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Abstract

To obtain a long running time for battery-powered mobile robots,

implementing energy-efficient control over their motion process is

important. In this study, a fuzzy logic control (FLC) optimisation

method is proposed to diminish the energy expenditure of a

differential drive wheeled mobile robot (WMR) during its movement

by using the particle swarm optimisation (PSO) algorithm. Unlike

conventional energy-saving methods, such as reducing the robot

acceleration, this study designs a fuzzy logic controller based on a

planned optimal path to control the left- and right-wheel angular

velocities of the differential drive WMR to enable it to navigate from

its initial position to the target location. The membership function of

the fuzzy logic controller is optimised based on the PSO algorithm,

and an optimal fuzzy logic controller can be obtained to decrease

the energy loss of the battery. Compared with other methods, the

proposed method can save over 85% in energy consumption.
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1. Introduction

Differential drive wheeled mobile robots (DDWMR) has
been used in many applications. To perform the specified
tasks in various applications, all require the robot to
be able to move from the initial point to the target
point in known or unknown situations. Therefore, the
proper operation of functions related to path planning,
autonomous navigation, obstacle avoidance, trajectory
tracking, and localisation of mobile robots are fundamental
issues that must be addressed. These problems have been
intensively studied by some scholars and many important
results have been achieved. For example, Chen et al.
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proposed the path planning method for mobile robots
in unknown environments [1]–[3], Nguyen et al. designed
an efficient navigation system for autonomous mobile
robots [4]–[6], Wang et al. studied the obstacle avoidance
method of mobile robots in dynamic environments [7], [8].
Hassan et al. designed neural network-based trajectory
tracking situation for mobile robots [9], while De et al.
proposed the mobile robot localisation method [10]–[13].
The aforementioned results are important for solving the
smooth operation of mobile robots, but they do not
guarantee the minimum energy consumption of mobile
robots during the motion.

In recent years, the use of optimisation algorithms
to solve problems related to fuzzy logic control (FLC)
was widely examined by researchers, especially in the
field of mobile robots, such as robotic systems based
on fuzzy visual serving [14], the combination of a
optimisation algorithm and FLC to solve path-planning or
position tracking problems [15], [16], and FLC optimisation
using optimisation algorithms to dynamically adjust the
parameters of type-2 fuzzy systems [17], [18].

The main methods to reduce energy consumption are
reducing energy consumption by planning optimal paths
[19], choosing to use less energy-intensive robot compo-
nents [20], avoiding sudden acceleration or deceleration
of wheeled mobile robot (WMR) [21], and extending the
runtime by increasing the battery size [22]. Among the
aforementioned methods, reducing energy consumption
by planning optimal paths is the most effective. In this
study, the optimal path can be understood as the shortest
path. The sharp-turn for WMR must accelerate and
decelerate according to the path requirements, which
results in additional energy consumption. Therefore, this
paper proposes a better solution to combine optimisation
of FLC and minimum energy consumption.

The core problem of motion control for DDWMR is
designing a controller to control the speed of the left and
right drive wheels effectively, wherein the target position
is reached smoothly. Classical control methods often rely
on mathematical modelling of the controlled object. In the
absence of an accurate model, classical control methods
make it difficult to design a suitable controller. Robots,
as a common nonlinear system, need to handle complex
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Figure 1. The DDWMR tracks the optimal path.

Figure 2. Block diagram of DDWMR control system.

tasks in uncertain or unknown environments, and obtaining
an accurate mathematical model is difficult. The largest
advantage of FLC method is that the system can achieve
better dynamic performance and steady-state performance
even without the mathematical model of the controlled
object. Therefore, this paper adopts a FLC method for the
control of DDWMR. This paper proposes to optimise the
parameters of the FLC using particle swarm optimisation
(PSO) to decrease the energy consumed by the DDWMR
in the moving process.

The remaining four parts of this study as follows.
In Section II, the structure of DDWMR is introduced;
Section III describes the optimisation method of FLC;
Section IV describes the simulation experiment process
and the operation results; the last section is the conclusion.

2. Description of the Problem

Assuming that the optimal path was planned based on the
A* algorithm (the A* algorithm is a commonly used path-
finding and graph traversal algorithm that can search for
optimal paths through a cost function containing heuristic
information), the DDWMR energy-efficient motion control
aims to enable the robot to reach the target through all
the path points in an efficient manner.

In Fig. 1, DDWMR traces the optimal path from the
initial point (xQ, yQ) to the destination point (xP , yP ) from
point Q through points W1,Wk,Wm,Wn.

