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COOPERATIVE OBSTACLE AVOIDANCE

CONTROL OF FIN STABILISER BASED

ON ADAPTIVE RBF NEURAL NETWORK
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Abstract

The safety of the anti-roll fin during operation is the primary factor

in ensuring the effectiveness of ship anti-roll, which involves planning

the safe movement area of the fin body when the ship encounters

marine obstacles. This paper proposes an adaptive RBF neural

network-based collaborative obstacle avoidance control method to

ensure the safe obstacle avoidance of anti-roll fins without affecting

the anti-roll effect. Firstly, the RBF neural network is used to

approximate the uncertainty of the roll motion model, design

adaptive weights, handle nonlinear and uncertain links, and improve

the anti-interference performance of the system. Subsequently, the

maximum fin angle for obstacle avoidance is introduced to solve

the safe motion area of the fin body. On this basis, considering the

constraints of fin motion and the loss of control torque caused by

obstacle avoidance, collaborative control of the front and rear fin

motion is carried out to compensate for the loss of roll reduction

efficiency.
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1. Introduction

Due to the complex and ever-changing marine environ-
ment, marine navigation is susceptible to interference,
resulting in intense multi-degree of freedom motion [1], [2].
Among them, roll motion [3], [4] poses the greatest threat to
ships, quickly causing ship turbulence, and in severe cases,
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it can lead to ship sinking. Applying anti-roll fins [5], [6]
has dramatically improved the anti-roll efficiency of ships.
However, when encountering complex ocean obstacle fields,
not only anti-roll measures need to be considered but also
obstacle avoidance of the fin body needs to be considered
to avoid damage to the fins, which may lead to a decrease
in the system’s anti-roll efficiency or even complete loss of
function. Therefore, achieving real-time obstacle avoidance
of fin stabilisers while meeting the requirements of system
roll reduction has become an urgent challenge to be solved.

In recent years, the control theory in the marine field
[7], [8] has developed rapidly. Given the uncertainty of the
unknown structure of the ship and the nonlinear problems
of the rolling model, many scholars have begun to try to
improve the control performance of the system by using
adaptive control [9]–[11], sliding mode control [12]–[14], and
other methods. Reference [12] achieved error convergence
by solving parameters and used the sliding mode inversion
method to stabilise the system. Reference [13] considered
the uncertainty problems, such as limited measurement,
various disturbances, and changeable models. Reference
[14] improved the fin shaft structure and used bearing
deformation to solve force based on the nonlinear and
uncertain characteristics of nonlinear roll motion model
of a ship. Reference [11] proposed a robust adaptive fin
stabiliser control algorithm based on L2 gain to address
the nonlinear and uncertain issues of ships during turning,
to reduce the swaying motion of the vessel after turning.
With the development of artificial intelligence, more and
more scholars find that if the powerful nonlinear fitting and
mapping capabilities of neural networks are combined with
control theory, the adaptability, and anti-interference of the
system can be significantly improved [15]–[18]. Reference
[15] separated the input and output of the system through
a master–slave controller. Reference [16] adopted the
Lyapunov function and adaptive control method to solve
the issues of output limitation and unknown parameters.
Reference [17] used a prediction algorithm based on radial
basis function neural networks (RBF) to predict the roll
motion of ships, thereby estimating the disturbance torque
and roll time series. Then, a genetic algorithm-based
inversion method was used to design a ship’s roll control
algorithm. Reference [18] solved the unknown sideslip
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Figure 1. Block diagram of fin stabiliser cooperative obstacle avoidance control system.

angle of the vessel by using the radial basis function
neural network. The above methods improve the control
system’s accuracy, fault tolerance, response speed, and
anti-interference. But they did not consider the obstacle
avoidance problem of anti-roll fin stabilisers.

When the stabiliser fin passes through an obstacle
field, the controller should plan a safe working area for the
fin body and consider the loss of stabiliser torque caused
by the fin when avoiding obstacles. Considering the above
problems, this work designs an obstacle avoidance control
algorithm for the stabiliser fin, which ensures the safety
of the stabiliser fin when passing through complex ocean
obstacle fields as much as possible. Combining it with the
adaptive RBF neural network-based collaborative control
algorithm for the stabiliser fin not only compensates for the
nonlinearity and uncertainty of the model but also avoids
the problem of reduced stabilisation efficiency when the
stabiliser fin avoids obstacles. Finally, the rationality and
effectiveness of the fin stabiliser controller were verified
through simulation.

