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ABSTRACT 
This paper presents a complete solution for the 
computation of the GMR of stranded conductors of 
circular cross-section, taking the frequency dependence 
(skin effect) into account. The stranded conductors can 
consist of several zones; the radius, resistivity and 
permeability of the strands can be different for each zone. 
Results for the GMR of various conductor configurations 
computed with this method are presented as a function of 
frequency. The computation results are in good agreement 
with published data.  
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1.  Introduction 
 
The Geometric Mean Radius (GMR) of a conductor is the 
radius of the equivalent hollow conductor with zero 
thickness, thus producing no internal flux, having the 
same self inductance as the conductor. This concept is 
especially useful in the computation of the internal 
reactance of composite or stranded conductors. 
 
Several publications discuss the computation of the GMR 
of stranded conductors (and its frequency dependence) for 
the case where all the strands in the conductors are 
identical [1~3]. In this paper, a complete solution for the 
accurate computation of the GMR of a stranded conductor 
with circular cross-section is developed. The conductor 
can consist of several concentric tubular zones, each 
containing one or more concentric layers of identical 
strands. The radius, resistivity and permeability of the 
strands can be different for each zone. 
 
The effect of the non-uniform current distribution inside 
the conductor, due to both the material and the frequency, 
is accounted for.  
 
 
2. GMR of a Multizone Stranded Conductor 
 
Figure 1 shows a cross-section of a “multizone” stranded 
conductor. The specific conductor shown in the figure has 

three zones. Zone 1 and 2 both have two layers of strands, 
while Zone 3 has a single layer. The innermost zone is 
usually referred to as the core. Generally, the core need 
not contain any strands, i.e. it may be empty or be 
occupied by a dielectric medium.  
 

 
 

Figure 1: Stranded conductor with 3 tubular zones 
  

Zone i is characterized by the following parameters: 
• Outer radius ai of the zone. 
• Number of layers in the zone. 
• Radius ri of the strands in the zone. 
• Resistivity ρi of the strands in the zone. 
• Relative permeability µi of the strands in the 

zone. 
 
2.1 Strand Patterns 
 
In order to obtain compact conductors, the strands are 
normally organized according to certain patterns. These 
are distinguished by the number of strands located in the 
first layer: either 1, 3 or 4. For each pattern, the total 
number of strands in the core can only be one of a specific 
set of numbers: 
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Pattern 1: 1, 7, 19, 37, 61, ... 
Pattern 2: 3, 12, 27, 48, ... 
Pattern 3: 4, 14, 30, 52, ... 
 
Table 1 shows the total number of strands in the core and 
the number of strands in the outer layer of the core for 
each pattern. In the table, N is the number of layers in the 
core. 

 
   Table 1. Strand arrangements in different patterns 
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For layers that are outside the core, the number of strands 
Ni in the layer is related to the strand radius by: 
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where r1 is the strand radius and Rin is the inner radius of 
the layer. 
  
2.2 GMR of a Single Strand and a Single Layer 
 
The formula for computing the GMR r’ of a single strand 
is [4]: 
 

4/' rerr µ−⋅=                                      (1)         
 
where  is the radius of the strand and µr r is the relative 
permeability of the strand. This formula is valid when the 
current density is uniform over the cross-section of the 
conductor. This condition is satisfied for DC currents. It is 
also approximately satisfied for alternating currents, as 
long as the strand radius is sufficiently small. For 
example, a 1 cm aluminum strand has a GMR of 7.776 
mm for DC, and 7.857 mm at 60 Hz. The difference is 
about 1 %. In practice, the radius of the strands in a 
stranded conductor is usually much smaller than 1 cm; as 
a result, the error incurred by using equation (1) to 
calculate the GMR of individual strands is considerably 
smaller than 1%. In this paper, this equation is used to 
compute the GMR of individual strands for all 
frequencies.  However, a more accurate expression can be 
used for very high frequencies, if necessary. 
 
The GMR rb of a single layer of n strands equally spaced 
along the circumference of a circle is given by [4]:   
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where rq is the radius of the circle.  
 
