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Abstract

Metaheuristic algorithms play a pivotal role in addressing the

challenges of robot path planning, offering versatile, and efficient

solutions. Nevertheless, the standard wild horse optimiser (WHO)

has limitations, including limited population diversity during

initialisation, constrained global search capability, and challenges in

escaping local optima. This paper proposed an improved WHO with

hybrid strategies (HI-WHO) to overcome these disadvantages in

solving robot path planning problem. The algorithm employs Sobol

sequence for uniform population initialisation, integrating the Lévy

flight strategy, and dynamic adaptive factor to balance exploration

and exploitation. Concurrently, it ensures global search capability

and prevents local optima by using the lens imaging opposition-

based learning strategy and greedy mechanism. The robustness and

effectiveness of the enhanced algorithm were evaluated on a set of

20 benchmark functions. Finally, the improved algorithm, combined

with the cubic B-Spline interpolation method, addresses robot path

planning in grid map environments, demonstrating its exceptional

stability and optimal performance.
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1. Introduction

Recently, rapid advances in robot technology have led to a
significant increase in the demand for autonomous robots.
Path planning, a crucial element of autonomous systems,
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has drawn considerable interest from researchers [1]. It aims
to find the most efficient trajectory from an initial position
to a specified destination within a given environment. This
trajectory should minimise both travel time and distance
while guaranteeing collision avoidance with obstacles and
adherence to defined constraints [2]–[4].

Path planning is a challenging NP-hard problem. The
methods can be categorised into two types: classical and
metaheuristic [5]. Classical algorithms, such as gradient
descent (GD), cell decomposition (CD), and artificial
potential field (APF) often suffer from problems like getting
stuck to a local optimum, slow convergence speed, and
low solution quality, significantly affecting the accuracy
and efficiency. It is worth noting that these methods
often rely on having comprehensive prior knowledge of
the environment to establish a viable path between the
starting and destination points. Therefore, researchers
have proposed various metaheuristic algorithms, such as
particle swarm optimisation (PSO) [6], artificial bee colony
(ABC) [7], Harris Hawks optimisation (HHO) [8], and
sparrow search algorithm (SSA) [9], which have been
applied to solve robot path planning problems. These
approaches excel at navigating unknown or partially
known environments by iteratively generating temporary
paths, advancing step by step toward the destination,
and selecting the best path based on fitness. Additionally,
metaheuristic algorithms offer advantages, such as few
adjustable parameters, no gradient mechanisms, strong
parallelism, and ease of interpretation and understanding.

The wild horse optimiser (WHO) is a newly devel-
oped metaheuristic algorithm demonstrating remarkable
performance in solving complex optimisation problems
[10]. Nonetheless, WHO still exhibits limitations, including
insufficient population diversity during initialisation,
limited global search capabilities, challenges in escaping
local optima in later stage, and difficulties in effectively
leveraging individual information to achieve better results
[11]. This paper proposes a novel robot path planning algo-
rithm based on the improved WHO with hybrid strategies
(HI-WHO), intending to overcome the limitations of the
standard WHO and further enhance its performance and
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applicability. The effectiveness of the improved algorithm
is verified through experiments conducted in simple and
complex grid map environments. Hence, the contributions
of this research can be summarised as follows:

• The proposed HI-WHO integrates hybrid strategies,
leading to superior global search capability, faster
convergence, improved accuracy, and the ability to
escape local optima.

• Developing a mathematical model for robot path
planning and employing HI-WHO with cubic B-Spline
curves to generate optimised and smooth path.

• Broaden the practical utility of WHO by showcasing its
effectiveness in solving robot path planning problem.
The remaining sections are organised as follows:

Section 2 focuses on modelling robot path planning
problem and introduces the principles of cubic B-
Spline curve-based path smoothing. Section 3 presents
an overview of the standard WHO. Section 4 describes
the implementation of the enhanced WHO with hybrid
strategies. In Section 5, the improved algorithm is
evaluated using 20 different types of benchmark functions.
Section 6 presents the results and discussions of HI-WHO
applied in robot path planning. Finally, Section 7 concludes
the study and suggests future directions for research.

2. Problem Statement of Mobile Robot Path
Planning

This section provides an overview of the robot path
planning problem. It begins by exploring the grid map
environment modelling process. Next, it delves into
establishing the objective function that quantitatively
evaluates the optimal path. Finally, it introduces path
smoothing techniques to enhance the smoothness and
continuity of the trajectory.

2.1 Grid Map Environment Modelling

This study utilises HI-WHO to address the global path
planning problem within a two-dimensional environment
featuring finite static obstacles, which has applications in
practical scenarios like unmanned workshops, intelligent
warehouses, and specialised environments [12], [13].
Standard modelling methods, including octree, grid,
topology, and accessible space, are traditionally employed
[14]. Among them, the grid method is a widely
accepted and straightforward approach, which simplifies
the environment model while delivering satisfactory results.
Thus, this study adopts the grid-based approach, as
depicted in Fig. 1.

In Fig. 1, the black regions indicate obstacles, while
the white regions represent the navigable area. The robot
can move in eight neighbouring directions from its central
position. The objective is to navigate from the starting
point indicated by the circle to the destination represented
by the star. The environment map, denoted as G, can be
represented by an N × N binary matrix, where 0 denotes
the navigable region, and 1 denotes the static obstacle [15].
Additionally, each grid in the map is sequentially numbered
as {1, 2 . . . , N × N}. The centre coordinates (x, y) of any

Figure 1. Grid map model.

grid n can be calculated using (1) and (2).

x =

 n%N − 0.5, n%N 6= 0

N − 0.5, n%N = 0
(1)

y =

N − 0.5−
⌊
n
N

⌋
, n%N 6= 0

N + 0.5−
⌊
n
N

⌋
, n%N = 0

(2)

In which % denotes the modulo operation, and bc
represents the floor function.

2.2 Establishment of Objective Function

The objective function aims to determine the optimal
solution by evaluating the fitness value. When conducting
path planning in a two-dimensional grid map, the following
conditions must be met:

• The path must be confined within the boundaries of the
map, ensuring that the path does not extend beyond
the map edges.

• The length of the planned path should be minimised,
aiming to achieve an optimal path for the robot.