DDWMR navigation from the initial position to the
target position can be achieved by a variety of control
algorithms. Figure 2 shows a generic motion control system
for a DDWMR with a control system scheme that may be
applied to most DDWMR performing navigation tasks.

The function of the FLC is to enable the DDWMR
to move from its initial position to the target location.
We optimise the FLC membership functions (MFs) online
using PSO. In the optimisation procedure, we call the PSO
algorithm through the “pymoo” library.

Figure 3. Model of differential drive wheeled mobile robot.

The kinematic and energy models of DDWMR need to
be used in the design of FLC. Figure 3 shows the geometric
parameters of the DDWMR [23].

The parameters of the DDWMR geometric model are
shown in Fig. 3, including: Q, which represents the centre
of the axis between the left and the right wheels; G, which
is the centre of gravity of the DDWMR; a represents the
distance between the centre of gravity G and the centre
Q of the two wheels; b represents the distance between
the two wheels; r, is the radius of both the left and right
wheels; ν, is the robot linear velocity; θ, is the orientation
of the robot; ωr and ωl denote the angular velocities of the
left and right wheels, respectively; vl and vr denote the
linear velocities of the left and right wheels, respectively.

The kinematics of DDWMR is based on the pure
rolling assumption, with no slip between the wheel and the
surface. From Fig. 3, the kinematic model of DDWMR is:

ẋ = ν cos θ

ẏ = ν sin θ

θ̇ = ω

(1)

In this study, the energy consumed by the motor is
converted into the kinetic energy required by the DDWMR.
The energy loss of DDWMR includes part of the loss caused
by friction and that inside the motor [24].

An appropriate energy model is essential for the design
of energy-efficient controllers. Only the portion of kinetic
energy lost by the robot is considered and other losses are
neglected in this study. The kinetic energy of DDWMR at
any moment is:

Ekinetic =
1

2
m [v (t)]

2
+

1

2
I [ω (t)]

2
(2)

where m indicates the mass, I means the moment of inertia
of the DDWMR; v is the linear velocity of the DDWMR
at time t, ω is the angular velocity of the robot at time t.

To simulate the operation of the DDWMR using
software, we calculate the kinetic energy of the robot at
time ti using a discrete time representation. Equations (3)
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Figure 4. The DDWMR and the path point.

and (4) are presented, as follows:

Ekinetic(i) =
1

2
m [v (ti)]

2
+

1

2
I [ω (ti)]

2
(3)

∆Ekinetic(i) = Ekinetic(i) − Ekinetic(i−1) (4)

The motion state of the DDWMR can be divided
into three types: acceleration, deceleration, and uniform
velocity. When the kinetic energy is not recycled back
into the battery, energy will be lost during acceleration
or deceleration. The calculation of the energy loss of the
DDWMR must discern the state of the robot. During the
simulation, we use (3) and (4) to calculate the DDWMR
energy loss.

3. Design of the Fuzzy Logic Controller and
Optimisation of Particle Swarm Optimisation

To achieve the overall optimisation of FLC, the design
of the FLC ensure that the DDWMR to move from the
initial point to the target point; PSO is then used to
decide the parameters of the membership function to ensure
the minimum energy consumption generated by the robot
during the motion.

3.1 Function of Fuzzy Logic Controller

Figure 4 describes the DDWRM moving from its initial
position Q to the target location P.

From Fig. 4 we obtain:

∆D =

√
(xP − xQ)

2
+ (yP − yQ)

2
(5)

∆θ = θR − θP (6)

tan θP =
yP − yQ
xP − xQ

(7)

∆D And ∆θ are the difference between the distance and
angle between the robot’s initial points to the target
point.

The function of FLC is to direct the DDWMR to
move from its initial position Q to the destination location
P. The FLC block diagram for the DDWMR is shown
in Fig. 5 The FLC is a double-input and double-output
(DIDO) system, with ∆D and ∆θ as the inputs, and ωl

Figure 5. Fuzzy logic controller block diagram of
DDWMR.

Table 1
Right Wheel Angular Velocity Rule Table

∆D ∆θ

NB NS Z PS PB

VN RR SR RR TR LR

N RR SR SR TR LR

Z RR SR LR TR LR

R RR SR TR TR LR

VR RR SR LR TR LR

and ωr as the outputs. We use (8) and (9) to convert the
FLC outputs into the DDWMR inputs, as follows:

v =
1

2
(vr + vl) (8)

θ̇ = ω =
1

b
(vr − vl) (9)

3.1.1 Dividing the Universes of Discourse

For the division of the universe of discourse according to
the actual situation of the DDWMR, we define the input
universes of discourse of ∆D as [0 10], the input universes of
discourse of ∆θ as [−180◦ 180◦], and the output universes
of discourse of ωl and ωr as [0 30].

