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SIMULTANEOUS LOCALISATION AND
MAPPING (SLAM) TECHNIQUE IN REAL
TIME: AN INTRODUCTION OF DIK-SLAM
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Abstract

The issue of simultaneous localization and mapping (SLAM)
has been thoroughly investigated in robotics. Its influence on
independent robot navigation attracted scholars. Over decades, a
variety of approaches have been suggested to handle the SLAM
problem with commendable success, however there are a variety
of factors that can reduce the efficiency of the SLAM techniques.
Environmental elements, such as lighting conditions, shadow,
dynamic (non-static) conditions, kidnapping event, computational
complexity, and shadows are some of these concerns (factors). These
challenges (factors) produce inconsistencies, which might result in
execution that yields undesirable results. In an attempt to overcome
these challenges, a unique SLAM approach identified as DIK-SLAM
has been presented. The dynamic illumination and kidnapping
(DIK) SLAM technique is an improved version of the Monte-
Carlo (MCL) SLAM algorithm that incorporates filtering techniques
and various adjustments to increase the reliability and considering
computational cost. The normalised differences index (NDI) is the
filtering approach used by the DIK-SLAM to eliminate shadow. To
minimise the effect of light intensity, filters like specular-to-diffuse
and dark channel models were also applied to the DIK-SLAM.
Given that the computational cost is a consideration, these filtering
techniques are running concurrently. In addressing the kidnapping
problem and the dynamic (non-static) environment, respectively, the
revised MCL algorithm founded on grid map and initial localisation
approach was presented to create the DIK-SLAM. In this article, the
SLAM algorithms were evaluated using a publicly released dataset
(TUM-RGBD). The MATLAB simulation software was used to
conduct the test, and results were evaluated quantitatively. Thus,
comparing the DIK-SLAM, the traditional MCL algorithm, and
other SLAM approaches accessible in the literature, experimental
results showed that the DIK-SLAM performed better because for
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most of the trajectory evaluation it attained lower error. The
DIK-SLAM technique presented in this paper has the ability to
support independent movement, route planning, and exploration
while minimising the robot failure rate, injuries and accidents to

humans.
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1. Introduction

Autonomous navigation, which can be accomplished by
using simultaneous localization and mapping (SLAM),
plays an essential role in assisting movement of independent
vehicle from one position to another without human
intervention [1]. These properties have caught the attention
of scholars, and have been successfully improved from
an organised landscape towards many unsafe conditions,
including unorganised landscape and underwtaer land-
scape [2]. Considering a defined environment, specific
information might very well support in appropriate prepa-
rations for future movement/motion. However, in such an
unfamiliar environment, the current pose measurement is
necessary for generating the environment map [3]-[5]. This
generated map would then be used to facilitate navigation
and this signifies the core principle of SLAM [3]. The issue
is determining how to apply SLAM to measure pose of
the robot and develop the map for an environment. In
the scope of SLAM, data gathered from sensors (camera,
laser, sonic, and radar) is applied to evaluate the robot
pose and the estimation of map. This method is generally
productive because the robot’s pose estimation is directly
linked with the feature estimation in the environment
[3]. In past studies, several strategies to mapping have
already been proposed, but they can be broadly classified as
feature-based or grid-based techniques [3]. These strategies
had also been shown to be effective, but their choice
is heavily dependent on the type of the environment
and both have limitations. The feature-based method
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Figure 1. Overview of the visual SLAM [6].

is commonly recommended in large open surroundings
with a predetermined object and without these objects,
the SLAM performance depreciate [3]. The grid-based
technique works better in densely clustered environments
amd can handle arbitrary objects but suffers from exessive
computational complexity and massive memory usage
[3]. Sadly, there are also other issues and to highlight
them, the study undertook a broad evaluation of several
SLAM methodologies put out by earlier researchers.
This review discusses different SLAM algorithms, their
strategy, drawbacks, and benefits. According to the review,
the dynamic environment, varying lighting, loop closure,
computational cost, and kidnapping robot are ongoing
issues that prevent society from fully embracing SLAM.
Thus, solutions to these issues were thought about, and
a dynamic illumination and kidnapping (DIK)-SLAM
that took into consideration the computational cost was
developed. The DIK-SLAM is a Monte-Carlo (MCL)
algorithm that has been modified and upgraded with
numerous algorithms. Successful deployment has helped
to further SLAM research, and industry acceptance will
increase output and safety for human working in dangerous
environment. The structure of this article is as follows: The
literature review is discussed in Section 2, the framework
is discussed in Section 3, while Section 4 present the
experiments and the results, and the last Section present
the conclusion and future work.

2. Literature Review

Autonomous navigation let robots navigate successfully
on their own with no human assistance, which is a
crucial feature for independent expeditions into unexplored
environment. Several scholars have presented numerous
SLAM approaches in recent years with excellent results
[4]-[7]. To identify current issues, reviews were conducted
on various SLAM techniques to discuss their methodology,
experiment, result, and constraints.

The study of [6] discussed a visual SLAM technique
that rely on data collection, front-end operation, back-end
operation, and loop detection to implement SLAM. The
front-end operation assists with estimating the camera’s
relative motion using information from adjacent images
to generate local images. The objective of the back-
end operation is to improve the initialisation information
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Loop closure &
detection

received from the front-end operation using statistical
inference. Loop detection is used to determine if the
preceding scene has been visited again through visual
detection of posture information at a specific point in time.
The visual SLAM technique framework is presented in
Fig. 3.

The experiment shows that the visual SLAM tech-
niques performs very well, it was able to cope with loop
closure and kidnapping, but the use of the assumption on
invariance of pixel grey scale actually makes it susceptible
to environmental lighting, camera exposure, and other
factors, limited the performance of the system.

In the study of [7], they discussed a camera-
based semantic SLAM technique for low-cost cars. In
their research, a local semantic map was generated
by combining the CNN-based semantic segmentation
results and the optimised trajectory after pose graph
optimisation. A compacted global map was then generated
(or updated) in the cloud server for further end-user
localisation based on the ICP method and within an
EKF framework. The average size of the semantic map
was 36 kb/km. Experiment evaluation of the camera-
based localisation framework proof to be reliable and
applicable to autonomous driving. However, the technique
when confronted with moving objects within the road
environment caused a drift of perception, localisation, and
mapping for autonomous robot. Thus, future work plans
to address the problem of detection and tracking of moving
objects (DATMO) by introducing algorithms that can
detect and handle features that are not stationary in the
environment.