• The path should avoid traversing through areas
occupied by obstacles, preventing collisions during the
robot’s movement.
Under the given constraints, the robot aims to

plan an optimal collision-free path from the starting
point S (xs, ys) to the target point E (xe, ye) within the
predefined grid map. The intermediate points can be
denoted as Pi ∈{(xi, yi)}, i = 1, . . . , n. Therefore, the
generated path can be represented as a sequence comprising
the starting, target, and intermediate path points, i.e.,
{S, P 1, P 2, . . . , Pn, E}. Finally, the path can be obtained
by sequentially connecting these points.

Based on the analysis, robot path planning can be
formulated as a single-objective optimisation problem,
aiming to minimise the fitness value. Considering the
constraints mentioned above, the objective function is
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Figure 2. Three kinds of invalid path points: (a) (xi, yi) ∈ obstacle; (b) xi+1 <xi ‖ yi+1 <yi; and (c) xi<xmin ‖ xi>xmax ‖ yi
< ymin ‖ yi > ymax.

expressed by (3).

Minimize F =

n∑
i=1

Di +O(Pi)×M. (3)

Subject to

xmin ≤ xi ≤ xmax

ymin ≤ yi ≤ ymax

where Di represents the path length at the i -th iteration,
calculated using Euclidean distance, as (4). O(Pi) denotes
the penalty value for point Pi. If the point intersects with
an obstacle, exhibits a reversal, or exceeds the boundaries,
it is considered an invalid path point, as depicted in Fig. 2.
In such cases, the penalty value is N ×N. Otherwise, it is
set to 0. The specific definition is given by (5). M represents
the number of invalid points.

Di =
√

(xi+1 − xi)2 + (yi+1 − yi)2 (4)

O(Pi) =

 0, Pi ∈ allowedp

N ×N, otherwise
(5)

2.3 Path Smoothing

Path smoothing is crucial in optimising the suitability of
the generated path. This step focuses on eliminating sharp
curves and applying cubic B-Spline curve interpolation to
refine the path.

First, the slope between a point Pi and its adjacent
points Pi−1 and Pi+1 is computed. If the path between
these points is not horizontal or vertical, it indicates the
presence of a turning point that requires smoothing. Next,
the coordinates of the adjacent points to the turning point
are calculated, and their existence in the grid-based map
G is checked for obstacles. The turning point is considered
redundant and can be removed if no obstacles are found.
This process is repeated until all redundant turning points
in the path are eliminated.

Finally, the processed path is smoothed using B-
Spline curves, which possess advantages, such as geometric
invariance, convex hull property, convexity preservation,
and local support [16], [17]. The smoothing effect of using
cubic B-spline curve is illustrated in Fig. 3.

Figure 3. Smoothing effect of using cubic B-spline curve.

3. Standard Wild Horse Optimiser

The WHO is an innovative optimisation algorithm
that emulates the life behaviour of a wild horse herd
in non-territorial regions [10]. The possesses distinct
characteristics across five aspects.

3.1 Population Initialisation and Group Formation

WHO initialises the population by generating random
individuals within the search space. Then, the initial
population is divided into several groups using (6), and
the leaders NStallion is determined by the number of
stallion groups, denoted as G. The remaining horse groups,
including mares and foals, are evenly distributed with
NFoal= N – G, where N denotes the population size.

G = dN × PSe (6)

where PS represents the percentage of stallion groups
partitioned from the initial population.

3.2 Grazing Behaviour

The foals spend most of their time grazing around the
group. The algorithm simulates this behaviour using (7),
where the position of the stallion is considered as the
centre of the grazing area, and the other members (mares
and foals) graze around the centre. They move and search
around the leader within different radii.

X
j

i,G = 2Z cos(2πRZ)× (Xj
Stallion −X

j
i,G) +Xj

Stallion (7)

where Xj
Stallion represents the position of the stallion

(leader), Xj
i,G represents the current position of the group

member (mare or foal), Z is an adaptive parameter
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calculated using (8), and R is a uniform random number
ranging from -2 to 2. The individuals can move within

different radii by using the cos function. X
j

i,G denotes the
updated position after the grazing behaviour.

P =
−→
R 1 < TDR

IDX = (P == 0)

Z = R2ΘIDX +
−→
R 3Θ(∼ IDX)

(8)

where P is a vector containing zeros and ones,
−→
R 1and

−→
R 3

are the random vectors with uniform distribution, and the
values range from 0 to 1. R2 is a uniform random number
ranging from 0 to 1, IDX represents the index of elements

in
−→
R 1 that satisfy (P == 0), and TDR is an adaptive

parameter. As the number of iterations increases, the value
of TDR decreases from 1 to 0, which is calculated as:

TDR = 1− t

Tmax
(9)

where t represents the current iteration number, and Tmax

is the maximum number of iterations.

3.3 Mating Behaviour

Upon reaching maturity, male and female foals from
distinct groups can mate and produce offspring. These
offspring must depart from their current group and join a
different one. Equation (10) shows the mating behaviour
using the mean crossover operator.

Xo
G,k = Crossover(Xp

G,i, X
q
G,j);

i 6= j 6= k, o = p = end;

Crossover = Mean.

(10)

where Xo
G,k represents the position of individual o in group

k. It leaves group k and is replaced by offspring generated
through mating between individuals p in group i (Xp

G,i)

and q in group j (Xq
G,j).

3.4 Group Leadership

Group leaders lead their groups toward more suitable
locations (watering hole). If the current group occupies a
dominant position, they continue to use the area. However,
if another group occupies the area, the leader needs to
guide the current group away from that area. This process
is expressed in (11) and (12).

X
i

Stallion = 2Z cos(2πRZ)× (WH −Xi
Stallion)

+WH,R5 > 0.5 (11)

X
i

Stallion = Z cos(2πRZ)× (WH −Xi
Stallion)

−WH,R5 ≤ 0.5 (12)

where X
i

Stallion represents the next leader position in group
i, WH denotes the position of the most suitable area,
Xi

Stallion represents the current leader position in group i,
R is a random number between -2 and 2, and π equals 3.14.

3.5 Leader Exchange and Selection

The leaders are randomly selected at the initial phase and
updated based on the fitness values during the iterations.
The leader’s position is updated according to (13).

Xi
Stallion =

X
i

Stallion, cost(X
i

Stallion) < cost(Xi
Stallion)

Xi
Stallion, cost(X

i

Stallion) > cost(Xi
Stallion)

(13)

4. Improved Wild Horse Optimiser with Hybrid
Strategies (HI-WHO)

This chapter introduces the improved WHO with hybrid
strategies (HI-WHO). It covers the use of the Sobol
sequence for population initialisation, incorporates the
Lévy flight strategy for individual position updates, and
integrates a nonlinear dynamic self-adaptive factor along
with the lens imaging opposition-based learning strategy
to enhance capabilities. The chapter also offers insights
into the implementation and flowchart of HI-WHO.

