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Abstract

To improve the speech synthesis (SS) technology in speech navigation

APP, and to improve its SS quality and synthesis speed, the

study proposed ALBert multi-syllable disambiguation method and

used it in text-phoneme conversion processing. And the study

also constructed a non-autoregressive Chinese SS technique based

on Transformer. The research indicates that ALBert possesses

the optimum disambiguation outcome, with an average accuracy

of 94.2% for its polyphonic character disambiguation, 83.4%

for maximum entropy model (MEM) algorithm, 83.7% for tree-

guided transformation-based learning (TGTBL) algorithm, 84.3%

for pypinyin tool library, and 87.1% for conditional random fields

(CRF). Among the common polysyllabic words, “chao” has the

highest recognition accuracy of 98.5%, and “wei” has the highest

frequency of 11%. The highest performance of the FastSpeech2-GAN

model is achieved at 100 k training steps, with a mean opinion

score (MOS) of 3.94 and a Mel Cepstral distance (MCD) of 2.8911.

The MOS scores and MCD values of the SS models are compared.

The MOS score of FastSpeech2-GAN model is 3.94, and the MCD

value is 2.8911, followed by FastSpeech2 model with MOS score

of 3.88 and MCD value of 2.9168. 0.011, and FastSpeech2 has the

same real-time rate. The studied improved Transformer-based non-

autoregressive Chinese SS technology has made some progress in SS

speed and SS quality.
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1. Introduction

The communication of human civilisation relies on voice
and text. But along with the development of artificial
intelligence technology, voice communication is no longer
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limited to human-to-human, and human–computer voice
communication has been realised in map navigation,
intelligent customer service, and voice assistants [1]. In
these practical applications of human–computer commu-
nication, speech synthesis (SS) technology is commonly
used. Initially, the SS technology is mainly based on the
recurrent neural network. But the synthesis efficiency of
this model is low. At present, more excellent SS models
have appeared with simpler rhyme, such as English, while
Chinese has been lagging behind in the SS as it has
complex rhyme structure [2]. How to improve the efficiency
and accuracy of Chinese SS models is nowadays the main
research direction of scholars. Therefore, the study applies
the synthesis model FastSpeech2 from other languages to
Chinese SS technology, and uses the PostNET structure
in Tacotron2 synthesis model and generative adversarial
networks (GAN) to synthesise the speech of FastSpeech2.
The complete Transformer non-autoregressive Chinese SS
model is optimised, and the model’s effectiveness in the
navigation APP is discussed.

SS technology is being used more and more frequently
in intelligent fields, but the problems of traditional SS
technology still exist. Wang proposed a variational self-
coding model to improve the statistical parametric SS
model to solve the incapability of simulating human
intonation in SS systems leading to emotion deficit. And
the results showed that the model successfully synthesised
synthetic speech with intonation [3]. To solve the commu-
nication problem of people with dysarthria, Celin et al.
proposed a synthesis model based on a linear microphone
array with multi-resolution feature extraction and two-
level data enhancement in the speech with dysarthria.
The results showed that the error rate of this method
was decreased by 32.79%, and its speech intelligibility
was improved by 35.75% relative to the traditional
method [4]. The fundamental frequencies are predicted
frame by frame and cannot represent larger fundamental
frequency contours. To solve these problems in conventional
SS, a syllable-level fundamental frequency model was
proposed by Janyoi and Seresangtakul. And the results
illustrated that the method could completely represent the
fundamental frequency parameter relationships in syllables
[2]. Wakabayashi presented a phase estimation method
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based on harmonic structure for enhancing the speech
perception during speech enhancement. And the results
illustrated that this method could accurately describe the
important parameters of phase estimation [5]. To design
the key components in text-to-phoneme transformation in
Bengali, Ahmad et al. [6] proposed an encoder–decoder-
based sequence to sequence (STS) model, and the results
showed that the model had only 12 errors out of 135,000
training samples.

To classify household activities using sound signals, Lee
and Pang proposed a non-negative matrix decomposition
of the Meier spectrum feature extraction method. And the
results showed that the performance of the method was
very superior, and its F1 score performance was improved
by 6%–12% compared to the traditional feature extraction
method [7]. To enhance the inaccurate expression of rhyme
in Tacotron SS technique, and improve the inaccurate
rhythmic representation in Tacotron SS, Liu et al. proposed
that Tacotron structure was extended by optimising the
Mel frequency spectrum features and phrase breaks. And
the outcomes demonstrated that the scheme improved the
quality of synthesised speech in Mongolian and Chinese
[8]. Pawlowski et al. presented a new method based on
Transformer without deep learning network layers for
addressing the long and tedious training process in Mel
frequency filter bank method. This method showed obvious
advantages of fast learning and solved the limitations of the
traditional deep learning method of sequential computation
[9]. Zhou et al. proposed an STS acoustic model for spliced
SS to measure the dependencies between consecutive units.
And the outcomes indicated that the method was superior
to the HMM model with higher robustness and faster
inference [10].