The study of [8] discuss a Kalman filter SLAM
technique that function based on four steps. The first
step represents the observation stage where the robot
extracts various features e.g. doors, line etc. from sensor
data. The second step represents the measurement stage
where the robot will generate a measurement for its
feature’s observation from its estimated positions that
are from the outcome of the prediction step. The third
step represents the matching phase, where robot estimate
the best match between features extracted from its
observation measurement and the features selected during
the measurement prediction. The fourth step represents
the estimation phase where the robot updates it belief state
by fusing the matching information. The experimental
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Figure 2. The DIK-SLAM algorithm model.

performance of the system is impressive. However, as
stated in their research, the robot initial position with a
certain approximation must be known in their Kalman
filter approach at all time. Therefore, if the robot gets
lost, it can’t recover its position. Thus, their SLAM
technique is limited to function in global localisation and
kidnap robot problem. The review given in this paper
led to the conclusion that investigations should focus on
challenges, such as illumination variation (light intensity
and shadow), kidnapping robots, computing expense,
and non-static/dynamic objects in the environment. This
research, however, developed a DIK-SLAM technique
taking into account computational cost with several
modifications to solve each of these drawbacks. Filters will
be introduced into DIKSLAM to address the environmental
noise, occupancy grid technique was introduced used to
overcome dynamic environment, while initialise localisation
and appearance matching was introduce in to DIKSLAM
to address kidnapping and looping.

3. Methodology

The proposed SLAM technique has five phases which
are the image acquisition phase, feature extraction phase,
filtering level, SLAM phase, and the navigation phase
[9]-[26] and they will be discussed in this section. Thus,
Fig. 2 depicts the workflows for all phases of the DIK-
SLAM, which has been developed in MATLAB and was
derived from the study presented in [35]. MATLAB is a
4th programming language that can perform mathematical
computation and was widely utilised due to its image
processing capabilities [34].
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3.1 The Acquisition Process

The image acquisition/captured phase within the domain
of imaging and computer vision converts received visual
data into an electrical signal which could be interpreted
and read [31]. Such data is known as stream digital images
and could be generated by a wide range of devices, such as
cameras, radar sensors, and laser scanning devices, among
many others. Consequently, the DIK SLAM incorporates
a camera device to assist with the way of translating
real-world input into a readable and understanding entity.
The camera is considered for such a phase because it
can collect much surrounding data than any other sensor,
which helps to improve the robustness of the SLAM
technique in decision-making [31]. Although it helps with
data collection, this step also serves as a major reason
why environmental disturbances (Shadow and light) and
dynamic features appear in the image.

3.2 Features Extraction Phase

Stage two of the DIK-SLAM technique is the feature
extraction phase. This is a procedure that employs statis-
tical techniques and several filters to collect characteristics
from several image sections (drivable section, non-drivable
section, and uncertainty) [29]. Image features for SLAM
techniques include color, texture, and border, among
others. In MCL SLAM, unless the robot extracts data from
its surroundings, it is difficult for the vehicle to generate
the precise position and orientation for itself using the
provided model/map [10]. The collected data from the
environment is known as belief, as represented in (1) [10].

(1)

where z; signifies the sensor measurement, wu; signifies
the control state, and s; signifies the state sample at a
time ¢ [31]. The belief distributions, which are iteratively
constructed using control and measurement data, provide
a useful statistical technique for addressing the SLAM
problem [10].

In the MCL technique, successive belief is defined by
a collection of samples that are utilised to identify state
features that might help direct robot direction, this sample
is represented in (2) and they are hypotheses for object
identification, such as obstacle, borders, and walls are
orthogonal, as presented by [10], [11].

se={sl "}

However, a few samples violate the object represen-
tation hypothesis when faced with environmental noise,
making it difficult to identify the object in the image and
perhaps leading to SLAM failure [29].

bel (s¢) = p (se\ 2, ur)

(2)

3.3 Filtering Algorithm Phase

The first alteration to the revised MCL is to improve
its capability to withstand some external factors that
might impact image characteristics, which in turn could
result in inaccurate pose estimation or, in extreme cases,



result in kidnapping with no chance of recovery in the
scenario of increase in measurement noise [29], [35]. These
external factors (light and shadow) do have the potential to
deteriorate the image, cause vision problems, and disrupt
the colour element valve, resulting in a negative impact on
the object/feature extraction [29]-[35]. The third step of
the SLAM approach, the filtering stage, was incorporated
into the system to reduce the impact of light intensity
and shadow on the feature extraction stage and improve
classification performance at the SLAM phase. Due to
the frequent occurrence of environmental noises like light
intensity and shadow, two filters were developed to identify
and eliminate them. In Sections 3.3.1 and 3.3.2, these
filtering algorithms are presented.

3.8.1 Shadow Filtering Algorithm

The shadow impact in an image can be minimised
by using the Shadow filtering algorithm. The filtering
functionality is dependent on morphological operations
and the normalised differences index (NDI). A shadow
maintains easy identification with the maximum value of
saturation (S) and the minimum value (V') in HSV colour
space [35], therefore, the image RGB valve is primarily
transformed to HSV using (3)—(5) [33], [35].

- %W+G+B) 3)

3 .
S =1 — mmln(R,G,B) (4)
0 if B<G
H = (5)
360° if B> G
where
R G 1 0 Rt )

)

V(B=G} + (R—B) (G- B)

The colours red, green, and blue indicate RGB. The
shadow noise region is extracted using the saturation (.5)
and value (V) elements of the I image [32], [35]. Using the
NDI, (6) provides an illustration (NDI) [33].

(6)

OTSU threshold (T") algorithm is applied to segment
the NDI images to ensure that regions classified as shadow
regions are truly shadow regions [31]. The next step is to
estimate the buffer area (Ipua, ) which is defined as a non-
shadow pixel around the shadow region to relight the pixel
of the shadow area to obtain a shadow free image [12]-[35].
The shadow removal concept relies on the transformation
function signifies as If (4,7) in (7). This depicts the mean
and variance of the buffer region around the shadow that
was employed to correct the shadow pixel [29]-[35].