3.1.2 Construction of the Membership Functions

The triangular MFs are selected for this experiment. The
MFs of ∆D are VN, N, Z, R, VR, indicating very near,
near, moderate, remote, and very remote, respectively. The
MFs of ∆θ are NB, NS, Z, PS, PB, indicating negative
large, negative small, zero, positive small, and positive
large. The MFs of ωr are RR, SR, MR, TR, LR, indicating
rarely to the right, slightly to the right, moderately, to
the right, and large to the right, respectively. The MFs
of ωl are RL, SL, ML, TL, LL, indicating rarely to the
left, slightly to the left, moderately, to the left, and large
to the left. The input and output MFs are shown in
Fig. 6.

To ensure that the DDWMR can move from its initial
position to the target location, we construct the FLC rule
base using a heuristic approach [25] and defined it in
Tables 1 and 2.
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Figure 6. (a) The MFs of ∆D, (b) the MFs of ∆θ, (c) the MFs of ωr, and (d) the MFs of ωl.

Table 2
Left Wheel Angular Velocity Rule Table

∆D ∆θ

NB NS Z PS PB

VN LL TL RL SL RL

N LL TL SL SL RL

Z LL TL ML SL RL

R LL TL VL SL RL

VR LL TL VL SL RL

3.2 Fuzzy Logic Controller Optimisation Based on
the Particle Swarm Optimisation

The division of the MFs and the establishment of the rule
base are crucial to the control effect of FLC. To optimise
the membership function, this section describes the process
of finding the optimal membership function parameters
using the optimisation algorithm.

Domestic and foreign researchers have proposed
numerous heuristic algorithms, including those that
simulate the evolutionary behaviour of organisms in nature,
group intelligence algorithms, physical rules prevalent in
the universe, and those based on human behaviour or
perceptual phenomena. Researchers continue to apply
these heuristic algorithms to control engineering, defence

modernisation, economic scheduling and other fields.
Among them, the population intelligence algorithm is a
class of commonly used heuristic algorithms, which can also
be subdivided into particle swarm algorithm, ant colony
optimisation algorithm, firefly algorithm, and so on. We
choose the PSO algorithm, which is easy to implement
and has fewer adjustment parameters, to optimise the
membership function parameters of FLC.

3.2.1 Parameterisation of the Membership Functions

The MFs commonly used in fuzzy logic system include
Gaussian, trapezoidal, and triangular. Triangular functions
are widely used in WMRs [26], mainly because their
form is simple and straightforward, and they are easy
to understand and apply. Triangular functions also have
satisfactory controllability, require only three parameters,
have a simple implementation method and require only
some simple numerical and logic operations to achieve.
Their computation complexity is relatively simple, and
their computation speed is fast, making them suitable for
real-time systems. Therefore, in this study, we choose the
commonly used triangular MFs.

We used the parameter representation method shown
in Fig. 7 to define the five triangular MFs. Among,
the MFs set of NV is determined by (min, D2);
which can be described using 11 parameters each
(D1 −D8, W1 −W3). Since the FLC is a TITO, there
are a total of 44 parameters. ∆D (D1, D2, W1, D3, D4, W2,
D5, D6, W3, D7, D8); ∆θ (D9, D10, W4, D11, D12, W5,
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Figure 7. The representation method for triangle member-
ship functions.

Figure 8. The process of PSO for fuzzy logic controller.

D13, D14, W6, D15, D16); ωl(D17, D18, W7, D19, D20,
W8, D21, D22, W9, D23, D24); ωr (D25, D26, W10, D27,
D28, W11, D29, D30, W12, D31, D32). These parameters
are used as particles in the PSO algorithm to represent the
MFs.

3.2.2 Particle Swarm Optimization Execution

The fitness function (FF) in the PSO algorithm can
determine which particles in the population can enter the
next generation. In this study, (2) is chosen as the FF of
the PSO to ensure the minimum energy loss of DDWMR.

The design of the optimal FLC should be able to
ensure that the DDWMR can move from the initial
position to the target position. Next, we used the “pymoo”
library to perform the PSO optimisation process in Jupyter
notebook using Python language to determine the optimal
parameters of the membership function. The optimisation
process for the membership function in FLC is shown in
Fig. 8.

The FLC is created according to the partial, which
represents all parameters of the MFs, and consequently, its
behaviour is tested by a simulation process. We use the
simulation results as the FF of the PSO to perform online
optimisation. The programme flow chart of the PSO is
shown in Fig. 9.