4.1 Sobol Sequence to Initialise Populations

The initial population’s distribution significantly impacts
the efficiency and accuracy of metaheuristic algorithms.
A balanced distribution enhances search efficiency. Unlike
the standard WHO’s random approach, this paper employs
low-discrepancy sequences, specifically the Sobol sequence,
for initialising the population. This choice ensures an
orderly distribution of the foal population around the
leader horse, offering advantages, such as uniformity,
efficient computation, and a broader sampling range [18],
as shown in (14).

Xn = LB + Sn · (UB − LB) (14)

where n is an integer ranging from 1 to N, [LB, UB]
represents the range of the solution, Sn is a Sobol
sequence ranging from 0 to 1, and Xn represents the initial
population generated using the Sobol sequence.

Suppose the population size is 100, and the lower
and upper bounds are 0 and 1, respectively. Figure 4
compares the distribution of the initial population using
pseudorandom numbers and the Sobol sequence. It can be
observed that the population initialised using the Sobol
sequence exhibits a more uniform distribution and covers a
broader range compared to the population initialised using
pseudorandom numbers. This step establishes a robust
foundation for the global search algorithm.

4.2 Lévy Flight Strategy for Individual Position
Update

The WHO’s individual movement, involving foals and
mares, centres on updating their positions primarily
influenced by the group leader (stallion). In the standard
WHO, the position update method for individuals
with lower fitness values is limited, potentially causing
stagnation. To address this, the Lévy flight strategy is
introduced, inspired by the Cuckoo search (CS) algorithm
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Figure 4. Different distributions of the initial population: (a) pseudorandom and (b) Sobol sequence.

Figure 5. The trajectory of Lévy flight with 1,000 steps.

[19]. This strategy enhances population diversity, broadens
the search scope, and facilitates escaping local optima.

The Lévy flight pattern is selected for its capacity to
create random searches following the Lévy distribution.
This distribution exhibits a walking pattern that combines
shorter walks with higher probability and longer walks with
lower probability. Integrating Lévy flight into the position
update process prevents stagnation and being trapped in
local optima by introducing randomness and exploration
around the updated position. Figure 5 shows the trajectory
of Lévy flight in a two-dimensional space, illustrating its
ability to inject randomness into the search process and
enhance effective exploration.

If a random value R4 is below the mating probability
threshold PC, the position update follows the mating
behaviour method, as depicted in (10). Conversely, when
R4 exceeds PC, individuals undergo position updates using
the Lévy flight strategy, as outlined in (15).

X
j

i,G = α(Xj
Stallion −Xa

j
i,G)⊕ Levy(δ)

+Xj
Stallion, R4 > PC (15)

where α is the step size adjustment coefficient with a value
of 0.01,⊕ denotes element-wise multiplication, and Lévy(δ)
represents a path that follows the Lévy distribution. The
Lévy distribution is defined as:

Levy(δ) =
µ

|υ| 1δ
(16)

where µ and ν follow normal distribution as described in
(17) and (18):

µ ∼ N(0, σ2
µ), υ ∼ N(0, σ2

v) (17)

σµ =

[
Γ(1 + δ) sin(δπ/2)

Γ((1 + δ)/2)δ2(δ−1)

]1/δ
, σv = 1 (18)

where Γ represents the gamma function, and δ is a value
ranging from 0 to 2. In this paper, we choose the value of
δ = 1.5.

4.3 Nonlinear Dynamic Self-Adaptive Factor

Equation (9) uses a linear factor to regulate variable Z
in WHO, which is crucial for balancing between global
exploration and local exploitation. This study introduces
a dynamic nonlinear adaptive factor in (19), which adjusts
its magnitude as iterations increase. Initially, it is set to a
larger value, facilitating rapid descent for efficient global
exploration. With progressing iterations, the adaptive
factor gradually decreases, improving the algorithm’s
capacity for local search. The modification involves defining
TDR as a nonlinear function of the current iteration
number (t) at each time step. In the initial stage, TDR
approaches a value close to 1, and as t approaches Tmax, it
approaches a value close to 0. Between 0 and Tmax, TDR
nonlinearly decreases with the increasing value of t.

TDR =

[
1 + cos

(
π

2
· t

Tmax
+
π

2

)]dnw
(19)

where dnw denotes the dynamic nonlinear adjustment
factor.

Figure 6 illustrates the relationship between dnw and
TDR, showcasing how TDR changes with dnw ranging
from 0.2 to 3.4. Notably, dnw significantly influences the
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Figure 6. TDR curves with different dnw values.

TDR curve, resulting in distinct nonlinear patterns. Larger
dnw values produce a more concave curve, enabling an
initial rapid decline in TDR, indicating improved global
search capability and efficiency. Subsequent iterations
make the TDR curve smoother, facilitating finer local
search, and enhanced precision. Through extensive testing,
a dnw value of 2.0 is found to strike a favourable balance
between global exploration and local exploitation in the
algorithm.

4.4 Lens Imaging Opposition-Based Learning
Strategy

Initially, the WHO disperses individual horses across the
search space, demonstrating robust global exploration.
However, as indicated by (11) and (12) with each
iteration, these individuals gradually converge towards the
optimal position under the influence of the group leader.
Consequently, the population gathers in a smaller region,
reducing its diversity. If the group leader aligns with a local
optimum during this process, there is a risk of premature
convergence and stagnation. This paper introduces the
lens imaging opposition-based learning strategy [20], which
expands the search space by generating the reverse solution
of the current one, identifying better candidate solutions
for the given problem. The specific process is as follows.

Suppose an individual P exists in the range [LB,
UB] with a height of h, and its projection is denoted
as X (representing the global optimal individual). Next,
a convex lens with a focal length of f is placed at the
base point O (the midpoint of LB and UB). After being
refracted by the convex lens, the individual P generates
an image P ′ with a height of h′, and its projection is
denoted as X ′. This image P ′ represents the opposite
individual obtained through the lens imaging opposition-
based learning strategy from the global optimal individual
X, as shown in Fig. 7. The relationship between X and
its corresponding reverse individual X ′ can be obtained
through the principle of convex lens imaging as (20).