2. Nonlinear Roll Motion Model of Ships

The roll motion model of the ship under strong external
disturbance is with strong nonlinearity. The nonlinear roll
motion model of the boat without fin stabilisers [19] is

(Ix + ∆Ix) φ̈+B1φ̇+B2

∣∣∣φ̇∣∣∣ φ̇
+C1φ+ C2φ

3 + C3φ
5 = −Dhαm (1)

where B1, B2, C2, and C3 are the constants related to the
ship. C1 is the product of ship displacement and initial
metacentric height, Ix is the moment of inertia of the hull,
∆Ix is the additional moment of inertia, φ is the roll angle,
D is the ship displacement, h is the initial metacentric
height of the ship, αm is the effective wave slope.

The control torque [20] provided by a single fin is

KC =
1

2
ρv2AfC

α
L

(
αf +

φ̇lf
v

)
lf (2)

where ρ is the density of seawater, v is the relative
velocity between the ship’s speed and the ocean current,
approximately taken as the ship’s speed in engineering
practice, Af is the area of the fin stabiliser, CαL is the lift

coefficient of the fin stabiliser, αf is the effective angle of
attack for the fin stabiliser and the incoming flow, lf is the
moment arm for the fin stabiliser.

The nonlinear roll motion model of a ship equipped
with two pairs of fin stabilisers is

(Ix + ∆Ix) φ̈+B1φ̇+B2

∣∣∣φ̇∣∣∣ φ̇+ C1φ+ C2φ
3 + C3φ

5

= −Dhαm − 2ρv2AfC
α
L

(
αf +

φ̇lf
v

)
lf (3)

When the control torque 4KC provided by the two
pairs of fin stabilisers cancels out the roll torque Dhαm,
the ship’s rolling motion will stop.

3. Design of the Controller for Collaborative
Obstacle Avoidance of Fin Stabiliser

Due to the changeable interference from external and the
uncertainty of (3) exists, this work uses an adaptive RBF
neural network to approximate its uncertain term and
design network weights and consider the influence of the
ship roll angle change on the anti-rolling efficiency when the
fin stabiliser system avoids obstacles. The block diagram
of the fin stabiliser cooperative obstacle avoidance control
system is shown in Fig. 1.

The primary purpose of the fin stabiliser system is
to control the roll angle φ of the ship to approach zero.
Among Fig. 1, φd is the expected output roll angle, the
expected value of which is 0, e is the tracking error of the fin
stabiliser system, αfmax is the maximum fin angle allowed
by the obstacle avoidance fin during obstacle avoidance, u
is a fin stabiliser adaptive RBF neural network cooperative
obstacle avoidance control ratio, f̂ is the RBF network
output, Ŵ is the adaptive rate, ∆αf is the fin angle that
needs to be changed for obstacle avoidance, and meeting
εM ≥ |∆αf |, εM is constant.

3.1 Adaptive RBF Neural Network Control

According to (3), assumption x1 = φ, ẋ1 = x2, y = x1,
that is x1 and x2 are the ship’s roll angle and roll angular
velocity, respectively, y is the output of the fin stabiliser
system. The nonlinear state space expression of ship roll

442



can be obtained as

ẋ1 = x2

ẋ2 = a1x1 + a2x
3
1 + a3x

5
1 + a4x2

+a5x2 · |x2|+ a6αm + a7αf

y = x1

(4)

where parameters a1, a2, a3, a4, a5, a6 and a7 is the
coefficient obtained by transforming (3) into (4).

f (x) represents the change of the uncertainty
parameter of the roll motion model, assumption f0 (x) =
a1x1 +a2x

3
1 +a3x

5
1 +a4x2 +a5x2 · |x2|, then from (4), the

following can be obtained:
ẋ1 = x2

ẋ2 = f0 (x) + f (x) + b0u+ d(t)

y = x1

(5)

where b0 = a7, u = αf , d (t) = a6αm, and d (t) ≤ D0, D0

is a constant representing the upper bound of the error.
From Fig. 1, the tracking error of the system is

e = φd − φ = −x1 (6)