Obuff k

Il:: (7’).7) = Mbuff,k + (7)
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where onug, k and ppug, Kk represent, respectively, the
variance and mean of the image I at a buffer position
(Ibug, k). 0k and pux represent, respectively, the variance
and mean of the shadow pixels image I in the position Iy
[32]-[35].

3.8.2 Light Filtering Algorithm

The light filtering algorithms may handle the influence of
light intensity created by sunshine, which is a frequent
noise given the excess brightness of sunlight. This removal
approach for light effect is evaluated by modelling the
object reflected by a colour camera using the dichromatic
reflection technique, which comprises the diffuse and
specular reflection elements given as I (z) in (8) [31].

I(x) = IP (2) + I° (x) = wq(z) B(x) +ws(x)G (8)

I depicts the intensity of the observed image and the
image coordinate is x = {z, y} [35], and diffuse reflection
element symbolises I” while the specular reflection element
symbolises I, G and B (x) represent the specular colour
and the diffuse colour, respectively. wy (z) and ws ()
denote the coefficients that determine the magnitude of
the diffuse and specular reflection elements [35].

The presented light intensity detection is relying on
the dark channel (19™%(z)) defined in (9) and optimal
automated thresholding is use to determine the high light
region in an input image [35]. This approach is combined
to properly classify the area of the image influenced by
light intensity [35]. According to the dark channel model,
regions that are impacted by strong light will exhibit a
high peak value, while regions that aren’t impacted would
have a low-intensity value [26].

min (min (¢ (y)))
yev(z) ce(r,g,b)

The v () signifies the local patch positioned at z and
the image coordinate is denoted as image coordinate while
the I° is represented as the colour channel [35].

The OSTU thresholding is the algorithm used to label
the high light (peak) area in the image. The labelled image
[mark(z)] created by the automatic thresholding of the
dark channel image is labelled with a 1 to indicate the
region that is influenced by light intensity as well as 0 to
indicate the unaffected regions with light intensity [35].
Equation (10) serves as an illustration for the expression
[32]. The t* signifies the ideal threshold for classifying a
mark image (z).

Idark(x) —

9)

if Idark T *
mark () = ! (et (10)

0 Otherwise

The elimination of the intensity of light is based on
specular-to-diffuse theory [26]. Equation (11) illustrates an
image with no impact of light intensity [33]-[35].

maXuG(r,g,b)Iu — Amax Zue(r,g,b) I,

ID /\max =1-
( ) 1*3/\max

(11)



However, incorporating such filter techniques results
in significant computation costs [33], but these constraints
would be handled by the rotating tilling (RT) methodology,
which is detailed in Section 3.3.3. Given that the
computational cost is taken into consideration, this
approach is utilised to speed up the execution of the
filtering process [13]-[29].

3.3.3 Concurrent Approach

A recommended mechanism for filters will enables multiple
processes in a short period of time [21]. Concurrency
originally was designed to solve the limitations of
the conventional technique (serial operation) with slow
processing capabilities. There are other concurrency
approaches, however, the two most popular are binary
swapping (BS) and parallel pipelined (PP) [13]-[35]. The
ring rotation topology is used in parallel pipelining to
accomplish the partial composition. This enables the usage
of any number of processors, however with more extensive
communication procedures. Thus, BS is only possible
whenever the processor’s numbers are restricted to a power
of two, with lower communication steps than that of the
parallel pipeline approach [13]-[35]. We used RT in this
study with two processor because we dealing with two
filtering algorithms. The RT leverages the strengths of both
BS and PP methods to address their constraints. This was
accomplished by the fact that the processor configuration
uses a ring rotation topology while the data communication
method is dependent on the BS technique. In the RT
approach, the image is processed in three steps, which are
covered in Sections 3.3.3.1 through to 3.3.3.3.

3.8.3.1 Image (Data) Partitioning Stage

Distributing image volume among processors and reducing
computing costs are the goals at this stage [13]. There
are data partitioning step of the RT approach, any
effective data partitioning approach may be used, and
there are several variations of this approach [13]. In [14]
uniformly allocates image segments among processors,
however, this causes significant overhead communication
and excess time complexity during the image composition
step. While volume data partitioning presented by [14]-
[35], has comparable features regarding allocation among
processors with little overhead communication and extra
computational costs during the image composition stage.
Although the sharing volume data partitioning described
in [14] reduces overhead communication with reduced
computing time during the image composition stages,
image dimensions weren’t divided equally among proces-
sors. Since computation cost is taken into consideration,
the sharing volume data partitioning described in [14] was
used because it supports reduced overhead communication
and computing time.

3.83.3.2 The Rendering Procedure

This represents the second step following the procedure
of splitting the dataset (image), which produced a partial
image according to the number (2) of processors [14]-
[35]. The rendering procedure is applied to every partial
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image allocated to each processor. The rendering technique
encodes, resamples, and generates the initial block that
corresponds to the partial image [13]. In this process,
initial blocks are formed individually by each processor,
and overlapping is avoided in the procedure by numbering
block images pertaining to each processor prior to the
dispersion among associated processors (2) [13]. The
dispersion makes it possible to identify and eliminate
unwanted environmental noises at the same time. In the
RT procedure, the processor (P,) sends the block size
(A% (m)) of its own partial image to other processors (P;)
based on (12) and accepts another block size (A¥ (m)) of
another partial image from another processor (P;) based
on (13) [13], [14]-[35].

P. (A’TC (m) — Py) where

1=01... k-1

w=0,1...,[P/N]—1

v=0,1,...,[P/2¥] (12)
m = ((r— 2! 4 20) mod2¥) 2k—1 4 22k=1y 4 P
i=(r—21+)modP

P, P; (A;C (n)) , where

1=0,1... k-1

w=0,1...,[N/P] -1

v=0,1,...,[P/2¥]

m = ((r 4+ 1) mod2*) 251 4 22k=1y 4 Pw + 21
2F=1 — Ymod P

(13)

i=(r—

The j,r and i signifies the ranks of the processor, k
represents a positive integer while the m and n signifies
the blocks numbers [13]-[35].