(LB + UB)/2−X
X ′ − (LB + UB)/2

=
h

h′
(20)

Figure 7. Illustration of lens imaging opposition-based
learning strategy.

where λ = h/h′ is the scaling factor between the heights
P and P ′. The reverse individual X ′ can be obtained as
follows.

X ′ =
LB + UB

2
+
LB + UB

2 · λ
− X

λ
(21)

This study adopts a dynamic nonlinear scaling factor,
as shown in (22), which adjusts λ to obtain dynamically
updated candidate solutions.

λ = λmin + (λmax − λmin) ·
(

1− t

Tmax

)2

(22)

where λmin and λmax represent the minimum and
maximum scaling factors, respectively. If the search space
is extended to high dimensions, the following equation can
be obtained:

X ′i,j =
LBj + UBj

2
+
LBj + UBj

2 · λ
− Xi,j

λ
(23)

where Xi,j represents the position of individual i on
dimension j, X ′i,j represents the reverse solution, and LBj
and UBj represent the lower and upper bounds of the
decision variable on dimension j.

Although applying the lens imaging opposition-based
learning strategy can expand the search range and improve
the ability to escape local optima, it is difficult to determine
whether the generated opposite individuals are better than
the current best. Therefore, this paper uses a greedy
mechanism to further select the better individual based on
the fitness value. This process can be represented by (24).

Xnew(t) =

X, cost(X) < cost(X ′)

X ′, cost(X) ≥ cost(X ′)
(24)

4.5 Implementation and Flowchart of the
HI-WHO

The flowchart of HI-WHO is presented in Fig. 8. It
takes population size, search space dimension, range,
and maximum iterations as input and starts with the
creation of foal groups using the Sobol sequence. Then,
it proceeds with fitness calculation for each horse and
iteratively updates the positions of stallions and foals
using a combination of strategies, including Lévy flight
and mean crossover. The algorithm prioritises finding the
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Figure 8. Flowchart of the HI-WHO.

best positions and exchanges positions between foals and
stallions as needed. Finally, the algorithm updates and
outputs the global optimal solution.

5. Benchmark Function Testing and Result
Analysis

This section assesses the performance of HI-WHO with
various benchmark functions. We start by introducing the
benchmark functions and experimental parameters. Then,

the core of the chapter focuses on analysing the results
and comparing performance, accuracy, convergence, and
stability with different algorithms.

5.1 Benchmark Functions

This paper selected 15 classic benchmark functions from
[21]–[23] and 5 CEC2022 benchmark functions from [24]
to assess the effectiveness of HI-WHO in addressing
global optimisation problems. Functions F1 − F5 belong
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Table 1
Unimodal Benchmark Functions

No. Function name Expression Dimension Range Optima

F1 Sphere f1(x) =
∑n
i=1 x

2
i 30/50/100 [−100,100] 0

F2 Schwefel 2.22 f2(x) =
∑n
i=1 |xi|+

∏n
i=1 |xi| 30/50/100 [−10,10] 0

F3 Rosenbrock f3(x) =
∑n−1
i=1 [100(xi+1 − x2i )2 + (xi − 1)2] 30/50/100 [−30,30] 0

F4 Step f4(x) =
∑n
i=1 (|xi + 0.5|)2 30/50/100 [−100,100] 0

F5 Quartic f5(x) =
∑n
i=1 ix

4
i + random(0, 1) 30/50/100 [−1.28,1.28] 0

Table 2
Multimodal Benchmark Functions

No. Function name Expression Dimension Range Optima

F6 Schwefel 2.26 f6(x) = −
∑n
i=1[xi sin(

√
| xi |)] 30/50/100 [−500,500] 0

F7 Rastrigin f7(x) =
n∑
i=1[x2i − 10 cos(2πxi) + 10] 30/50/100 [−5.12, 5.12] 0

F8 Ackley
f8(x) = −20 exp(−0.2

√
1
n

n∑
i=1x

2
i )

− exp[ 1n

n∑
i=1 cos(2πxi)] + 20 + e

30/50/100 [−32,32] 0

F9 Griewank f9(x) = 1
4000

∑n
i=1 x

2
i −

∏n
1 cos( xi√

i
) + 1 30/50/100 [−600,600] 0

F10 Penalized 1.1

f10(x) = π
n{10 sin2(πyi)

+
n−1∑
i=1 (yi − 1)

2 [
1 + 10 sin2(πyi+1)

]
+(yn − 1)2}+

n∑
i=1u (xi, 10, 100, 4)

yi = 1 + 1
4 (xi + 1)

u(xi, a, k,m) =


k(xi − a)m, xi > a

0,−a ≤ xi ≤ a

k(−xi − a)m, xi < −a

30/50/100 [−50,50] 0

to the unimodal functions, which enable the assessment
of exploitation capacity and convergence speed. Functions
F6 − F10 represent the multimodal functions, which are
utilised to evaluate the global exploration ability. Functions
F11−F15 are fixed-dimension multipeak functions, allowing
for the assessment of stability and the ability to explore
in low dimensions. The selected 5 CEC2022 benchmark
functions include a unimodal function (F16), two basic
functions (F17 − F18), a hybrid function (F19), and a
composite function (F20). The function names, expressions,
dimensions, search ranges, and optimal values are provided
in Tables 1–4.

5.2 Experimental Parameter Settings

Comparative tests were conducted using six algorithms:
the standard WHO [10], the improved WHO (IWHO) [11],
the Lévy flight-based improved WHO (IWHOLF) [25], the
improved particle swarm optimisation (IPSO) algorithm
[26], and the improved sparrow search algorithm (ISSA)
[9]. Functions F1–F10 were evaluated across dimensions 30,
50, and 100, and for the CEC2022 test suites, a dimension

of 10 was used. These algorithms ran independently on the
same machine, employing an Intel(R) Core (TM) i7-8550U
CPU @1.8GHz, and 32GB of RAM. MATLAB R2020a was
the software utilized. The population size N = 50, and
the maximum number of iterations Tmax = 1,000. Specific
parameters for each algorithm aligned with those defined
in the original literature, as summarized in Table 5.

5.3 Analysis of Results and Comparison of
Algorithm Performance

5.3.1 Analysis of Optimisation Accuracy

Tables 6 and 7 present the minimum (Min), average
(Mean), and the standard deviation (Std) of the results
obtained from running each algorithm 50 times. The
optimal values for each item are bolded for clarity.