The sliding mode function design is s = ė + ce and
c > 0, so

ṡ = ë+ cė = φ̈d − φ̈+ cė = φ̈d − ẍ1 + cė

= φ̈d − f0 − f − b0u− d(t) + cė (7)

The sliding mode control law of the fin stabiliser system
that can be designed is

αf =

(
−f0 − f + φ̈d + cė+ ηsgn (s)

)
b0

(8)

Substituting (8) into (7), the following will be got

ṡ = φ̈d − f0 − f − b0u− d(t) + cė = −ηsgn (s)− d (t) (9)

where η is the gain of the switch item.
If η ≥ 0, the following will be got

sṡ = s (−ηsgn (s)− d (t)) = −η |s| − s · d (t) ≤ 0 (10)

x is the input of the RBF network. Then, the output is

f̂ (x) = ŴTh (x) (11)

where Ŵ is the estimated weight of the RBF network, h (x)

is the Gaussian function of RBF network, f̂ (x) is used to
approximate f (x).

Through (8), the control law of the fin stabiliser system
can be obtained, and the fin angle is

αf =

(
−f0 − f̂ + φ̈d + cė+ ηsgn (s)

)
b0

(12)

From the (12), the convergence speed of the control
system depends on the control parameters c and η.

Although, in theory, the larger the parameter c, the faster
the error convergence speed of the system. In practice, if the
parameter c is too large, it will cause the action speed and
amplitude of the stabiliser to be too large, easily exceeding
the execution limit of the stabiliser and damaging the
stabiliser. Similarly, the larger the parameter η, the faster
the convergence speed of the control system. However, if
parameter η is too large, it can cause serious chattering
in the anti-roll fin control system and exacerbate the wear
of the anti-roll fin mechanism. Therefore, the size of these
parameters should be reasonably selected. After multiple
simulations and verifications, the control parameters c and
η suitable for this work are 15 and 12.

3.2 Adaptive RBF Neural Network Obstacle
Avoidance Control

When a fin avoids obstacles, it must change its angle and
inevitably lose part of the control torque, reducing the anti-
rolling efficiency. Using the real-time obstacle avoidance
method of fin stabiliser, the maximum allowable angle of
the fin body to safely avoid obstacles is solved αfmax.
Including the following specific steps:

Step 1: If the fin stabiliser crashes with an obstacle,
obtain the overall equivalent model of the fin stabiliser for
real-time obstacle avoidance and the front view analysis
diagram, as shown in Fig. 2.

Figure 2(a) is the overall equivalent model of a fin
stabiliser for real-time obstacle avoidance. In the equivalent
sphere model, the obstacle is equivalent to the particle P
and is the sphere’s centre. The radius R of the particle
P is the equivalent safety distance between the particle P
and the fin body, size of R correlates with it. When the
fin body is parallel with the horizontal plane, the longest
horizontal length, vertical length, and vertical length of
the fin body are, respectively, equivalent to the length d,
width l, and height H of the cuboid, and then obtain an
equivalent model cuboid of the fin body. The centre point
of the fin axis 1 in the fin body is marked as point O. The
model’s centre point of the right face 2 is marked as point
Q. The projection of point O on the plane where the rear
side 3 of the model is marked as point B. The projection
of point Q on the plane of the back side 2 is marked as
point C.

Figure 2(b) is the overall front view analysis diagram
of the real-time obstacle avoidance of the fin stabiliser,
that is, the front view analysis diagram of Fig. 2(a). The
vertical foot point of the particle P on the X axis is marked
as point E, and the intersection point of the vertical line
and the arc is marked as point F .

Step 2: Figure 2(a), ϕ1, ϕ2 are the values of ∠OBP
and ∠QCP , respectively, at this time ϕ1 and ϕ2 areϕ1 = arccos

(m2+(0.5l)2−x2)
(m·l)

ϕ2 = arccos
(n2+(0.5l)2−y2)

(n·l)

(13)

wherem is the distance of straight line BP, n is the distance
of straight line CP, x is the distance of straight line OP, y
is the distance of straight line QP.
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Figure 2. The overall equivalent model and main view analysis of the real-time obstacle avoidance of the fin stabilizer:
(a) equivalent model and (b) analysis chart of main view.