In summary, there are already excellent SS models in
small languages and simple rhyme systems, but there is no
more perfect SS model that can completely express Chinese
rhyme in Chinese SS. And the Transformer has a wide
range of applications in SS technology, and the Tacotron
method has more applicable scenarios. Therefore, this
study proposed a non-autoregressive Transformer model
based on FastSpeech2, and used it to study the application
of Chinese SS technology in speech navigation APP.

2. Research on the Application of Speech
Intelligent Synthesis Technology in Voice
Navigation

The main content of this chapter is the related research
of speech intelligent synthesis technology, and the research
content will be expanded from two parts. The first part is
the front-end processing research of SS technology based
on rule constraints, and the second part is the application
of transformer in Chinese SS.

2.1 Front-End Processing of Speech Synthesis
Based on Rule Constraints

There are many hard languages in the world, and Chinese
is considered one of them, so it is more difficult to improve
the efficiency and accuracy of Chinese SS. In building

a Chinese SS model, the study proposes to add a text
processor to the front-end text processing of Chinese to
convert Chinese text into phonemes as a way to cut down
the redundancy of the SS model. In this scheme, firstly, the
Chinese text is processed with a word division and lexical
annotation model, secondly, a text regulariser is used to
convert special symbols to facilitate subsequent phoneme
conversion, and finally, a polyphonic disambiguation model
is added to the text conversion to reduce the conversion
errors due to many-to-many Chinese characters and pinyin
and for enhancing the quality of the synthesised speech
[11]. The study selected a disambiguation and lexical
annotation model based on ALBert, which is a stacked
Transformer model, and the Transformer structure can
input all the text into the model at once. The training
efficiency of the traditional deep learning model is much
lower than that of the Bert model and due to the multi-
headed attention mechanism of the Transformer, the Bert
model can be trained with multiple sub-models at the
same time to better detect the correlation and dependency
between each input data. Since the efficiency and precision
of the Bert model fluctuate greatly when the amount of
data is too large, the ALBert model proposes to decrease
the dimensionality of the embedded data by using matrix
operations in the factorisation of the input data. The
fully connected layer of the ALBeert model is shared with
the attention layer using parameter sharing techniques, a
move that improves the dimensionality reduction of the
parameters and increases the ALBert model [12]. Figure 1
demonstrated the structure of the ALBert model.

For enhancing the effect of the ALBert, it replaces the
word mask operation with an n-gram mask operation. The
length of the n-gram mask is chosen randomly, and its
probability distribution is shown in (1).

p (n) =
1/n∑N
k=1

1
k

(1)

In (1), n is the mask parameter and k is the mask
length. In the actual language environment, there are
a large quantity of non-standard words, and the text
regulariser can transform these non-standard words in
the text, into synonymous Chinese characters. The text
regularisation needs to consider a more complex situation.
But at this stage, there is a lack of Chinese text
regularisation dataset, and personally constructed data
has the problem of incomplete data. Therefore, the study
uses rule-based regularisation processing, and its process is
shown in Fig. 2 [13].

In the presence of numbers, the ALBert model will
divide special symbols and numbers into one word and
occupy one label. So this text regularisation processor
mainly targets special symbols and Arabic numbers. After
the regularisation, the front-end text processing also needs
to convert the text to pinyin. If the deep learning method
is used to predict the reading of polyphonic words, it
requires a lot of manual and professional knowledge. So
the Pypinyin tool library is mostly used in the processing
of text to pinyin, and the rule-based constraint-based
disambiguation model for polyphonic words used in the
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Figure 1. Structure diagram of ALBert model.

Figure 2. Processing flow of rule-based text regularisation.

study. In the process, the data to be converted are labelled.
If the corpus embodies a word, they will be converted
directly. If not, the model would traverse each Chinese
character in the word one by one for conversion. In this
process, if it is not a polyphonic word, it will be converted

directly. If it is a polyphonic word, it will be converted
after querying the specified constraints according to the
rules, and its flow is shown in Fig. 3 [14].