2.3 Total GMR of Conductor 
 
The total GMR of the conductor is obtained by combining 
the GMR of all the layers, accounting for the fraction of 
current flowing in each layer. This can be done 
recursively, starting from the innermost layer. The GMR 
of the innermost layer is given by equation (2), or 
equation (1) if the layer consists of a single strand. The 
combined GMR of all the strands up to and including 
layer i is given by [2]: 
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where GMRi is the resultant GMR, GMRi-1 is the total 
GMR inside layer i (excluding layer i) and  is 
the GMD between the strands inside layer i (excluding 
layer i) and those in layer i.  
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The factors α and β appearing in the exponents in 
equation (3) account for the fraction of current flowing in 
layer i: 
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where Ii is the sum of the current in layers 1 to i, i.e. 
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with  being the distance of the center of layer j to the 
center of the conductor, and k

jR
j being the number of the  

zone containing layer j. 
 
3. Current Density Distribution Inside the 
     Conductor 
 
Equation (3) requires the knowledge of the current 
flowing in each strand. This current is given by the 
product of the current density and the cross-sectional area 
of the strand. When the frequency is zero and the 
properties of the material are uniform, the current density 
is also uniform inside the conductor and the factors α and 
β in equation (3) become simple ratios of cross-sectional 
areas. However, when this assumption is not satisfied, the 
current density is not uniform, and must be calculated in a 
more detailed way. This section describes the technique 
used to estimate the current flowing in each strand for this 
case.  
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When the strands inside the conductor are in good 
contact, each zone can be approximated by a uniform 
tubular layer with the same material characteristics as the 
strands in the zone. The idea is then to compute the 
current distribution in this multilayer tubular conductor, 
and use the resulting current density as an estimate of the 
current flowing in each strand. 
 
Note that this approach tends to underestimate somewhat 
the absolute value of the current density in the strands for 
a given injection current; however, the ratio of the current 
densities in different strands (which is all that is needed in 
equation (3)), is quite insensitive to this approximation. 
 
Since the current distribution inside a concentric 
multilayer conductor is of interest in its own right, the 
derivation will be presented in some detail. 
 
3.1 Current Density Equations and Boundary 
         Conditions  
 
For a very long conductor, the only non-zero component 
of the current density vector inside the conductor is 
parallel to the axis of the conductor, here taken to be the Z 
axis of a cylindrical coordinate system. By symmetry, the 
current density inside the conductor is a function of the 
radial distance r only. In each zone, the current must 
satisfy Helmoltz equation: 
 

022 =−∇ ziizi JkJ  
 
where )/1( iiii jjk ωερωµ += , ω is the angular 
frequency and, as before, µi is the permeability, ρi the 
resistivity and εi the permittivity of the material in zone i.  
 
The solution of this equation takes the following general 
form: 
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where Ai and Bi are unknown coefficients, with  in 
order for the solution to remain finite at r = 0. In this 
expression, I

01 ≡B

0 and K0 are the zeroth order modified Bessel 
functions. 
 
The field components resulting from this current are: 
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The continuity of the tangential components of the 
electric and magnetic fields at the interfaces between the 
zones implies the following boundary conditions: 
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Along with Ampere’s law applied at the outer radius of 
the conductor, i.e. 
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where I is the total current injected in the conductor, this 
leads to the following system of equations:  
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Solving this system of equations for the coefficients [A1, 
A2, B2, …, An, Bn] and inserting them into (4) yields the 
desired current density distribution.  
 
3.2 Example: Current Density Distribution of a 

Conductor with Four Zones 
 
As an example of the use of the method described in the 
previous section, Figure 2 shows the computed current 
density distribution for a 4-zone conductor. The radii of 
the zones are a1 = 0.01 m, a2 = 0.02 m, a3 = 0.03 m and a4 
= 0.04 m; the relative resistivities (with respect to the 
resistivity of copper:  Ω-m) are: ρ-8101.724 × 1 = 1, ρ2 = 2, 
ρ3 = 3 and ρ4 = 4; the relative permeabilities with respect 
to air are:  µr1 = µr2 = µr3 = µr4 = 1. The total injected 
current is 100 A. The current density distribution is 
computed at four frequencies: 0.01 Hz, 60 Hz, 100 Hz 
and 200 Hz. 
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      Figure 2: Normalized modulus of current density as a  

function of radial distance from center 
 
In the figure, the curves are normalized by the current 
density at the center point r = 0. Due to the skin effect, the 
current density is larger towards the outer edge of each 
zone, and towards the outer radius of the conductor as a 
whole. As will be seen in the next section, this effect 
leads to an increase of the GMR of the conductor.  
 