Step 3: Figure 2(b), β and γ are the values of ∠OPQ
and ∠EPQ, respectively, at this time β and γ are β = arccos

(
(a2+b2−d2)

(2a·b)

)
γ = arcsin

(
h0

b

) (14)

where a is the distance of straight line OP, and it satisfies
the equation a·l

4 =
(
m·l
4

)
·sinϕ1. b is the distance of straight

line QP, and it satisfies the equation b·l
4 =

(
n·l
4

)
· sinϕ2.

h0 is the distance of straight line QF, and it satisfies the
equation h20 +R2 = b2.

Step 4: Combine with Fig. 2(b) shows that αfmax and
∆αf are  αfmax = arcsin

(
(a cosα−R)

d

)
∆αf = αfmax − αf0

(15)

where α is the value of ∠EPO, and the relationship of γ
and β satisfies α = γ−β, αf0 is the initial angle between the
horizontal plane and the fin body when avoiding obstacles.

According to the above steps, αfmax and ∆αf can be
obtained, the safe area of the fin body isαfmax ≥ αf αf > 0

αfmax ≤ αf αf < 0
(16)

When single-fin obstacle avoidance, (3) can be
rewritten as

(Ix + ∆Ix) φ̈+B1φ̇+B2

∣∣∣φ̇∣∣∣ φ̇+ C1φ+ C2φ
3 + C3φ

5

= −Dhαm − (2KC1 + 2KC2) (17)

where KC1 is the front fin control torque during
obstacle avoidance, and satisfies the formula KC1 =
1
2ρv

2AfC
α
L

(
αf + ∆αf +

φ̇lf
v

)
lf , KC2 is the rear fin

control torque, and satisfies the equation KC2 =
1
2ρv

2AfC
α
L

(
αf +

φ̇lf
v

)
lf .

According to the above combine with (12), the obstacle
avoidance control law of the fin stabiliser system is

u =

(
−f0 − f̂ + φ̈d + cė+ ηsgn (s)

)
b0

−∆αf (18)

3.3 Adaptive RBF Neural Network Cooperative
Obstacle Avoidance Control Law Design

Substituting (18) into (9) can get

ṡ = −f + f̂ − d (t)− ηsgn (s) + ∆αf (19)

According to the RBF network algorithm, it can be
known  hj = e

‖x−cij‖2
(2b2

j)

f = W ∗Th (x) + ε

(20)

where the network input is x, the number of nodes is i,
the number of nodes in the hidden layer is j, and hj is the
output of the Gaussian kernel function in the hidden layer.
bj is the base width vector of the neurons in the hidden
layer, and the larger its value, the stronger the network’s
mapping ability to the input. If bj is too small, it may cause
the network to ignore the impact of some inputs on the
network, but too large may cause the network to ignore the
differences between inputs, resulting in poor performance.
So bj should is set to a moderate value. Similarly, cij is the
centre coordinate vector of the neurons, and the closer
the network input is to the coordinates, the more sensitive
the Gaussian kernel function is to the input. cij should
make the Gaussian kernel function within the effective
input mapping range, the parameter W ∗ is the expected
weight, the parameter ε is the approximation error, and it
satisfies |ε| ≤ εN .

If f̃ = f − f̂ , W̃ = W ∗ − Ŵ , combining (19) and (20),
the following will be obtained:

ṡ = −f̃ − d (t)− ηsgn (s) + ∆αf

= −W̃Th (x)− ε− d (t)− ηsgn (s) + ∆αf (21)
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Figure 3. The fin angle changes of obstacle avoidance fins under different conditions: (a) R = 0.15 m; (b) R = 0.25 m;
(c) R = 0.35 m; and (d) R = 0.40 m.

If γ > 0, and suppose the Lyapunov function is

V = 0.5s2 + 0.5γW̃T W̃ (22)

Combining (21) and (22), the following can be got

V̇ = −W̃T
(
sh (x) + γ

˙̂
W
)

−s (ε+ d (t) + ηsgn (s)−∆αf ) (23)

From (23), the adaptive rate can be obtained as

˙̂
W = −sh (x)

γ
(24)

Combining (23) and (24), the following can be got

V̇ = −s (ε+ d (t) + ηsgn (s)−∆αf )

= −s (ε+ d (t)−∆αf )− η |s| (25)

Because ε can take any small value so that η ≥ εN +
εM +D0, therefore V̇ ≤ 0. When V̇ ≡ 0, s ≡ 0, according
to the LaSalle invariance theorem, it can be known that
the fin stabiliser control system is gradually stable, when
t → ∞, there is s → 0. Because V ≥ 0, V̇ ≤ 0, there is
t→∞, V is bounded, so it proved that Ŵ is bounded.