The results in Tables 6 and 7 reveal that HI-
WHO performs better than other algorithms in handling
unimodal and multimodal problems. Specifically, it
achieves optimal values in the unimodal functions F1 and
F2, as well as the multimodal functions F7 and F9. Except
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Table 3
Fixed-dimension Multipeak Benchmark Functions

No. Function name Expression Dimension Range Optima

F11 Foxholes f11(x) =
[

1
500 +

∑25
j=1

1
j+

∑2
i=1 (xi−aij)6

)
]−1

2 [−65.536, 65.536] 1

F12 Kowalik f12(x) =
∑11
i=1[ai − x1(b

2
i+bix2)

b2i+bix3+x4
]2 4 [−5,5] 0.0003

F13 Branin
f13(x) =

(
x2 − 5.1

4π2x
2
1 + 5

πx1 − 6
)2

+10
(
1− 1

8π

)
cosx1 + 10

2 [−5,10], [0,15] 0.3983

F14 Goldstein price

f14(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21

−14x2 + 6x1x2 + 3x22)]

×[30 + (2x1 − 3x2)2(18− 32x1 + 12x21

+48x2 − 36x1x2 + 27x22)]

2 [−2,2] 3

F15 Shekel10 f15(x) = −
∑10
i=1

[
(X − ai)(X − ai)T + ci

]−1
4 [0,10] −10.5363

Table 4
CEC2022 Benchmark Functions

No. Function name Class Range Optima

F16 Shifted and full rotated Zakharov function Unimodal [−100,100] 300

F17 Shifted and full rotated expanded Scaffer’s F6 function Multimodal [−100,100] 600

F18 Shifted and full rotated non-continuous Rastrigin’s function Multimodal [−100,100] 800

F19 Hybrid function 3 (N = 5) Hybrid [−100,100] 2200

F20 Composite function 4 (N = 6) Composite [−100,100] 2700

Table 5
Parameter Settings

Algorithm Parameters

WHO PC = 0.13, PS = 0.2

IWHO PC = 0.13, PS = 0.2, PRR = 0.1, ω ∈
[0.01, 0.99]

IWHOLF PC = 0.13, PS = 0.2

HI-WHO PC = 0.13, PS = 0.2, dnw = 2.0

IPSO c1 = c2 = 2, w = 1.2

ISSA ST = 0.8, P D = 0.3, SD = 0.2

for a few cases in F3, F6, and F10, HI-WHO demonstrates
significantly superior accuracy and stability across different
dimensions. Moreover, HI-WHO outperforms the standard
WHO regarding the minimum value, average value, and
standard deviation from 50 independent runs. These
findings underscore the significant enhancements and
effectiveness of the proposed algorithm, indicating that by
refining the initial population, HI-WHO benefits from a
more extensive search space. Incorporating the Lévy flight
strategy amplifies local exploitation capabilities, boosting
global optimisation performance. Additionally, integrating

the lens imaging opposition-based learning strategy
further fortifies the algorithm’s capacity to escape local
optima.

Table 8 provides a comparative analysis of the
performance on fixed-dimensional multimodal functions,
which evaluate the capability in balancing exploration
and exploitation. The data in the table reveals that all
these algorithms approach the optimal values for functions
F11 to F15. However, HI-WHO consistently outperforms
the other algorithms. Notably, for function F14, HI-WHO
attains the optimal value for the minimum and average
values. This outcome underscores the effective equilibrium
the proposed algorithm achieves by introducing dynamic
nonlinear adaptive factor, enhancing its global and local
search performance.

Table 9 illustrates the results of the six algorithms
tackling five intricate global optimisation problems sourced
from the CEC2022 test suites. These functions have
undergone shifts and rotations, complicating the search
for their global optimal values. Solving these functions in
lower dimensions effectively evaluates the performance of
metaheuristic algorithms [27]. An analysis of the results
reveals that, except for function F19, where HI-WHO ranks
second in standard deviation (Std), surpassed only by the
IWHOLF algorithm, HI-WHO consistently delivers the
top results across the remaining test cases. The proposed
algorithm excels in addressing complex global optimisation
problems.
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Table 6
Comparison of Optimization Results on Uni-modal and Multimodal Benchmark Test Functions (F1 − F10)

Function D HI-WHO WHO

Min Mean Std Min Mean Std

F1 30 0.000E+00 0.000E+00 0.000E+00 2.242E-141 1.251E-128 6.422E-128

50 0.000E+00 0.000E+00 0.000E+00 4.221E-128 2.645E-112 1.867E-111

100 0.000E+00 0.000E+00 0.000E+00 7.171E-123 1.280E-107 7.738E-107

F2 30 0.000E+00 0.000E+00 0.000E+00 2.138E-77 1.520E-70 4.817E-70

50 0.000E+00 0.000E+00 0.000E+00 6.849E-71 6.084E-64 2.264E-63

100 0.000E+00 0.000E+00 0.000E+00 4.293E-68 8.324E-61 4.982E-60

F3 30 9.711E-12 1.827E-06 5.057E-06 2.300E+01 2.414E+01 3.676E-01

50 6.410E-10 2.771E-05 6.676E-05 4.392E+01 4.480E+01 3.548E-01

100 7.507E-10 8.227E-05 2.279E-04 9.430E+01 9.562E+01 7.276E-01

F4 30 1.154E-21 1.123E-17 2.504E-17 3.073E-18 3.709E-14 1.370E-13

50 8.483E-17 8.523E-12 2.373E-11 5.764E-08 2.233E-05 5.495E-05

100 8.072E-13 1.445E-07 8.878E-07 5.121E-02 5.126E-01 3.145E-01

F5 30 9.051E-07 3.118E-05 2.960E-05 2.144E-05 3.604E-04 2.439E-04

50 3.359E-07 3.133E-05 3.636E-05 4.168E-05 2.889E-04 1.898E-04

100 1.400E-07 3.339E-05 3.566E-05 4.118E-05 3.964E-04 2.668E-04

F6 30 −1.257E+04 −1.200E+04 8.956E+02 −1.069E+04 −9.293E+03 5.500E+02

50 −2.095E+04 −1.958E+04 1.905E+03 −1.583E+04 −1.420E+04 7.340E+02

100 −4.190E+04 −3.923E+04 3.742E+03 −2.840E+04 −2.485E+04 1.159E+03

F7 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

50 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

100 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F8 30 8.882E--16 8.882E-16 0.000E+00 8.882E-16 2.522E-15 1.789E-15

50 8.882E-16 8.882E-16 0.000E+00 8.882E-16 2.665E-15 1.794E-15

100 8.882E-16 8.882E-16 0.000E+00 8.882E-16 3.091E-15 1.742E-15

F9 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

50 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

100 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F10 30 3.139E-22 2.048E-18 8.992E-18 3.497E-20 3.940E-16 1.421E-15

