataset is chosen. iNat2021-Plants is a “mini”
training dataset derived from iNaturalist2021 [27], which
is one of the widely used benchmarks in the field of fine-
grained image analysis. The goal of iNaturalist2018 is to
advance the latest technologies in image classification and
detection of wildlife data with a large amount of imbal-
anced, fine-grained, and diverse categories. We selected
plant sample data iNat2018-Plants from it for model
validation. Extensive experiments have demonstrated the
effectiveness of methods on this dataset.
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Table 1
Distribution Information of the Datasets

Datasets Category Train Test

iNat2021-Plants 10, 000 500, 000 118, 800

iNat2018-Plants 2, 917 118, 800 8, 751

FGVC-Aircraft 100 6, 667 3, 333

FGVC-Aircraft is an aircraft classification dataset,
commonly used for fine-grained classification tasks. We use
this dataset to evaluate the robustness of our model. The
training set contains 6,667 images, and the test set contains
3,333 images, with a total of 100 aircraft categories. The
main information of the datasets will be presented in
Table 1 below:

4.1.2 Implementation Details

The fine-grained recognition method proposed in this
paper is based on the PyTorch framework and utilises
the NVIDIA GeForce RTX3090. The network is trained
using the datasets mentioned in Table 1. A dual-branch
structure is employed to construct the dual-branch fine-
grained network. The input size for the coarse-grained
branch is 224 × 224. The image is divided into 16 × 16
image blocks, resulting in N, P, and C values of 196, 16,
and 384, respectively. The input size for the fine-grained
branch is 240×240. The image is divided into 12×12 image
blocks, resulting in N,P,C values of 400, 12, and 192,
respectively. The training utilises a batch size of 16 and the
SGD optimiser with a momentum of 0.9 and a weight decay
factor of 0.0005. The initial learning rate is set to 0.0001
and a warm-up method is employed. The training process
consists of 300 epochs, incorporating cosine annealing for
updates.

4.2 Experimental Results and Analysis

4.2.1 Comparative Experiment

To validate the correctness and effectiveness of our method,
we compare it with current state-of-the-art fine-grained
recognition methods. The accuracy on the iNat2021-Plants
and iNat2018-Plants datasets are shown in Table 2. The
accuracy on the FGVC-Aircraft datasets are shown in
Table 3.

As shown in Table 2, the proposed method in this
paper outperforms the other six methods in terms of
recognition results. Our algorithm utilises ViT 16 as the
backbone network. The accuracy improvements on the
iNat2021-Plants dataset compared to TASN, PMG, PCA-
Net, P2P-Net, MHEM, and ViT are 4.1%, 1.5%, 3.8%,
2.0%, 3.7%, and 8.2%, respectively. On the iNat2018-
Plants dataset, the accuracy improvements are 4.5%, 4.9%,
3.2%, 1.9%, 3.4%, and 7.5%, respectively. These results
demonstrate the rationality of the proposed improvement
method in this paper and also validate the effectiveness of
our approach.

Table 2
Comparison of Different Fine-Grained Algorithms

Method Backbone iNat2021-
Plants

iNat2018-
Plants

TASN(CV PR19)
14

Resnet50 72.7 69.3

PMG(ECCV 20)
8

Resnet50 75.3 68.9

PCANet(V CIP21)
28

Resnet50 73.0 70.6

P2PNet(CV PR22)
29

Resnet50 74.8 71.9

MHEM(TNNLS22)
30

Resnet50 73.1 70.4

V iT (ICLR21)
16

ViT 16 68.6 66.3

Ours ViT 16 76.8 73.8

Table 3
The Comparative Results on FGVC-Aircraft

Model Backbone Classification
accuracy (%)

PMG (20-ECCV) ResNet50 93.4

PCA-Net (21-VCIP) ResNet101 92.8

MHEM (22-TNNLS) ResNet50 92.9

P2P-NET (22-CVPR) ResNet50 94.2

MetaFormer
(22− CORR)31

MetaFormer-2 92.8

Ours ViT 16 93.6

The outcomes reveal that our approach outperforms
PCA-Net and PMG even on public datasets, thereby
demonstrating its capability to acquire more refined
discriminative information. “Metaformer: A unified meta
framework for fine-grained recognition” is a unified meta
framework designed to enhance fine-grained recognition
tasks, showcasing commendable performance in FGVC-
Aircraft classification. The integration of multi-scale
feature structures enriches the network and fosters diverse
feature learning, leading to superior performance compared
to Metaformer. Moreover, in comparative experiments
utilising various backbone networks and fine-grained
classification methods, our approach exceeds these cutting-
edge methods, yielding the optimal performance on the
FGVC-Aircraft dataset.

4.2.2 Ablation Experiment

We conducted ablation experiments on the iNat2021-
Plants, iNat2018-Plants, and FGVC-Aircraft datasets. To
further validate the effectiveness of the proposed method.
As shown in Table 4, our method achieved a 0.8% and
1.2% improvement on the iNat2021-Plants and iNat2018-
Plants datasets, respectively, compared to the baseline
model. This indicates that CTKA selects the most effective
regions from a large number of background areas, forcing
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Table 4
Ablation Experiments

iNat2021-
Plants

iNat2018-
Plants

Crossvit 74.5 71.4

CTKA+Crossvit 75.3 72.6

dcloss+CrossVit(single) 75.4 72.6

dcloss+CrossVit(double) 75.8 72.8

dcloss+CTKA 76.8 73.8

Table 5
Ablation Experiments on FGVC-Aircraft

Model Classification accuracy (%)

Crossvit 91.5

CTKA+Crossvit 92.7

dcloss+CrossVit(single) 92.2

dcloss+CrossVit(double) 92.8

dcloss+CTKA 93.6

the model to learn useful information from these selected
regions for fine-grained classification tasks. The results in
Table 4 confirm the effectiveness of our method.