To avoid chattering in the control system as much
as possible, the concepts of “boundary layer” and “quasi
sliding mode control” are introduced in this work, which
means the function sat (s) is used instead of the function
sgn (s). After several simulation tests, this paper’s optimal
boundary layer thickness is 1.20, and the function sat (s) is

sat (s) =


1s > ∆

ks |s| ≤ ∆, k = 1/∆

−1s < −∆

(26)

where ∆ is the thickness of the boundary layer.
From (17), the part of the control torque will

be reduced during obstacle avoidance, resulting in the
fluctuation of ship roll angle. The cooperative control of
the front and rear fin compensates for the reduced control
torque. After compensation, the (17) can be rewritten as

(Ix + ∆Ix) φ̈+B1φ̇+B2

∣∣∣φ̇∣∣∣ φ̇+ C1φ+ C2φ
3 + C3φ

5

= −Dhαm − (2K ′C1 + 2K ′C2) (27)

where K ′C1 is the front fin control torque when the fin
stabiliser cooperates with obstacle avoidance, and satisfied

K ′C1 = KC1, K ′C2 is the rear fin control torque when the fin
stabiliser cooperates with obstacle avoidance, and it satis-

fies the equation K ′C2 = 1
2ρv

2AfC
α
L

(
αf −∆αf +

φ̇lf
v

)
lf .

From (27), the coordinated control of the front and
rear fins can compensate for the reduced roll stabilisation
efficiency due to obstacle avoidance.

4. Simulation Study

A simulation study of the fin stabiliser system is carried out
to verify the feasibility and effectiveness of the cooperative
obstacle avoidance controller. The relevant parameters [18]
of the selected ship type are displacement D = 1.4573 ×
106 kg, metacentric height h = 1.15 m, Ix+∆Ix = 3.4383×
106, C1 = Dh, C2 = 2.097 × 106, C3 = 4.814 × 106,
B1 = 0.636 × 106, B2 = 0.790 × 106. And the selected fin
parameters are chord length l = 2.49 m, and the fin shaft
is located 1/5 from the first edge. The initial state of the
fin stabiliser cooperative obstacle avoidance control system
is [0.2 0]. The uncertainty parameter of the roll model is
taken f (x) = 0.02 sin (t), and the adaptive parameter γ is
0.40. The structure of the RBF neural network is 2-5-1,
and since the centre coordinates and the base width of the
Gaussian kernel function should be selected according to
the input range of the neural network in the simulation,
the parameters cij and bj are set to [−1.0 − 0.5 0 0.5 1.0]
and 1.0, respectively. Initial weight is 0.0.

When the front of the fin is about to encounter
obstacles with equivalent ball radius of 0.15 m, 0.25 m,
0.35 m, and 0.40 m, the fin angle change of the obstacle
avoidance fin is shown in Fig. 3.

In Fig. 3, mode1, mode2, and mode3 are, respectively,
traditional RBF control, obstacle avoidance control, and
cooperative obstacle avoidance. From Fig. 3(a)–(d), it
is known that when the obstacle avoidance starts at
125 s, the fin angle change command is issued to start
obstacle avoidance. When obstacle avoidance ends for
132 s, that is cancel the fin angle change command
and resume normal operation. The horizontal dashed
line in Fig. 3 is the value of the maximum obstacle
avoidance fin angle αfmax, indicates the maximum fin angle
allowed to change when avoiding obstacles. When the
range of Fig. 3(a)–(d) at 125 s ∼ 132 s, the corresponding
maximum fin angles are 3.8772◦, 5.1697◦, 6.2583◦, 6.8152◦,
respectively. Obstacle avoidance control and coordinated
obstacle avoidance are controls when considering obstacle
avoidance, when Fig. 3(a)–(d) at 125 s ∼ 132 s, the
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Figure 4. Change of ship roll angle with different controllers at various speeds: (a) v = 9 kn; (b) v = 12 kn; (c) v = 15 kn;
and (d) v = 18 kn.