50 3.609E-17 3.879E-13 7.469E-13 1.564E-10 5.083E-03 1.703E-02

100 2.684E-16 1.362E-10 2.904E-10 1.606E-04 6.100E-03 8.900E-03
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Table 6
Continued

Function D IWHO IWHOLF

Min Mean Std Min Mean Std

F1 30 5.071E-14 5.442E-04 2.618E-03 1.303E-188 8.671E-170 0.000E+00

50 1.358E-15 1.905E-03 5.570E-03 3.046E-187 9.630E-170 0.000E+00

100 3.057E-11 8.104E-03 5.230E-02 7.502E-184 1.103E-165 0.000E+00

F2 30 6.198E-08 4.246E-03 1.260E-02 2.840E-119 2.826E-108 1.458E-107

50 3.818E-07 1.196E-02 4.103E-02 2.843E-118 9.234E-109 5.723E-108

100 7.532E-08 1.279E-02 3.747E-02 9.675E-118 2.763E-106 1.371E-105

F3 30 5.089E-02 2.420E+01 1.002E+01 2.591E+01 2.658E+01 2.891E-01

50 1.196E-01 4.321E+01 1.514E+01 4.647E+01 4.692E+01 3.807E-01

100 4.008E-01 8.427E+01 3.340E+01 9.651E+01 9.719E+01 3.593E-01

F4 30 7.267E-03 1.551E+00 1.261E+00 1.274E-03 8.619E-03 3.318E-02

50 8.461E-03 3.716E+00 2.738E+00 1.777E-02 5.597E-02 4.788E-02

100 1.285E-01 6.526E+00 5.987E+00 2.152E-01 5.535E-01 2.032E-01

F5 30 4.911E-04 4.184E-03 4.255E-03 1.590E-05 1.019E-03 1.022E-03

50 6.996E-05 6.749E-03 6.542E-03 1.231E-05 9.384E-04 1.309E-03

100 2.352E-05 5.698E-03 6.459E-03 2.303E-05 1.106E-03 1.394E-03

F6 30 −1.254E+04 −1.047E+04 1.654E+03 −1.257E+04 −1.164E+04 1.369E+03

50 −2.095E+04 −1.780E+04 2.408E+03 −2.095E+04 −1.996E+04 1.747E+03

100 −4.186E+04 −3.456E+04 5.886E+03 −4.190E+04 −3.943E+04 3.621E+03

F7 30 0.000E+00 1.608E-04 4.199E-04 0.000E+00 0.000E+00 0.000E+00

50 0.000E+00 5.588E-03 2.721E-02 0.000E+00 0.000E+00 0.000E+00

100 0.000E+00 1.537E-02 9.557E-02 0.000E+00 1.364E-14 5.455E-14

F8 30 2.789E-10 3.315E-03 1.455E-02 8.882E-16 4.512E-15 2.091E-15

50 1.143E-09 3.490E-03 8.306E-03 8.882E-16 4.228E-15 2.425E-15

100 1.433E-09 7.676E-03 2.000E-02 8.882E-16 4.299E-15 2.584E-15

F9 30 9.992E-16 1.077E-02 7.116E-02 0.000E+00 1.848E-03 9.154E-03

50 1.221E-14 1.814E-03 7.979E-03 0.000E+00 1.063E-03 7.513E-03

100 0.000E+00 2.404E-02 1.623E-01 0.000E+00 4.623E-03 2.302E-02

F10 30 1.273E-04 5.451E-02 9.813E-02 1.514E-04 1.870E-03 3.795E-03

50 1.029E-04 6.212E-02 8.759E-02 7.320E-04 2.666E-03 2.552E-03

100 1.941E-04 9.144E-02 1.572E-01 1.708E-03 6.738E-03 9.501E-03
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Table 7
Comparison of Optimization Results on Uni-modal and Multimodal Benchmark Test Functions (F1 − F10)