To evaluate the performance of the centre loss function,
we conducted training on the iNat2021-Plants, iNat2018-
Plants and designed two different ablation experiments.
Table 4 summarises the classification accuracy, precision
in fine-grained recognition, and overall accuracy of the
two experiments on the iNat2021-Plants and iNat2018-
Plants datasets. Centre loss improved the accuracy in all
aspects. Particularly, the effect was most significant on
the iNat2021-Plants dataset. In experiment 1, after adding
centre loss on a single branch, the accuracy increased
by 0.9%. In experiment 2, after adding centre loss on
both branches, the accuracy increased by 1.3%. There was
also a noticeable effect on the iNat2018-Plants dataset. In
experiment 1, after adding centre loss on a single branch,
the accuracy increased by 1.2%. In experiment 2, after
adding centre loss on both branches, the accuracy increased
by 1.4%.

To evaluate the effectiveness of our proposed CTKA
and dcloss, we conducted an ablation study on the FGVC-
Aircraft dataset, as shown in Table 5. Apart from the
proposed modules, both the baseline model and our
method utilised the same data augmentation methods and
hyperparameter settings, including learning rate, training
epochs, and other parameters. This ensured the consistency
of the experimental setup and facilitated fair comparisons
between the proposed modules and the baseline. From the
table, it can be observed that our method demonstrated
improved accuracy compared to the baseline on the
iNat2018-Plants and FGVC-Aircraft datasets.

Table 7
The Impact of β on Classification Accuracy (%) on the

iNat2018-Plants and iNat2018-Plants Datasets

Method iNat2021-
Plants

iNat2018-
Plants

Crossvit 74.5 71.4

dcloss+CrossVit(β=0.0001) 76.4 73.6

dcloss+CrossVit(β=0.001) 76.8 73.8

dcloss+CrossVit(β=0.01) 76.7 73.5

dcloss+CrossVit(β=0.1) 75.1 73.2

dcloss+CrossVit(β=1) 58.5 54.3

Table 8
The Impact of β on Classification Accuracy on the

FGVC-Aircraft Datasets

Method Classification accuracy (%)

Crossvit 91.5

dcloss+CrossVit(β=0.0001) 93.3

dcloss+CrossVit(β=0.001) 93.6

dcloss+CrossVit(β=0.01) 93.5

dcloss+CrossVit(β=0.1) 92.9

dcloss+CrossVit(β=1) 85.5

4.2.3 The Impact of β on Classification Accuracy

By establishing a class centre for each category, the objec-
tive of the centre loss is to minimise the distance between
each sample and the class centre, thereby significantly
enhancing intra-class feature differences. Introducing the
centre loss based on the cross-entropy loss allows the
model to focus on intra-class loss while learning inter-class
features, thereby improving the balanced representation of
inter-class and intra-class features. β was set as 0.0001,
0.001, 0.01, 0.01, 0.1, and 1.

we conducted experiments on iNat2018-Plants,
iNat2018-Plants, and FGVC-Aircraft dataset, the
experimental results are as follows:

As can be seen from the Tables 7 and 8, with the
continuous increase of over parameter β, the accuracy rate
shows a trend of gradual decline. We believe that the
increase of β will interfere with the optimisation direction of
the model to a certain extent, resulting in the loss function
failing to converge to the minimum value in a short period
of time. Therefore, after several experimental analyses, to
improve the accuracy rate of model classification, we set β
to 0.001 in our experiment.

4.3 Visualisation Analysis

As shown in Fig. 3, the following images display the visual
effects of six selected images from the two datasets. Among
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Figure 3. Visualisation results.

them, a, b, c are images from the iNat2018-Plants dataset,
primarily focusing on flowers as the main objects. d, e,
f are images from the iNat2021-Plants dataset, primarily
focusing on trees as the main objects. The images in the
first, second, and third rows represent the original input
images, attention heatmaps of the baseline network, and
attention heatmaps of the improved network, respectively.
From the images, it can be observed that our method,
by fusing features from different scales, can locate more
distinctive and crucial local regions, while disregarding
the background noise. This further enhances the fine-
grained recognition accuracy of invasive plant identification
methods.

5. Conclusion

In the research of invasive plant identification, the subtle
differences between different category images and the
diversity within the same category images remain highly
challenging. In this work, we proposed a multi-scale fusion
attention mechanism to address the problem of localising
crucial regions in fine-grained tasks. By reconstructing the
similarity of pixel pairs between queries and keywords, we
aimed to preserve the most important components, thus
improving the method’s performance. The results show
that the CTKA module achieves adaptive selection of top-k
contribution scores by masking unnecessary elements with
lower attention weights, effectively localising crucial local
regions. The centre loss enhances the similarity between
deep features and their class centres, making the distances
in the feature space tighter. The proposed method achieved
promising performance on two plant datasets, and the
experimental results demonstrate that it improved the
classification accuracy of the standard ViT at different
granularities.

5.1 Contribution

To strengthen the prevention and control system for
invasive alien species and enhance the comprehensive

prevention and control capabilities, it is effective to improve
the accurate identification of invasive alien plants by
utilising artificial intelligence platforms, deep learning
algorithms, and big data analysis techniques. This can
effectively solve the problem of difficulty in identification in
the current prevention and control work for invasive alien
species.

5.2 Limitations

Due to the adoption of a dual-branch structure in this
article, as well as the fact that the transformer network will
partition the images, this will exacerbate the generation of
redundant data, resulting in the problem of the network
model having excessively large network parameters.
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