4.  Computation Results and Comparisons 
 
4.1 Computation Results 
 
To illustrate the GMR calculation method, the GMR of a 
4-zone stranded conductor is computed as a function of 
frequency. Three cases are considered, as shown in Table 
2. In Case 1, the resistivity decreases from the inner zones 
to the outer zones. In Case 2, the strands are identical in 
all zones. In Case 3, the resistivity increases from the 
inner zones to the outer zones. The number of strands in 
each zone and the radius of the strands is the same for all 
cases. 
 

    Table 2. Strand Information for a 4-Zone Stranded 
Conductor 

Relative Resistivity Zone 

 No. 

Number 
of 

Strands 

Strand 
Radius 
(mm) 

Case 
1 

Case 
2 

Case 
3 

µr

1 19 1 4 1 1 1 

2 36 1 3 1 2 1 

3 62 1 2 1 3 1 

4 86 1 1 1 4 1 
 
There are 3 layers in zone 1 and 2 layers in each of the 
other zones. The over all radius of the conductor is 
0.017 m. Figure 3 shows the ratio of the GMR to the 
overall radius for the three cases. It can be seen that Case 
1 has the largest GMR at zero frequency. This is because 
there is less current in the central zone, as a result of its 
higher resistivity. In Case 2, the strands in all four zones 
are the same. The computed result for the ratio is 0.7760. 

This is very close to the ratio of a uniform solid 
conductor, which is 0.7788.  When the frequency 
increases, the ratio also increases and gets closer to 1. The 
results for Case 1 and Case 2 are almost the same at high 
frequencies. This is because the resistivity of the 
outermost zone is the same for those two cases, and the 
current is essentially confined to the outermost zone at 
high frequencies.  

 
        Figure 3: Ratio of GMR to the overall radius of the  

conductor as a function of frequency 
 
4.2 Comparison with Published Data 
 
This section uses the method presented in this paper to 
compute the GMR of four stranded conductors for which 
the value of the GMR is available in the literature. The 
data for the conductors are listed in Table 3.  In the 
computations, the relative permeability and resistivity of 
the copper strands were set to 1, the relative permeability 
and resistivity of the steel strands were set to 250 and 
12.5, respectively, and the relative permeability and 
resistivity of the aluminum strands were set to 1 and 1.6, 
respectively.  
 

Table 3. Comparison between New Approach and 
Published Data 

Computed 
GMR 
(cm) 

  
Number 

of 
Strands

 

Radii  
of  

Strands 
(mm) 

Published 
GMR  
(cm) 

0.001 
Hz 

60 
Hz 

1000 
Hz 

4/0 
(Stranded 
Copper) 

19 1.34 0.508 0.508 0.509 0.554 

Baldplate 7/30 2.19/2.19 1.27 1.25 1.26 1.35 

Bittern 7/45 
 

1.42 
/2.13 

1.36 1.35 1.38 1.53 

Bluebird 19/84 1.22 
/2.03 

1.79 1.78 1.86 2.05 

 
The results agree with the published data at low 
frequencies. The table also lists the computed GMR value 
for those conductors at 1000 Hz. As expected, the high-
frequency value is larger in all cases. 
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5.  Conclusion 
 
This paper introduces a method for the computation of the 
GMR of stranded conductors of circular cross-section 
consisting of several zones with distinct electrical 
properties. The method also accounts for frequency 
effects. Examples of the use of this method were 
presented, and shown to agree with published data. 
 
This method can be used to provide more accurate 
estimates of the GMR for composite conductors made of 
strands of different size and properties, and also to better 
calculate the impedance of those conductors at higher 
frequencies. 
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