3.8.8.3 The Composition Procedure

This represents the final stage, following the rendering
procedure that produced some number (4) of initial blocks
[35]. However, at this phase, every processor uses the Over-
operation to combine the block of image it got during
distribution. MPICH, a collect command of a message-
passing library on multicomputer memory allocation, is
employed to merge every block till the final outcome
(filtered image) is formed [14]-[35]. This complete image is
generated with minimal impact of the environment noise.
The RT procedure has a number of communication step
and for this study 16 communication step was realised but
the major advantage is that, at each communication stage,
all algorithms are detecting and eliminating environmental
noises simultaneously as result limited processing time is
required during the re-generation of the complete image.
Thus, detail information about the composition procedure
is provided in one of our study [35].

3.4 Simultaneous Localisation and Mapping

Localisation indicates a vehicle’s capacity to recognise its
very own direction and position inside an environment,



and mapping indicates a vehicle’s competency to design a
representation model of an unfamiliar territory [12]-[15].
These two procedures are crucial for the robot’s navigation.
Localisation and mapping are two independent operations
in robotics, though they are closely linked since the
intelligent vehicle requires the map to locate itself, as well
as the vehicle’s precise location is required map creation
[15]. Hence, the SLAM system has captured the interest
of several academicians, due to its possibility of tackling
the relationship between the two problems (Mapping and
Localisation) which can facilitate independent navigation.
The SLAM algorithm has been improved over time with
good performance while being predominantly used in static
environments [16], [17]. Nevertheless, in this work, we
improved the SLAM approach to handle either static or
dynamic (non-static) environments. Additionally, as shown
in Fig. 2, the database was used to execute the initialising
localisation, similarities, and dissimilarities comparisons.
This really is essential in handling both loop closure and
kidnapped robots. The traditional MCL approach was
modified to address the SLAM problem at this phase, as
discussed in Sections 3.4.1-3.4.3.

3.4.1 The 2nd Revision to Present the DIK-SLAM
Algorithm

The DIK-SLAM framework uses the basic MCL technique
for pose estimation (localisation) and map construction,
but it has to be updated to handle dynamic environments,
kidnap robots, and looping closure. The MCL procedure is
a probabilistic approach that is widely employed to handle
the challenge of SLAM. Unlike some of the other high-
computational cost algorithms, such as EKF and Kalman
filters [18], this constraint has diverted investigators’ focus
to particle-based approaches, that have produced satisfying
results [29]. In this work, we proposed using the MCL
algorithm, a particle-based technique limited to a static
environment [19]. Thus, coping in non-static/dynamic
situations needs the MCL method to be updated. The
major purpose of this subsection is to go through the DIK-
SLAM update which enables the technique to cope with
changing (dynamic) environments because of the presence
of moving objects and handling such issues requires
modifying the map as the environment state changes. The
updated MCL algorithm is built on the idea that every cell
of a map is treated as a separate object, as demonstrated
in (14).
Y, = (celly, ..., cell, ) (14)
A collection of separate cells is referred to as ;.
Given that the cells are independent, the observation for
such new status p (y¢, z¢ |2¢, us ) is being modified simply
by adding probabilities of the cells map to the original
MCL whenever a cell’s state changes. This factorisation
approach is comparable to the one described in article
[35] for adding a door’s status into MCL technique.
Thus, the factorisation for this stage in full details is
presented in one of our previous research and it is
publicly accessible [35]. Thereafter, the factorisation of
this phase, an incorporates of a new probability of the
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cell is added to traditional MCL, whereas the cell’s state
is unknown during this stage. Reference [35] presents a
more extensive method of integrating the new probability
of the cells into the traditional MCL. However, estimating
the updated probability of the cells assists in determining
the state of the cell introduced to MCL, which is
important in identifying dynamic situations, as discussed
in Section 3.4.1.1.

3.4.2 1 The Binary Object Representation Using Bayes
Algorithm

At this point, MCL, a recursion Bayes filter, was already
improved to deal with a new likelihood for every cell on the
map, however, computing the state for such a cell hasn’t
yet been finalised. This subsection will go through how to
estimate the probability of every cell inside the map, which
is necessary for defining the cell’s state and is crucial in
working in a dynamic environment [35]. The cell probability
estimate technique used in this study is comparable to the
study presented by [35]. The approach represents cells as
binary variables that could be unoccupied in the absence
of an object and occupied in the present of an object.
Furthermore, a cell’s state is either 0 or 1, with 0 indicating
that the cell is empty (not occupied), and 1 indicating the
opposite when the cell is occupied. This improvement has
enabled DIK-SLAM to cope with dynamic environments
by employing the grid-Map approach, which focuses on cell
state during localisation. The detail factorisation and full
description on how the original MCL is enhance to handle
the status of the cells is presented in one of our previous
research and is publicly available [35].

3.4.8 The 8rd Revision to Enhance DIK-SLAM Ability to
Detect and Recover From Kidnapping

The provided DIK-SLAM method was improved once
more to tackle the problem of a kidnapped robot. The
kidnapping dilemma arises in SLAM whenever the robot
takes an unforeseen movement in its environment while
being unaware of it. This difficulty arises whenever a
sensor stops working properly or when measurement noise
becomes severely high [20]. As a result, a robot could
struggle to measure its location, this violates the hypothesis
of resolving the SLAM issue as pose estimating is essential
for map formation and therefore may give rise to failing
without recovery [31]. The approach which might handle
such a challenge must be capable of achieving these
three aims: pose estimate, detection of kidnapping, and
global localisation [20]. Mostly in research, scan to map
match is a frequent strategy for handling kidnapped robot.
This approach as presented in [13]-[35] uses a matching
algorithm to perform an in-depth check of a present
observation across the reference map (pre-define mapped
environment) to establish the present pose estimation with
respect to the specified referenced map. This strategy,
unfortunately, might not work throughout all instances.
For example, selecting a good match from a reference map
could be difficult if the present observation has transformed
because of dynamic features. Thus, matching will become



unachievable and can result in kidnaping with no chance
of recovery [21]. This is a real-world possibility, which was
considered in the DIK-SLAM architecture. In the DIK-
SLAM, the current observation image and the reference
image will be compared and contrasted at the earlier phase
before beginning the re-localisation process. Whenever
robot kidnapping occurs in a particle-based technique like
MCL, the particle drifts from local samples to global
samples, and thereafter re-localisation, the global samples
will then move back to the local samples [22]-[35]. The
global samples are critical for resolving the issue of recovery
and kidnapping in robot [22]. More so, the probability of
these particles was also taken into account. If the maximal
probability for the particle has a lower value than the
coefficient, the vehicle initiates a kidnapping. This method
was utilised in paper [22] but was applied in DIK-SLAM,
however, it centred around particle weight. The formulation
for kidnapping in DIK-SLAM is shown in (15).