Usually, a phonetic action corresponds to a phoneme.
But Chinese Pinyin is divided into rhymes and consonants,
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Figure 3. Flow chart of polyphonic word disambiguation model.

and there are four basic tones and one special tone. There-
fore, to facilitate labelling during phoneme transformation,
the study labels the tones with numbers. The front-end
processing of the study is evaluated by comparing the
accuracy rate (AR) and the character error rate (CER) of
the model. AR is calculated as shown in (2) [15].

AR =
N − S
N

× 100% (2)

In (2), S denotes the total number of typos and N is
the total quantity of words in the text. CER is calculated
as in (3).

CER =
S

N
× 100% (3)

2.2 Chinese Speech Synthesis Model Based on
Transformer

Most of the current Chinese SS models are autoregressive
synthesis models, which need a lot of training before they
can be used in SS. The phoneme modelling of Chinese is
more complex, and the synthesis effect on Chinese datasets
is inferior to that on English and other language datasets
at this stage of SS technology. To solve this problem, the
study proposes a non-autoregressive SS method [16]. The
study first proposes the FastSpeech2-GAN Mel spectrum
generator, and then uses the vocoder to transform Mel
spectrum features into real audio. Since FastSpeech2-GAN
uses the Transformer structure to build the Mel spectrum
generator, the problem of long model training time in
Chinese SS is fundamentally solved. The Transformer SS
structure is a model of self-attentive mechanism, and
the SS technology mainly uses RNN combined with the
model of attention mechanism before the introduction
of this structure. Although this model can stably solve

the timing problem in the synthesis process, it also
makes its own are SS speed is severely constrained, and
cannot efficiently use the parallelism of GPU [17]. In the
timing problem, Transformer SS structure uses multi-head
attention mechanism instead of the RNN structure in the
Tacotron2 model, extending the focus of the fully connected
layer in different positions. So the model can take into
account the efficient utilisation of GPU, and its structure
is shown in Fig. 4.

Although Transformer SS is a new model proposed by
the study, its core is still the Transformer structure. The
attention weights are calculated as shown in (4) [18].Multi Head (Q,K, V ) = Concat (head1, . . . ,headh)W o

headi = Attention
(
QWQ

i ,KW
K
i , V WV

i

) (4)

In (4), Q,K, V denote a set of matrices composed of

query, key, valu in the model,
√
dk is the scaling factor, WQ

i

is the mapping matrix of query, WK
i is the mapping matrix

of key, WV
i is the mapping matrix of valu, and WO is the

mapping matrix after all the attentions are connected. The
model also requires the dot product operation, which is
given in (5).

Attention (Q,K, V ) = soft max

(
QKT

√
dk

)
V (5)

It has been mentioned in the above description that
the study designs a structure in which a multi-headed
attention mechanism is used instead of RNN structure.
Therefore, the model designed by the study cannot obtain
the location information autonomously. To solve this
problem, the study adds positional encodings (PE) to the
input information of the structure, and the calculation of
the location information encoding is usually done using
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Figure 4. Overall framework of Transformer TTS.

several different frequency functions for calculation, and
the calculation equation is given in (6). PE(pos,2i) = sin

(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (6)

In (6), pos serves as the time step index and 2i, 2i+ 1
serve as the channel indexes. Due to the different target
domains, Transformer structure requires architectural
migration. In the migration, Transformer TTS needs to add
triangle location embedding to PE so that the model can
be automatically adjusted to match the output ratio of the
preprocessing network in the encoder, and its processing
equation is shown in (7).

xi = prenet (phonemei) + αPE (i) (7)

In (7), phonemei is the input phoneme of the model
and α is the parameter. Although the Transformer TTS
model takes into account the efficient use of GPU
parallelism, each of its output results depends on the
previous one. Therefore, to achieve the construction of a
non-autoregressive SS model, the study proposes a Meier
spectrum generator based on the Transformer structure,
which uses the FastSpeech2 structure as a framework, as
specified in structure is shown in Fig. 5.

FastSpeed2-GAN uses the addition of Duration
Predictor module and Length Regulator module to solve
the problem that the output result of Transformer TTS
model depends on the previous result. To alleviate the
pressure of one-to-many modelling during the conversion of
text to audio due to the presence of polyphonic characters,
the study adds two Predictor modules to FastSpeed2-GAN
to achieve the prediction of acoustic energy information.
In the construction of the Predictor module, the study
adopts the structure of Duration Predictor, which is used
in the training. This model optimises the parameters by
calculating the mean square error loss of the output data
of the predictor, compared with the actual data. The mean
square error loss in this model is shown in (8).