Function D IPSO ISSA

Min Mean Std Min Mean Std

F1 30 4.422E-26 6.000E-02 2.399E-01 0.000E+00 2.341E-176 0.000E+00

50 1.182E-09 5.801E-01 6.728E-01 0.000E+00 5.307E-171 0.000E+00

100 1.119E+00 4.340E+00 1.616E+00 0.000E+00 2.790E-164 0.000E+00

F2 30 1.857E-10 8.002E-01 8.329E-01 0.000E+00 6.157E-90 3.538E-89

50 1.940E-02 2.983E+00 1.460E+00 0.000E+00 8.266E-89 4.918E-88

100 6.934E+00 1.098E+01 2.555E+00 0.000E+00 2.904E-87 1.943E-86

F3 30 0.000E+00 7.294E+01 6.052E+01 1.530E-06 4.030E+00 1.006E+01

50 4.000E+00 2.153E+02 1.106E+02 2.881E-05 1.068E+01 2.029E+01

100 3.963E+02 6.809E+02 1.511E+02 9.196E-05 7.883E+00 2.684E+01

F4 30 2.500E-01 1.830E+00 6.897E-01 1.130E-08 3.530E-06 4.220E-06

50 2.000E+00 4.770E+00 1.444E+00 2.049E-07 1.019E-05 1.440E-05

100 8.751E+00 1.442E+01 2.738E+00 1.399E-07 3.758E-05 6.725E-05

F5 30 2.684E-02 8.306E-01 1.136E+00 1.018E-05 3.231E-04 2.693E-04

50 3.330E-01 6.966E+00 6.791E+00 2.072E-05 3.315E-04 3.014E-04

100 1.503E+01 9.108E+01 4.320E+01 5.624E-06 3.655E-04 4.008E-04

F6 30 −2.524E+01 −2.343E+01 1.515E+00 −1.013E+04 −8.402E+03 6.018E+02

50 −4.207E+01 −3.578E+01 2.999E+00 −1.498E+04 −1.325E+04 8.747E+02

100 −7.405E+01 −5.874E+01 6.141E+00 −2.963E+04 −2.534E+04 1.349E+03

F7 30 2.600E+01 2.790E+01 7.357E-01 0.000E+00 0.000E+00 0.000E+00

50 4.599E+01 4.806E+01 8.184E-01 0.000E+00 0.000E+00 0.000E+00

100 9.600E+01 9.800E+01 9.252E-01 0.000E+00 0.000E+00 0.000E+00

F8 30 1.377E+00 2.055E+00 2.983E-01 8.882E-16 8.882E-16 0.000E+00

50 1.857E+00 2.434E+00 2.129E-01 8.882E-16 8.882E-16 0.000E+00

100 2.237E+00 2.545E+00 1.441E-01 8.882E-16 8.882E-16 0.000E+00

F9 30 0.000E+00 2.585E-02 2.496E-02 0.000E+00 0.000E+00 0.000E+00

50 1.272E-02 6.454E-02 2.863E-02 0.000E+00 0.000E+00 0.000E+00

100 7.949E-02 1.356E-01 3.130E-02 0.000E+00 0.000E+00 0.000E+00

F10 30 1.571E-32 3.194E-02 2.813E-02 1.366E-08 3.141E-06 1.032E-05

50 1.571E-02 7.477E-02 3.003E-02 1.058E-08 2.284E-06 4.881E-06

100 9.425E-02 1.660E-01 5.522E-02 2.187E-09 1.249E-03 6.158E-03

5.3.2 Analysis of Convergence Accuracy and Algorithm
Stability

For a more intuitive assessment of the performance, Fig. 9
depicts the convergence curves of the six algorithms while
tackling the complex benchmark functions F1 to F10 in D
= 100 dimension and the fixed-dimensional functions F11

to F15.

The observed convergence curves in Fig. 9 indicate
the superior performance of HI-WHO over the other algo-
rithms. It exhibits faster convergence, reduced instances

of local optima entrapment, and enhanced optimisation
accuracy and capability. For high-dimensional unimodal
and multimodal problems (F3, F6, F7, F8, and F9), HI-
WHO consistently achieves convergence to the optimal
value with the fewest iterations and showcases superior
optimisation ability. Additionally, in the case of solving
problems (F1, F2, F4, F5, F8, and F10), HI-WHO
consistently delivers higher optimisation accuracy. When
dealing with fixed-dimensional multimodal problems,
HI-WHO, and other algorithms closely approach the
theoretical optimum. However, HI-WHO distinguishes
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Table 8
Comparison of Optimization Results on Fixed-dimensional Benchmark Test Functions (F11 − F15)

Function D HI-WHO WHO

Min Mean Std Min Mean Std

F11 2 9.980E-01 9.980E-01 3.351E-10 9.980E-01 1.236E+00 7.872E-01

F12 4 3.075E-04 3.075E-04 1.298E-17 3.075E-04 1.435E-03 3.924E-03

F13 2 3.979E-01 3.979E-01 3.365E-16 3.979E-01 3.979E-01 1.286-06

F14 2 3.000E+00 3.000E+00 1.651E-15 3.000E+00 3.000E+00 3.591E-05

F15 4 −1.054E+01 −1.043E+01 7.648E-01 −1.054E+01 −9.137E+00 2.848E+00

Function D IWHO IWHOLF

Min Mean Std Min Mean Std

F11 2 9.980E-01 3.923E+00 3.589E+00 9.980E-01 1.511E+00 1.510E+00

F12 4 3.323E-04 1.192E-03 1.694E-03 3.077E-04 5.845E-04 2.837E-04

F13 2 3.979E-01 3.979E-01 6.395E-08 3.979E-01 3.979E-01 2.075E-07

F14 2 3.000E+00 3.000E+00 3.579E-15 3.000E+00 3.000E+00 2.243E-15

F15 4 −1.054E+01 −8.807E+00 2.953E+00 −1.054E+01 −8.833E+00 2.963E+00

Function D IPSO ISSA

Min Mean Std Min Mean Std

F11 2 1.267E+01 1.267E+01 1.197E-13 9.980E-01 3.571E+00 4.644E+00

F12 4 3.075E-04 5.605E-04 9.328E-04 1.674E-03 1.675E-03 4.161E-07

F13 2 2.770E+01 2.770E+01 3.589E-14 3.979E-01 5.051E-01 1.928E-01

F14 2 3.000E+00 3.000E+00 2.832E-06 3.000E+00 3.000E+00 5.344E-12

F15 4 −5.129E+00 −5.129E+00 2.692E-15 −1.054E+01 −9.021E+00 2.452E+00

itself by demonstrating the highest level of stability in these
scenarios, rapidly converging to the theoretical optimum
values in optimising functions F11 to F15.

Figure 10 illustrates the dynamic changes in explo-
ration and exploitation percentages of HI-WHO during
the CEC2022 benchmark functions optimisation process.
The enhancement strategies can be effectively evaluated
by conducting dimensional diversity tests and quantifying
exploration and exploitation percentages at each iteration
[28], [29]. The figures show that HI-WHO successfully
bolsters its global exploration and local exploitation capa-
bilities by optimising the initial population distribution
and integrating dynamic nonlinear adaptive factor.

6. Application of HI-WHO in Robot Path Planning

This section conducts simulation experiments in simple
and complex grid map environments to validate the
HI-WHO’s feasibility and effectiveness for robot path
planning. The comparative analysis includes the improved
PSO algorithm [27], ISSA [9], the standard WHO, and
the enhanced HI-WHO. Under consistent conditions, all
algorithms had a population size (N ) of 30 and a maximum

of 200 iterations (Tmax). The parameter settings for the
comparative algorithms are presented in Table 5.

6.1 Robot Path Planning in Simple Environment

The experiment in the simple environment is conducted
on a grid map with its size limited in 30 × 30. The robot
starts from the circular at coordinate (0.5,0.5) and moves
towards the target point represented by the pentagram at
coordinate (29.5,29.5). After 30 repeated experiments, the
paths are compared in Fig. 11 (a), and the corresponding
fitness curves are shown in Fig. 11 (b). The worst, best,
average value, standard deviation, and turn times are
summarised, as presented in Table 10.