_ 1w <y
Kidnapped robot ; = (15)

0 Otherwise
Where wj®* symbolises the particle’s maximal

probability.

In an event of kidnapping, the scanning to matching
strategy employs the SIFT descriptor to evaluate the
present (current) and reference images to that of an earlier
map that’s going to be utilised during re-localisation. The
approach was recommended by [13], and it was applied in
this study because of its successful outcomes. Furthermore,
the Fourier signatures of the similarities and dissimilarities
measures were added to the DIK-SLAM once more to
account for image similarities measurement, as shown in
(16) and (17) [23].

-1 m-—1
Disim (I, 1) = 3. S |Fiy (k) — Ry (K)] (16)
y=0 k=0
Sim (I;, I;) = 1000 — 1000
Disim (I;, I) — Min; ¢ {Disim (I;, 1)} (17)

Max; ¢ {Disim (I;, I;)} — Min; ¢ {Disim (I;, I;)}

I; symbolises the reference image and I; denotes
the present (current) observation image, while Fj, (k)
symbolises the Fourier coefficients of the k' frequency of
y th row image in the reference image and F (k) denotes
the Fourier coefficients of the k' frequency of y th row
image in the present (current) observation images [35].

The higher the Fourier similarity value, the more
similar the reference and actual (Current) observation
images [23]-[35]. Therefore, based on the matched map for
both reference and actual observation (current) images,
the robot’s pose is being measured to address the
SLAM problem. Furthermore, as the Fourier dissimilarity
value increases, both reference, and actual (current)
observation images become increasingly dissimilar [23].
In this case, the selected matching map isn’t going to
be applied. Alternatively, we offer another strategy that
entails generating a new sample collection from the actual
(current) observation image for the re-localisation process
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since the disparity between both the reference and actual
observation images may not give a satisfying result [35].
The samples collected may be utilised to create a map that
will assist in evaluating an accurate vehicle pose which
would proceed to assist the vehicle in navigating till it
emerges in a predetermined environment (no kidnapping),
during which now the vehicle can use its reference map to
proceed with pose estimation. Thus, this modification has
a constraint that raises the computing complexity.

3.4.4 The 4th Revision to Enhance the DIK-SLAM Ability
to Detect and Close Looping

The DIK-SLAM was improved again for the fourth time to
increase the MCL computation capacity for resolving the
issue loop closure. In SLAM, close looping is a function for
detecting if an independent vehicle is conscious of arriving
at an earlier visited surrounding during exploration [27].
This loop closure function is comparable to kidnapping,
but the robot is conscious of the environment but must
know whenever it is returning to an area previously
visited, and several hypotheses to detect loop closure
exists in the literature [27]-[35]. The appearance-based
approach, which was utilised to tackle kidnapping, was
indeed employed to deal with loop closure. The concept
is once the loop detection is initiated, it implies that
the vehicle has returned to its prior environment [35].
Hence, the current image using the SIFT descriptor will
match a corresponding reference image (created during
prior navigation) inside the database and the loop has to
be closed by utilising the map created from the previously
matched image to extract the vehicle pose to continue
the process of SLAM [27]. Provided that the vehicle has
returned to a previous location, the entire posterior needs
to be calculated and the factorisation in details is presented
in one of our previous study that is publicly accessible [35].

3.5 Navigation Algorithm

The unmanned vehicle is relying solely on pose estimation
and the map created for is environment for navigation
and this was addressed by the SLAM stage. Thus, the
vehicle’s path, which considers the map produced as a
safe path for optimum navigation from the commencement
to completion, is still not addressed [5]-[24]. The
situation is made worse because the robot will not
have a comprehensive map of its actual environments
until it receives updates from subsequent stages [25].
Consequently, anytime additional map information is
acquired, the SLAM technique must review and re-plan
its optimal trajectory route. There have been various
versions of navigation algorithms documented in past
research, which include the famous D* and A* [25]. The
D* approach, on the other hand, has been selected in this
research for its effective heuristic use and ability to deal
with constantly new map information. This D* navigation
algorithm operates on a grid-based method, dividing the
map (observation region) into m x m grid. Additionally,
the D* approach employs the cost function for trajectory
planning by moving through the cell with the lowest cost



Table 1

The Datasets (TUM RGB-D) Description

Environmental sequences

Brief description

Freiburg2_desk_with_person

The environment suffers from the dynamic and environmental noises

Freiburg3_no_structure_no_texture_far

The environment suffers from low object in the environment

Freiburg2_360_kidnap

The environment suffers from kidnaping and looping

Freiburg3_Siitng_static

The environment with static and slow moving object

Freiburg3_long_office_household

The environment is a large office room with visible structure and texture

function after computing the cost function for each cell
[29]. Let X denotes the observation region which is split
into m X m grids and for this study 2x2 was employed,
the cost function f (R, X) for the independent vehicle path
from the present location (R) to the final location (G) is
evaluated based on (18) [25]-[35].

f(R,X) =g(X)+h(R,X) (18)

g (X) indicates the least cost function from X to G and
h (R, X) symbolises the evaluated cost function from R to
X [35].

4. Experiments and Results

This section outlines the assessment approaches used to
evaluate the recommended SLAM technique’s effectiveness.
These assessment techniques are common measuring
strategies used by previous scholars because of their
consistency. These assessment methods were utilised to
compare the findings and reveal the SLAM method with
the best performance.