MSE =
1

m

m∑
i=1

(yi − ŷi)2 (8)

In (8), MSE denotes the mean square error, m serves
as the quantity of data, y is the true Predictor value, and
ŷ is the prediction value of the predictor. In the model
training process, it is also necessary for the model to
count the average absolute error loss of the Mel spectral
features before PostNet processing, Mel spectral features
after PostNet processing and the true Mel spectral features,
and the calculation equation is shown in (9).

MAE =
1

m

m∑
i=1

|yi − ŷi| (9)

In (9), MAE is the mean absolute error. Therefore, the
equation for the total generator loss for this model is given
in (10).

LG = MSE (dGT, d) +MSE (eGT, e) +MSE (fGT, f)

+MAE (melGT,melbefore)

+MAE (melGT,melafter) (10)

In (10), LG denotes the total generator loss, d
is the phoneme duration prediction, e is the sound
energy prediction information, f is the treble prediction
information, dGT is the true phoneme duration, eGT is
the true sound energy information, and fGT is the true
treble information. The generator of FastSpeed2-GAN,
after synthesising the audio signal, needs a discriminator
to judge the truth or falsity of the segment, and the
accuracy of the discriminator on the truth or falsity of the
audio signal is 50%. The discriminator of FastSpeed2-GAN,
which is composed of a simple multi-layer neural network,
is used to enhance the robustness of the GAN training
process. The study uses universal normalisation instead
of layer normalisation in the discriminator of FastSpeed2-
GAN, and the Lipschitz constant of the discriminator is
constraint to limit the local float of the function. The
Lipschitz constraint requires that the function needs to
satisfy (11) in the definition domain.

‖f (x)− f (x′)‖2
‖x− x′‖2

≤M (11)

In (11), ‖·‖2 denotes L2 regularisation, x, x′ are any
values in the domain of function definition, and the smallest
M satisfying the condition is the Lipschitz constant. The
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Figure 5. FastSpeed2-GAN generator structural model.

multi-band MelGAN vocoder used in the study of the
conversion of the Mel spectrum into real audio signals
contains a generator and a judge, and its structure is shown
in Fig. 6.

To accurately determine the authenticity of audio
signals, multi-band MelGAN uses short-time Fourier
transform (STFT) loss as the loss function of the generator.
In the STFT loss, multi-band MelGAN needs to calculate
the convergence loss and amplitude loss of STFT. The
convergence loss LSC is calculated in (12).

LSC (x, s) =
‖|STFT (x)| − |STFT (G (s))|‖F

‖|STFT (x)|‖F
(12)

In (12), x is the real audio, s is the Meier spectrum
feature generated by the generator G, ‖·‖F denotes the
Frobenius paradigm, ‖·‖1 denotes the L1 paradigm, and
|STFT (·)| denotes the STFT function used to calculate the
amplitude. logSTFT amplitude loss function is calculated
in (13).

Lmag (x, s) =
1

N
‖log |STFT (x)| − log |STFT (G (s))|‖1(13)

In (13), N indicates the number of elements in the
repetition. When training the generators individually in
multi-band MelGAN, it is necessary to calculate the
generator loss. Equation (14) indicates the calculation
equation.

L (G) =
1

2

(
Lfull
fmr stft (G) + Lsub

smr stft (G)
)

(14)

In (14), Lfull
fmrstft is the full-band loss of multi-scale

STFT, and Lsub
smrstft is the sub-band loss. In the multi-

band MelGAN model, there are three modules of the
discriminator. The first module extracts the features

directly from the original audio, and the remaining two
modules extract the features in the two-fold and four-fold
down sampling of the original audio, respectively. After the
construction of the model, the study evaluated the effect
of the model by mean opinion score (MOS), which is used
to evaluate the quality and distortion of the synthesised
speech, and the higher the score, the better the quality of
the speech.

µi =
1

Ni

Ni∑
k=1

mi,k (15)

In (15), Ni is the model sample and mi,k indicates the
score of the k generated sample. The final evaluation also
requires the calculation of the 95% confidence interval for
the mean score, which is given in (16).

CIi =

[
µ̂i − 1.96

σ̂i√
Ni

, µ̂i + 1.96
σ̂i√
Ni

]
(16)

In (16), σ̂i is the standard deviation of the collected
MOS scores. Apart from the MOS score, it is also necessary
for the model performance evaluation to consider the SS
speed, and the real time factor (RTF) is a commonly used
metric to measure the SS speed.