From Figs. 11(a) and (b), it can be observed that
all algorithms avoid obstacles and complete the path
planning from the start point to the target point. The
improved PSO algorithm converges to a fitness value of
43.24 after 49 iterations, the ISSA converges to a fitness
value of 43.70 after 20 iterations, the standard WHO
converges to a fitness value of 42.08 after 49 iterations,
and the improved HI-WHO converges to a fitness value
of 41.65 after 39 iterations. The fitness value reflects path
length since no planned paths intersect with obstacles,
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Figure 9. Convergence curves of six algorithms on benchmark test functions F1 to F15.
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Table 9
Comparison of Optimization Results on CEC2022 Benchmark Test Functions (F16 - F20, D=10)

Function HI-WHO WHO

Min Mean Std Min Mean Std

F16 3.000E+02 3.000E+02 1.087E-13 3.000E+02 3.006E+02 1.145E+02

F17 6.000E+02 6.003E+02 1.449E+00 6.174E+02 6.158E+02 4.735E+00

F18 8.040E+02 8.108E+02 4.516E+00 8.300E+02 8.445E+02 6.871E+00

F19 2.200E+03 2.216E+03 8.798E+00 2.234E+03 2.313E+03 6.479E+01

F20 2.859E+03 2.865E+03 2.603E+00 2.903E+03 2.904E+03 6.606E-01

Function IWHO IWHOLF

Min Mean Std Min Mean Std

F16 3.000E+02 3.004E+02 1.279E-04 3.000E+02 3.021E+02 2.042E-10

F17 6.144E+02 6.152E+02 1.187E+01 6.102E+02 6.117E+02 1.216E+01

F18 8.167E+02 8.407E+02 1.181E+01 8.091E+02 8.351E+02 1.459E+01

F19 2.224E+03 2.239E+03 2.356E+01 2.216E+03 2.230E+03 5.211E+00

F20 2.869E+03 2.897E+03 2.919E+01 2.864E+03 2.884E+03 2.395E+01

Function IPSO ISSA

Min Mean Std Min Mean Std

F16 3.065E+02 3.067E+02 4.624E-12 3.000E+02 3.071E+02 2.042E+03

F17 6.187E+02 6.193E+02 1.963E+01 6.186E+02 6.142E+02 1.420E+01

F18 8.956E+02 8.956E+02 1.345E+01 8.314E+02 8.562E+02 1.500E+01

F19 2.576E+03 2.576E+03 2.280E+01 2.226E+03 2.237E+03 1.529E+01

F20 2.919E+03 2.920E+03 3.567E+00 2.879E+03 2.962E+03 5.707E+01

Figure 10. Exploration and exploitation of HI-WHO on CEC2022 benchmark test functions.
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Figure 11. Optimal paths and convergence curves of improved PSO, ISSA, WHO, and HI-WHO.

Table 10
Experimental Results in Simple Environment

Algorithm Worst Best Average Std Turn times

Improved PSO 46.87 43.24 45.62 0.46 10

ISSA 48.17 43.70 47.49 0.62 9

WHO 44.26 42.08 43.74 0.28 10

HI-WHO 42.14 41.65 41.36 0.12 8

Figure 12. Effect of path smoothing using B-spline curve.

as per (3). Consequently, in a comparative analysis of
the path planning results, HI-WHO achieves the optimal
path length. Compared to the standard WHO, HI-WHO
generates a shorter path, thereby reducing the number of
iterations by 20%.

From the results in Table 10, it can be observed
that in the 30 repeated path planning experiments,
HI-WHO has the lowest average path length and the
most minor standard deviation. The paths generated by
HI-WHO exhibit less variation between each planning
iteration, indicating higher stability than other algorithms.

Table 11
Experimental Results in Realistically Abstracted Grid

Map Environment

Algorithm Worst Best Average Std Turn times

Improved PSO 80.72 76.32 78.76 0.69 10

ISSA 78.23 75.40 77.12 0.73 10

WHO 76.14 74.71 75.68 0.48 11

HI-WHO 72.54 72.01 72.27 0.16 8

Figure 13. Floor plan of a real building structure.

Figure 12 illustrates the effect of applying B-spline curve
smoothing the path generated by HI-WHO. The obtained
path exhibits smoother changes in the turning angles,
effectively avoiding sharp turns or jittering, thereby
improving the efficiency and stability of the robot’s
movements.
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Figure 14. Optimal paths generated by improved PSO, ISSA, WHO, and HI-WHO.

Figure 15. Effect of path smoothing using B-spline curve.

6.2 Robot Path Planning in Realistically
Abstracted Grid Map Environment

We carried out path planning experiments on a natural
building floor structure employing a grid-based environ-
ment representation, as depicted in Fig. 13, to further
validate the practicality and efficacy of the enhanced HI-
WHO in addressing real-world path planning challenges.
The results are shown in Figs. 14(a) and (b). Similarly, four
algorithms were independently tested for 30 trials. The
worst, best, average value, standard deviation, and number
of turns for each algorithm are presented in Table 11.

Figures 14(a) and (b) reveal that HI-WHO attains
the most favourable results among the four algorithms.
Specifically, the improved PSO algorithm converges to the
optimal value of 76.32 after 100 iterations, ISSA reaches
75.40 in 87 iterations, the standard WHO achieves 74.71
in 58 iterations, and the improved HI-WHO converges to
72.01 after only 46 iterations. Compared to the standard
WHO, HI-WHO reduces the number of iterations by 14%.
Furthermore, the path generated by HI-WHO exhibits

smaller turning angles and better performance than the
other three methods.

The results in Table 11 demonstrate that HI-WHO
outperforms the other three algorithms regarding the
path length and turn times, which indicates that the
improved algorithm has the best stability. The effectiveness
of HI-WHO can be further illustrated by the smoothed
path obtained through the cubic B-spline curve, as
shown in Fig. 15. In summary, the enhanced HI-WHO
consistently achieves the shortest path and outperforms
other algorithms, meeting the demands of global path
planning for mobile robots in complex environments.

7. Conclusion and Future Works

This work introduces an enhanced WHO (HI-WHO) with
hybrid strategies, aiming to augment the standard WHO
and extend its applicability in robot path planning. The
proposed algorithm addresses limitations by incorporating
Sobol sequences for population initialisation, integrating
Lévy flight, dynamic self-adaptive factor, and lens imaging
opposition-based learning. These modifications enhance
population diversity and balance global exploration and
local exploitation. Simulated experiments indicate that
HI-WHO achieves faster convergence, with iterations
decreasing by 20% and 14% in the respective environ-
ments, demonstrating superior performance by producing
smooth paths via cubic B-spline curves that fulfil the
requirements of global path planning and robot motion
control.

Nevertheless, HI-WHO does exhibit limitations, such
as encountering local optima when dealing with specific
functions in unimodal and multimodal problems (e.g., F3,
F6, and F10). Additionally, it requires improvements for
solving CEC2022 benchmark suites. Our future efforts will
aim to refine HI-WHO’s performance, with a particular
focus on bolstering stability and adaptability in tackling
challenges, including multi-robot path planning, dynamic
obstacles, and other complex real-world scenarios.
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