4.1 Experiment 1: The TUM RGB-D (Public)
Datasets

This subsection assessed the proposed DIK-SLAM
approach based on the dataset known as TUM RGBD,
which was made accessible to the public for use. The
TUM computer vision group originally owned the TUM
RGBD. This dataset is generated from a Microsoft Kinect
RGB-D camera sensor with the ability to estimate ground
truth measurement during capturing and motion [35]. The
colour camera generates a series of 640*480 images at 30
Hz video frames/s. The TUM RGB-D is a large series of
RGB-D datasets with ground truth trajectory estimates
for several RGB-D data sequences [35]. There are several
environmental sequences in this dataset, however, only five
were used for this research and are explained in Table 1.
These environmental datasets were utilised to analyse
and evaluate the reliability of different SLAM methods
and are obtained at https://vision.in.tum.de/data/
datasets/rgbd-dataset [35]. The public dataset is
a widely known dataset, particularly in SLAM that
function on vision sensors, meanwhile this research is
presenting a SLAM technique that relies on camera
sensor, therefore, this dataset is adequate for testing and
was employed for the experiment. In this section, the
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MATLAB simulation was presented for an assessment
among DIK-SLAM, RGB-D SLAM, RTABMAP, and the
MCL algorithm. The RGB-D SLAM and RTABMAP
algorithm result for these datasets is publicly available
and can be found in [28]. Likewise, the original
MCL algorithm is publicly available and can be found
on this site: https://www.mathworks.com/help/nav/
ug/monte-carlo-localization-algorithm.html and in
the study presented by [29]. The SLAM qualitative
trajectory was tested by using the overall time indices
of the translational component as linked to the absolute
trajectory error (ATE in RMSE) [35]. Considering the
frame (sequence) of images in the datasets, the trans  (F})
represents the translation component of the ATE for every
time step (k) and m is the total number of time steps
in the sequence [35]. The mathematical equation for the
trajectory error summation is presented in (19) and the
outcome of the error assessment in RMSE is shown in

Fig. 3.
) (19a)

(19b)

m

> ltrans (£,

k=1

RMSE(F} ; ) = (;

where,
Fi = SP (@)

Fi denotes an ATE for a particular time step (k),
determined by measuring the difference between the real-
life measurement that is error free and the simulated
trajectories measurement.

Given the comparison experiment presented between
the algorithms in Fig. 3. The MCL is characterised by
a blue bar while DIK-SLAM is represented by a red
bar, the RGBD-SLAM is represented by a green bar,
and the RTABMAP is represented by a yellow bar.
In the Freiburg2_desk_with_person which represent the
environment that suffers from a dynamic environment due
to the presence of moving object and environmental noise
due to the present of illumination variation. Thus, the DIK-
SLAM had the best performance with lesser trajectory
ATE (RMSE) while the RGBD-SLAM is the second-best
performance followed by RTABMAP and the traditional
MCL algorithm. This implies that the DIKSLAM is able
to handle dynamic condition and environmental noise
better than other algorithms and this is because of the
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Figure 3. The absolute trajectory error (RMSE) in meters.

filters and the map-grid technique present in the DIK-
SLAM. The traditional MCL algorithm had the worst
performance because it was created to function in a
static environment which also explains why the RMSE of
ATE is very high compared to other algorithms. In the
Freiburg3_no_structure_no_texture_far which represents
the environment with a low object. Thus, the RGBD-
SLAM had the best performance with lesser trajectory
ATE (RMSE) while the RTABMAP is the second-best
performance followed by DIK-SLAM and the traditional
MCL algorithm. This implies that the RGBD-SLAM is
able to cope with low feature environments better than
other algorithms. The DIK-SLAM and MCL algorithm
had the worst result because they are both particle-based
algorithm that relies heavily on the feature quantities,
as the features present in the environment increases, the
better their performance, and in the absence of these
features perform woefully [21]. Moreover, these outcomes
were anticipated because the traditional MCL was revised
to generate DIK-SLAM. Hence, the Freiburg2_360_kidnap
dataset which is used to validate kidnapping and looping
took a different course because the MCL technique and
RTABMAP achieved a minimal ATE (RMSE) in their
respective trajectories than both RGBD-SLAM and DIK-
SLAM. Thus, this observation has led to an inquiry
and thereafter comparing their trajectory to the ground
truth, it was determined that the traditional MCL,
the RTABMAP had been kidnapped earlier and were
unable to recover. Therefore, limited ATE (RMSE) was
estimated for their trajectories until the point they were
kidnapped. Contrary, the DIK-SLAM and RGBD-SLAM,
both algorithms completed the course of their trajectories
and travelled further beyond others and were able to
overcome kidnapping. Such accomplishment in RGBD-
SLAM and DIK-SLAM also makes it possible to continue
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acquiring more ATE (RMSE) in their trajectories, since
they are able to go beyond the point where the RTABMAP
and MCL algorithms encountered kidnapping. Thus, for
this reason, both DIK-SLAM and RGBD-SLAM achieved
greater ATE (RMSE) in their trajectories than the
RTABMAP algorithm and MCL. Also, it was observed that
the margin of the ATE (RMSE) for both DIK-SLAM and
RGBD-SLAM in the Freiburg2_360_kidnap experiment is
the greatest in comparison to other environment scenarios.
This is due to the frequent incidence of kidnapping and
after recovery there is a considerable error arises during
the position estimate and the build-up supports why the
ATE (RMSE) is higher in Freiburg2_360_kidnap dataset
for both algorithms compared to other environment
scenarios. Furthermore, considering that both DIK-
SLAM and RGBD-SLAM completed the course of
their trajectory in Freiburg2_360_kidnap environment,
the DIK-SLAM accomplished a lesser ATE(RMSE) as
related to RGBD-SLAM algorithm. This suggests that
during the kidnapping and looping condition, the DIK-
SLAM performed better than other algorithms. The
Freiburg3_sitting_static represents a static environment
while the Freiburg3_long office_household represents a
large office room with visible structure and texture. In
both datasets, the DIK-SLAM had the best performance
with the lesser trajectory ATE (RMSE) while the
RTABMAP held the second-best performance followed
by RGBD-SLAM and the traditional MCL algorithm.
Furthermore, all the SLAM algorithms attained the
lowest ATE (RMSE) in the Freiburg3_sitting static and
Freiburg3_long_office_household datasets, compared to
other environmental datasets because these datasets
presented limited challenges. The environments offered a
few cases of environmental noises, a few cases of overlapping
sequences to create kidnapping and loop closure, static
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objects with no complex features, such as corners, curves,
etc. Instead, it is a flat surface with the visible known
object. Thus, taking into consideration all datasets, it
can be concluded that the DIK-SLAM outperformed
other SLAM algorithms because it possesses lesser ATE
(RMSE) than other SLAM algorithms except for the case
of Freiburg2_360_kidnap where SLAM algorithms with
lesser ATE (RMSE) than DIK-SLAM and RGBD-SLAM
was because they got kidnapped earlier which resulted
to limited ATE (RMSE) measurement. Likewise, in the
case of Freiburg3_no_structure no_texture_far, where the
dataset contains a few samples to guide the robot trajectory
resulted to limited the performance of DIK-SLAM.