3. Analysis of Speech Synthesis Results

The main content of this chapter is to analyse the synthesis
results of the SS model proposed, which will be analysed
from two aspects. The first aspect is to analyse the
transformation results of text-phoneme, and the second
aspect is to analyse the results of SS based on Transformer.
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Figure 6. Structure diagram of multi-band MelGAN model.

3.1 Analysis of the Results of the Text-Phoneme
Transformer Based on Rule Constraints

To verify the superiority of the proposed ALBert
polysyllabic disambiguation algorithm, the study used
Pycharm software to compare the accuracy and error
rates of different methods. ALBert, maximum entropy
model (MEM) polysyllabic disambiguation method, tree-
guided transformation-based learning (TGTBL), pypinyin
tool library, and conditional random fields (CRF)-based
disambiguation and lexical annotation methods were
compared in polyphonic disambiguation, as shown in
Fig. 7.

From Fig. 7(a), it can be seen that the accuracy rate
of ALBert algorithm is more than 90% in the comparison
of the accuracy rates of five kinds of multi-syllable
disambiguation methods, among which the recognition
accuracy rate of the character “zhe” is the lowest,
92.3%. The average accuracy of the ALBert algorithm is
94.2%, while the accuracy of the rest of the algorithms
is lower than 90%, with the highest being 89.8%, and
the average accuracy of the MEM algorithm is 83.4%.
The average accuracy of TGTBL algorithm is 83.7%,
the average accuracy of pypinyin tool library is 84.3%,
and the average accuracy of CRF is 87.1%. It can be
seen that the polyphonic word disambiguation accuracy
of ALBert algorithm is much higher than the remaining
four algorithms, and ALBert algorithm has the best

performance. The transformation results of this algorithm
were observed in the study, and the results are shown in
Fig. 8.

Figure 8(a) shows the accuracy rate of polysyllabic
words, and Fig. 8(b) shows the frequency of common
polysyllabic words. In Fig. 8(a), among all polyphonic
characters, the character with the highest labeling accuracy
is “chao”, with an accuracy rate of 98.5%, followed by
“cang”, with an accuracy rate of 98.0%. In Fig. 8(b), it can
be seen that among the common polysyllabic characters,
“cang” has the lowest frequency of 3%, and when it
appears, 69.4% of the time, its pinyin is “cang”. Among
the common polysyllabic characters, “wei” has the highest
the frequency of “for” is the highest, at 11%, and when it
occurs, the pinyin is “wei” in 63.1% of cases.

3.2 Analysis of Transformer-Based Speech
Synthesis Results

For testing the potency of the non-autoregressive model
presented in the study, the study compared the synthetic
effects of Tacotron2, FastSpeech2, and FastSpeech2-GAN
on the Baker dataset, and Table 1 illustrates the results.

In Table 1, it can be seen that, except for natural
speech, the non-autoregressive FastSpeech2-GAN model
proposed in the study has the highest MOS score of 3.94
and the autoregressive Tacotron2 model has the lowest
MOS score of 3.88. The FastSpeech2-GAN model has the
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Figure 7. Performance comparison of polyphonic word disambiguation method: (a) comparison of accuracy of polyphonic
word disambiguation methods and (b) comparison of error rates in polyphonic word disambiguation methods.

Figure 8. ALBert polyphonic word disambiguation effect.

lowest MCD value of 2.8911 and the Tacotron2 model has
the highest MCD value of 2.9934. The FDSD and cFDSD
values of the Tacotron2 model are 0.0512 and 0.0178,
respectively, which are much higher than the remaining
two models. For testing the effect of discriminator on the
SS effect in FastSpeech2-GAN model, the study compared
the MOS score, Mel Cepstral distance (MCD), mean FDSD
of deep speech distance of two audio samples and depth of
two audio samples for the synthesised speech at different

number of steps with the addition of discriminator speech
distance variance cFDSD. The results are shown in Fig. 9.