4. Experimental and Simulation Result

4.1 Simulation Experiments

The simulation uses parameters for the DDWMR obtain
from [23], and the specific values are shown in Table 3.

This experiment tracks trajectories comprising path
points, such as (0, 0), (10, 0), (10, 10), (20, 10), (20, 20). To
demonstrate the effectiveness of the proposed method in
this paper, PSO FLC is compared with expert experience-
based FLC [27], Circular-based controller [28], and Robins

Figure 9. Flow chart of particle swarm optimisation
programme.

Table 3
Parameters Values of the DDWMR

Parameters Value

r 0.0925 m

b 0.37 m

m 9 kg

I 0.16245 kgm2

J 0.01 kgm2/s2

xG 0 m

yG 0 m

θG 45
◦

Mathew-based controller [29], [30]. The optimal controller
designed in this study is applicable in the specific operating
environment of Z path.

We implement the simulation on the Jupyter Notebook
platform using Python. We initialise the parameters and
establish the kinematic and energy models of the DDWMR.
We design the FLC to ensure that the DDWMR can
move from its initial position to the target location. We
use the PSO algorithm to optimise the parameters of the
MFs and facilitate the optimisation process by calling the
algorithm through the “pymoo” library. Then, we compare
the obtained optimal controller with the other controllers
under a given path. The results of the experiments in the
200th generation of the Z path are shown in Figs. 10–12
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Figure 10. Trajectory tracking of DDWMR.

Figure 11. The velocity over time when the DDWMR
tracks path.

Figure 12. Energy consumption of DDWMR.

and Table 4. Figure 13 shows the condition before and after
the MFs optimisation.

The speed of the mobile robot will play a crucial role
in its performance. When the speed of the DDWMR is too
fast, energy will be partially lost, and when the speed of
the DDWMR is too slow, the control performance will be
affect [23]. Therefore, the magnitude of the linear velocity
is set at [0 m/s−2 m/s] and the angular velocity is set at
[−0.75 rad/s−0.75 rad/s].

Table 4
Energy Consumption and Tracking Distance of Robots

With Different Controllers

Controller name Energy [J] Distance [m]

Circle 17.802493 51.486728

Robins–Mathew 69.339948 42.992399

Designed FLC 69.383742 49.018313

Optimised FLC 10.566899 46.027612

4.2 Discussion

After experimental tests, when using PSO to optimise
FLC, the population size was set to 50 and the number
of iterations was set to 200, a parameter that is can well
combine the optimisation algorithm with FLC. When the
population size is set less than 50, it leads to an increase
in energy consumption, while when the population size
exceeds 50, the optimisation leads to a slower optimisation
process.

Figure 10 shows that when controlling DDWMR
through PSO FLC, the tracking error is the smallest except
for Mathew-base’s controller. Figure 11 shows that the
velocity of DDWMR controlled by expert experience-based
FLC, Circular-based controller, and Robins Mathew-based
controller have oscillated over time. However, when the
PSO FLC is used, the velocity of DDWMR is almost
constant during the movement, even when the DDWMR
moves through the corner. Therefore, the issues about
the robot vibration have been solved quite well by the
PSO FLC and the stability of the mobile robot is ensured.
To compare the difference in energy consumption between
PSO FLC and other controllers, the data in Fig. 12 and
Table 4 show that the energy consumption of DDWMR
when tracking a given path with PSO FLC is 10.566899,
which is much smaller than the energy consumption of
DDWMR when using other controllers. This shows that
the PSO FLC in this paper consumes less energy than
other control methods while ensuring that other control
performance is not affected.

In this study, the primary problem to be solved is the
reduction of the DDWMR energy loss in the process of
motion. In this study, PSO FLC demonstrates less energy
consumption than other control methods whilst ensuring
that the control performance is not affected.

5. Conclusion and Future Work

We use PSO to optimise the FLC MFs to solve the problem
of high energy consumption during the operation of the
DDWMR. In optimisation problems involving FLC, many
researchers focused only on optimising the output MFs. In
this study, we use the PSO algorithm to optimise all the
MFs simultaneously. The results indicate that the energy
consumption of the DDWMR is 10.566899 when we use
PSO FLC to track a given path. Compared with other
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Figure 13. (a) The ∆D MFs before optimisation, (b) the ∆D MFs after optimisation, (c) the ∆θ MFs before optimisation,
(d) the ∆θ MFs after optimisation, (e) the ωr MFs before optimisation, (f) the ωr MFs after optimisation, (g) the ωl MFs
before optimisation, and (h) the ωl MFs after optimisation.

controllers, PSO FLC can save more than 85% in energy
consumption.
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