Figure 5. Change of ship roll angle under different conditions: (a) αfmax = 0.5◦; (b) αfmax = 1◦; (c) αfmax = 2◦; and
(d) αfmax = 3◦.

corresponding maximum fin angle is −0.2790◦, 0.3404◦,
1.4453◦, 2.4490◦.

When the ship does not encounter obstacles at different
speeds, the effects of different anti-roll controllers are shown
in Fig. 4. In Fig. 4, mode1, mode2, and mode3 are none-
fin, cooperative obstacle avoidance controller, and PID
controller.

From Fig. 4(a)–4(d), it can be seen that at speeds of 9,
12, 15, and 18 knots, the maximum roll reduction efficiency
of the PID controller was 48%, 61%, 67% and 72%,
respectively, while the maximum roll reduction efficiency
of the cooperative obstacle avoidance controller was 92.0%,
93.3%, 93.7% and 95.1%, respectively.

According to (15), when the front of the fin is about to
encounter obstacles with equivalent ball radius of 0.15 m,
0.25 m, 0.35 m, and 0.40 m, the maximum fin angle of
obstacle avoidance is 0.5◦, 1◦, 2◦, 3◦, the roll angle of the
ship changes as shown in Fig. 5.

In Fig. 5, mode1, mode2, and mode3 are, respectively,
traditional RBF control, obstacle avoidance control, and
cooperative obstacle avoidance. In the figure, the obstacle
avoidance process and Fig. 3 occur in 125 s ∼ 132 s. From
Fig. 5(a)–(d), it can be seen that the obstacle avoidance
control fluctuates greatly in 125 s ∼ 127 s at the beginning

of obstacle avoidance and 132 s ∼ 134 s after the end of
obstacle avoidance, and the change trend of cooperative
obstacle avoidance is basically the same as the change
trend of traditional RBF control roll angle.

In the case of Fig. 5(a)–(d), 125 s ∼ 127 s at
the beginning of obstacle avoidance. Compared with
the obstacle avoidance control, the absolute value of the
maximum roll angle fluctuation of the cooperative obstacle
avoidance is increased by 1.55 times, 8.37 times, 1.17
times, and 0.66 times, respectively. However, 132 s ∼ 134 s
after the end of obstacle avoidance, compared with the
coordinated obstacle avoidance, the absolute value of the
maximum roll angle fluctuation of the obstacle avoidance
control, increased by 0.87 times, 0.80 times, 0.69 times,
and 0.69 times, respectively.

The roll angle of obstacle avoidance control varies
approximately linearly with time in 125 s ∼ 126 s,
126 s ∼ 127 s, 132 s ∼ 133 s, 133 s ∼ 134 s. In the
figure, the changes of 125 s ∼ 126 s and 126 s ∼ 127 s,
132 s ∼ 133 s, and 133 s ∼ 134 s show a symmetrical
feature. For the convenience of statistics, data analysis and
statistics are only performed on the anti-rolling efficiency
of 125 s ∼ 126 s, 132 s ∼ 133 s. The data are shown in
Tables 1 and 2.
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Table 1
Statistics of Anti-Rolling Data at the Beginning of Obstacle Avoidance

v/kn Obstacle avoidance control Maximum fin angle for obstacle avoidance (◦)

0.5 1 1.5 2 2.5 3

8 Standard deviation of roll angle
Anti-rolling efficiency

0.1090◦

94.96%
0.1058◦

95.10%
0.1042◦

95.18%
0.1011◦

95.32%
0.0981◦

95.46%
0.0966◦

95.53%

10 Standard deviation of roll angle
Anti-rolling efficiency

0.1284◦

94.06%
0.1247◦

94.23%
0.1198◦

94.50%
0.1101◦

94.91%
0.1047◦

95.16%
0.0961◦

95.55%

12 Standard deviation of roll angle
Anti-rolling efficiency

0.2594◦

88.00%
0.2397◦

88.91%
0.2259◦

89.55%
0.2181◦

89.91%
0.2025◦

90.63%
0.1853◦

91.43%

14 Standard deviation of roll angle
Anti-rolling efficiency

0.2796◦

87.06%
0.2551◦

88.20%
0.2382◦

88.98%
0.2177◦

89.92%
0.2018◦

90.66%
0.1795◦

91.69%

16 Standard deviation of roll angle
Anti-rolling efficiency

0.2447◦

88.68%
0.2137◦

90.11%
0.1836◦

91.50%
0.1566◦

92.75%
0.1356◦

93.72%
0.1124◦

94.80%

18 Standard deviation of roll angle
Anti-rolling efficiency

0.1775◦

91.79%
0.1506◦

93.03%
0.1296◦

94.00%
0.1029◦

95.24%
0.0803◦

96.28%
0.0598◦

97.23%

Table 2
Statistics of Anti-Rolling Data After Obstacle Avoidance

v/kn Obstacle avoidance control Maximum fin angle for obstacle avoidance (◦)