4.1.1 Experiment 1.1: The Relative Pose Error (RPE)
Translational (RMSE)

The datasets offered in Table 1 would be further analysed
for position error based on the RPE. This RPE is a critical
estimation that should be consider since it represents the
drifting of the vehicle path from the real-life (ground truth)
estimations [35]. This is necessary to evaluate the vision
odometry technique. Hence, the RPE measure combines
both translational and rotational error into a single
metric, however, rotational errors are recorded indirectly
by ATE. Since the two measures are so closely linked, the
study’s RPE estimate will be confined to the translational
measurement (error) only. Equation (20) represents the
RPE translational (RMSE) function employed to estimate
the global error of trajectory at the time step & [35].

RMSE (E1.p, V) = (i > |trans (Ej) ||2> (20a)

k=1

where

n=m-—V, (20b)

trans (Fy) denotes the translation elements of the relative
pose error Ej, m denotes a sequence of camera poses, and
n denotes each relative pose error per sequence [35]. The
V signifies a fixed time interval with an intuitive value
set to 1. The deviation for each frame is estimated by
RMSE (FE; . 1) as defined in (21) [35].

RMSE(El; m) = l Z RMSE (El:wu v) (21)
V=1

Thereafter the estimation of RPE for various envi-
ronment scenes on an overall average based on a specific
interval of time, the outcome is provided below (Fig. 4).

Considering the comparative experiment given in
Fig. 4 between the algorithms. The MCL algorithm is
depicted by a blue bar, the DIK-SLAM algorithm by
a red bar, the RGBD-SLAM algorithm by a green
bar, and the RTABMAP algorithm by a yellow bar. In
the Freiburg2_desk_with_person environment, which suffers
from a dynamic environment caused by the existence of
moving items and environmental noise due to the presence
of lighting variation and shadow. Thus, the result obtained
has a similar behaviour to that of the ATE (RMSE)
result presented in Fig. 3 with the DIK-SLAM performed
best in terms of lower RPE (RMSE) in its trajectory.
The RGBD-SLAM has the second-best performance as
related to lower RPE (RMSE) followed by RTABMAP and
the original MCL algorithm. This further support DIK-
SLAM’s potential to adapt to a dynamic situation and
environmental noise better than other algorithms. In the
Freiburg3_no_structure_no_texture_far which represents the
environment with a low object. The result obtained has a
contrary behaviour to that of the ATE (RMSE) presented
in Fig. 3. This time around, the RTABMAP performed
best in terms of lower RPE (RMSE) in its trajectory
while the RGBD-SLAM has the second-best performance
followed. Thus, the DIK-SLAM and MCL algorithm had
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the least performance because they are particle-based
algorithm that relies on object present in the environment
to function perfectly and in the absence of these objects,
their performance deteriorates, their performance is linked
to the object’s quantity present in its surroundings [31]-
[33], [35]. In the Freiburg2_360_kidnap experiment which
is used to validate kidnapping and looping, has a similar
behaviour to that of the ATE (RMSE) result presented in
Fig. 3. The MCL and RTABMAP have the lowest RPE
(RMSE) in their trajectories compared to the DIK-SLAM
and RGBD-SLAM. Further investigation shows that The
MCL and RTABMAP got kidnapped earlier and could
not recover and due to their limited trajectories, they are
able to produce lower RPE (RMSE) up until the point of
kidnapping. However, the DIK-SLAM and RGBD-SLAM
were able to recover from kidnaping and completed the
course of their trajectories and eventually are able to
accumulate more RPE (RMSE) because they cover more
grounds than the MCL and RTABMAP. Furthermore,
comparison to other environment cases, the variance of the
RPE (RMSE) for both DIK-SLAM and RGBD-SLAM in
the Freiburg2_360_kidnap experiment is at its peak. This
is because of regular incidence of kidnapping, and after
recovering from all kidnap incidences, there is a significant
error in its position estimation, and the build-up lead
to a higher RPE (RMSE) in the Freiburg2_360_kidnap
dataset for both techniques compared to other environment
scenes. Given that both the DIK-SLAM and the RGBD-
SLAM algorithms finished their trajectories in the
Freiburg2_360_kidnap scenario, the DIK-SLAM produces
a lesser RPE (RMSE) than the RGBD-SLAM algorithm.
This demonstrates that the DIK-SLAM outperformed
other algorithms during the kidnapping and looping
conditions. The Freiburg3_sitting_static represents a static
environment while the Freiburg3_long office_household
represents a large office room with visible structure and
texture. In both datasets, there is a bit of twist in the
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experimental result when compared to Fig. 3, the DIK-
SLAM maintained the best performance with the lowest
RPE (RMSE), but the RGBD-SLAM now holds the
second-best performance, followed by RTABMAP and the
traditional MCL algorithm. Even though both datasets
are not challenging, the Freiburg3_sitting static dataset
is not 100% static, its environment also contains slowly
moving dynamic object which impacted the translational
error and this explain why all algorithms attained
higher RPE (RMSE) in the Freiburg3_sitting static than
the Freiburg3_long_ office_household. Overall evaluation
consider DIK-SLAM has the best SLAM algorithm because
for most cases of the datasets, it attained lesser RPE
(RMSE) than other SLAM algorithms. However, the case
of Freiburg2_360_kidnap where SLAM algorithms attained
a lesser RPE (RMSE) than DIK-SLAM and RGBD-
SLAM was because they were kidnapped earlier, resulting
in limited RPE measurements. Similarly, in the case of
Freiburg3_no_structure_no_texture_far, where just a few
samples are present in the dataset to guide the robot
trajectory has limited the performance of DIK-SLAM.