Figure 9(a) shows the MOS score and MCD values of
the model, where the MOS score is taken as the mean
value. Figure 8(b) shows the FDSD and cFDSD values of
the model. In Fig. 8(a), it can be seen that the highest
MOS score of the model is 3.94 and the lowest MCD value
is 2.8911 when the discriminator is added at step 100 k.
And the lowest MOS score of the model is 3.88 and the
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Table 1
Synthesis Effect of Tacotron2, FastSpeed2, and FastSpeed2-GAN

MOS MCD FDSD cFDSD

Natural speech 4.43 ± 0.06 / / /

Tacotron2 3.80 ± 0.08 2.9934 0.0512 0.0178

FastSpeech2 3.88 ± 0.09 2.9168 0.0156 0.0019

FastSpeech2-GAN 3.94 ± 0.08 2.8911 0.0158 0.0015

Figure 9. FastSpeed2-GAN synthesis effect when asynchronous number is added to discriminator: (a) MOS score and MCD
values under different training steps and (b) FDSD and cFDSD values under different training steps.

Figure 10. Mnin-MB-iSTFT-VITS model.

highest MCD value is 2.9056 when the discriminator is
added at step 50 k. The higher the MOS score of the
model and the lower the MCD value, the better the model
synthesis. From Fig. 8(b), there is almost no effect on the
FDSD value and cFDSD value of the model at which step
the discriminator is added, and the difference is within
0.0002. Therefore, the model with the discriminator added
at the 100 kth step is used in the study. The function of
the SS model needs to consider not only the SS treatment
but also the SS speed. Figure 10 shows the MOS score and
the SS speed of the FastSpeech2-GAN SS model compared
with the Vits model.

In Fig. 10, it can be seen that among all models,
the Mnin-MB-iSTFT-VITS model has the highest MOS
score of 3.98, followed by the FastSpeech2-GAN model
with the highest MOS score of 3.94, which is 0.04 lower
than the Mnin-MB-iSTFT-VITS model, and the rest of

the models have MOS scores of 3.90 or below. The models
with the lowest real-time rate are FastSpeech2-GAN and
FastSpeech2, both with a real-time rate of 0.011. The next
lowest real-time rate is Mnin-MB-iSTFT-VITS with a real-
time rate of 0.028. The Tacotron2 model has a real-time
rate of 0.084, which is much higher than the FastSpeech2
GAN. The FastSpeech2-GAN model constructed in the
study is stronger than the rest of the models in terms
of comprehensive performance of SS effect and SS speed.
This study also compares the loss function curves of
Transformer autoregressive SS model and Transformer-
based non-autoregressive SS model, as shown in Fig. 11.

In Fig. 11(a), it can be seen that the loss functions
of both models are slowing down during the training.
The Transformer non-autoregressive model has a slower
decline of the model loss function than the Transformer
autoregressive model during the training period. This
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Figure 11. (a) Change curve of loss function and (b) change curve of fitness function.

model slows down the decline of the loss function because
the SS method proposed in the study changes the modelling
of the temporal sequence. As the training increases, the
loss functions of two models are gradually aligned. In
Fig. 11(b), it can be seen that the Transformer non-
autoregressive model has a lower adaptation and better
training results.

4. Conclusion

To design Chinese SS model with better synthesis effect
and faster synthesis speed, the study proposes ALBert
polyphonic word disambiguation algorithm, which is used
for phoneme transformation of text. And the study
proposes Transformer-based Chinese SS model, which uses
FastSpeech2-GAN algorithm to complete the output of
synthesised speech. The model indicates that ALBert has
the best disambiguation outcome, with an average accuracy
of 5.8% for its polyphonic character disambiguation, 16.6%
for MEM algorithm, 16.3% for TGTBL algorithm, 15.7%
for pypinyin tool library, and 12.9% for CRF. Among
the common polysyllabic words, “chao” has the highest
conversion accuracy of 98.5% and its frequency is 5%, while
“wei” has the highest frequency of 11% and its accuracy is
95%. The FastSpeech2-GAN model has the worst synthesis
effect when the training is 50 k, the best synthesis effect
when the training is 100 k, the lowest MOS score and
the highest MCD value are 3.88 and 2.9056 at 50 k steps,
respectively, and the MOS score and MCD value are 3.94
and 2.8911 at 100 k steps, respectively. The proposed
FastSpeech2-GAN algorithm has the highest MOS score of
3.94, while its MCD value is the lowest at 2.8911. Among
the remaining synthesis algorithms, the highest MOS score
is the FastSpeech2 model with the highest score of 3.88.
The FastSpeech2-GAN model has the best synthesis with
its MOS score of 3.94 and its time rate of 0.01. The
research successfully designs and built Transformer-based

Chinese SS model, and makes it possible to apply it in
speech navigation APP, but its SS quality still needs to be
improved.
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