0.5 1 1.5 2 2.5 3

8 Standard deviation of roll angle
Anti-rolling efficiency

0.3169◦

74.81%
0.3165◦

74.84%
0.3162◦

74.86%
0.3156◦

74.91%
0.3148◦

74.98%
0.3143◦

75.02%

10 Standard deviation of roll angle
Anti-rolling efficiency

0.4274◦

66.03%
0.4201◦

66.61%
0.4167◦

66.88%
0.4065◦

67.69%
0.4008◦

68.14%
0.3873◦

69.21%

12 Standard deviation of roll angle
Anti-rolling efficiency

0.2628◦

79.11%
0.2528◦

79.90%
0.2355◦

81.28%
0.2225◦

82.31%
0.2053◦

83.68%
0.1884◦

85.02%

14 Standard deviation of roll angle
Anti-rolling efficiency

0.4117◦

67.27%
0.3942◦

68.66%
0.3743◦

70.25%
0.3432◦

72.72%
0.3269◦

74.01%
0.3077◦

75.54%

16 Standard deviation of roll angle
Anti-rolling efficiency

0.3411◦

72.89%
0.3179◦

74.73%
0.2954◦

76.52%
0.2692◦

78.60%
0.2462◦

80.43%
0.2251◦

82.11%

18 Standard deviation of roll angle
Anti-rolling efficiency

0.2606◦

79.28%
0.2341◦

81.39%
0.2130◦

83.07%
0.1851◦

85.29%
0.1629◦

87.05%
0.1424◦

88.68%

To further explore the relationship between the
maximum obstacle avoidance fin angle and the anti-rolling
efficiency. Tables 1 and 2 are fitted with the corresponding
anti-rolling efficiency under different obstacle avoidance
maximum fin angles and different speeds. As shown in
Fig. 6.

It can be seen from Fig. 6. When the speed is 8 kn ∼
18 kn and the maximum obstacle avoidance fin angle is
0.5◦ ∼ 3◦, the maximum obstacle avoidance fin angle
and the anti-rolling efficiency are approximately linearly
positive. With the continuous increase of the maximum fin
angle of obstacle avoidance, the anti-rolling efficiency is also
increasing. Nevertheless, when the speed of 132 s ∼ 133 s is
8 kn after the end of obstacle avoidance, with the increase
of the maximum fin angle of obstacle avoidance, the anti-
rolling efficiency only increases by 0.21%.

5. Conclusion

The conclusions are as follows:
1) Considering the lack of real-time obstacle avoidance in

traditional fin stabilisers, this work uses a collaborative
obstacle avoidance control method to solve the
maximum fin angle for obstacle avoidance. It plans
the safe motion area of the fin body, thus achieving
reasonable obstacle avoidance of the fin stabiliser.

2) Considering that the anti-roll fin may reduce the
efficiency during obstacle avoidance, compensation was
provided through the collaborative control of the
front and rear fins, which met the system’s anti-roll
requirements while avoiding obstacles and solved the
problem of reduced anti-roll efficiency during obstacle
avoidance.
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Figure 6. The relationship between the maximum fin angle of obstacle avoidance and the efficiency of anti-rolling: (a) obstacle
avoidance begins (125 s ∼ 126 s) and (b) obstacle avoidance is over (132 s ∼ 133 s).

3) The problem of the significant drop in anti-rolling
efficiency at the beginning and after the end of obstacle
avoidance is explored. After the data of these two
states are processed in sections, the maximum fin angle
of obstacle avoidance and anti-rolling efficiency are
approximately linearly positively correlated.
The next step is to study the special situation in which

changing the fin angle cannot meet the requirements of fin
obstacle avoidance, and further improve the fin stabiliser
obstacle avoidance system.
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