4.2 Experiment 2: TUMRGB-D Dataset
Processing Time Evaluation

The research considers computational cost as connected to
processing speed, the MCL, DIK-SLAM, RGBD-SLAM,
and the RTABMAP algorithms were further examined in
this research by recording the time taken for processing
each sequence of the environment. The performance result
is presented in Fig. 5.

Given the outcome amongst the MCL depicted
by a blue bar, the DIK-SLAM algorithm by a red
bar, the RGBD-SLAM algorithm by a green bar,
and the RTABMAP algorithm by a yellow bar as
provided in Fig. 5. The observation is as follows: In
Freiburg2_desk_with_people dataset which represents the



environment that suffers from dynamic and environmental
noises shows that the MCL has the least execution
(process) time, this means the speed of processing in MCL
algorithm is the fastest, compared to other algorithms.
Further investigation to understand why DIK-SLAM,
RGBD-SLAM, and RTABMAP have higher processing
times, reveal that they all are more computationally
intense than the MCL algorithm and this caused
slower processing speed which leads to higher processing
time [21]. The Freiburg3_no_structure_no_texture_far
represents the environment with a low object, the
Freiburg3_sitting static represents a static environment
and the Freiburg3_long_office_household represents a large
office room with visible structure and texture. Their
performance behaviour is similar to that of the result
obtained in the Freiburg2_desk_with_people, where the
MCL-SLAM attained the most impressive processing
speed, followed by the DIK-SLAM, RGBD-SLAM, and
RTABMAP, respectively. Although, the processing time
taken for processing these four datasets defers from each
other. Given the amount of computational intensity and
the processing time difference between DIK-SLAM and
traditional MCL SLAM, the DIK-SLAM performance
is acceptable and has the second lowest processing
time. This accomplishment supports the effectiveness
of the concurrency technique used to speed up the
processing speed. The RGBD-SLAM holds the third best
performance with a shorter processing time compared to
RTABMAP with the worst processing time. Thus, in the
Freiburg2_360_kidnap scenario, the observation behaviour
is contrary to other environmental datasets. The MCL
and RTABMAP algorithm has faster processing speed
with lower processing time than the DIK-SLAM and
RGBD-SLAM. Thus, there is a twist that complicated the
comparison to acknowledge the algorithm with the best
performance. The MCL and RTABMAP algorithm got
kidnapped earlier in their navigation and the processing
time was the only measure to the point of kidnapping
whereas, the DIK-SLAM and RGBD-SLAM completed
the course of their trajectory so they were able to acquire
more processing time because they were able to recover
from kidnapping. However, considering that the DIK-
SLAM and the RGBD-SLAM algorithms finished the
course of their trajectories in the Freiburg2_360_kidnap
scenario and considering the computational complexity
has linked to the execution (process) time. The DIK-
SLAM algorithm achieved a lower processing time than
the RGBD-SLAM algorithm. This implies that the DIK-
SLAM even though we have increased its computational
complexity attained a faster processing speed than
the RGBD-SLAM, this observation is supporting the
effectiveness of the concurrency technique (Rotating
Tilling). Furthermore, in Fig. 5, we also observed that
the level of the processing time for all algorithms in the
Freiburg2_desk_with_people is relatively high compared to
other environmental scenes. The investigation discovered
that the size of the file’s is huge as related to other
environmental scenarios. The data size impacts the
execution time, and because the file size is large, it requires
a longer duration of time to be processed compared to
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other datasets [30]. The Freiburg3_long office_household
dataset size is the second largest and it requires
a longer processing time for all the SLAM algo-
rithm than the Freiburg3 no_structure_no_texture_far,
Freiburg3_sitting_static, and Freiburg2_360_kidnap
dataset.

5. Conclusion and Future Work

SLAM has become incredibly common because of its
potential to support SLAM processes. This is an important
step in overcoming the problem of creating an autonomous
vehicle that can function independently with no human
intervention. Unfortunately, due to the various limitations
affecting SLAM techniques, this achievement has not
been completely realised. Considering the literature
review conducted in this study, factors, such as shadow,
light intensity, kidnapping, loop closure, and dynamic
environment continue to hinder the progress in SLAM
[2], [5], [29], [31]-[33]. The proposed DIK-SLAM has been
enhanced with filters operating concurrently to enable the
SLAM algorithm to deal with the problem of environmental
noise and slow processing speed. The DIK-SLAM approach
was also modified to deal with dynamic environments,
kidnapped vehicles, and looping closure by applying the cell
occupancy technique and initialising localisation technique.
The ATE based on root mean squared error was utilised
to verify the vehicle trajectory, while MATLAB was used
for simulation. The graphical results/findings showed that
the DIK-SLAM on most occasions has better performance
than the SLAM algorithms used in our assessment when
compared with public datasets. Although, the study has
accomplished so much but there are issues that need to
be mentioned, and some of them will be attempted in
our future work. Considering the study’s goal of lowering
computing costs, we were unable to suggest incorporating
the Multi Tracking Object and Detection algorithm into
DIK-SLAM [35]. This will allow us to track dynamic
object moving around the environment unlike the present
technique this is only detecting dynamic environment.
Furthermore, the cell occupancy approach, which is
founded on the idea that cells can adjust independently was
presented in this research since it performs better with low
computation complexity [35]. Thus, the hypothesis may not
function in all scenarios since a group of nearby cells may be
filled with the same item which contradicts the hypothesis,
and in such instances, cells may become dependent on one
another, with an effect that reduces system performance
of the current SLAM system proposed. The most difficult
problem is attaining 100 percent accuracy in trajectory
under any conditions and it’s not being attained at the
present. Hence, there continues to be a demand for more
research in SLAM.
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