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TWO–PREDATOR AND TWO–PREY

SPECIES GROUP DEFENCE MODEL

WITH SWITCHING EFFECT

Qamar J.A. Khan,∗ Edamana V. Krishnan,∗ and Easwaran Balakrishnan∗

Abstract

A model which describes the interaction of two prey species with

two predators is analysed. Prey species are of large size and

exhibit group defence. Both predators are of same species and they

select prey species which are numerically less and have insufficient

defending capability. We found conditions for nontrivial equilibrium

to be asymptotically stable and corresponding numerical results are

also presented.
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1. Introduction

In prey–predator environment, when a prey species of small
size with little defence capability with respect to preda-
tor decreases in abundance, the population of predators
also reduces drastically by an amount proportional to the
interaction strength. However, it is likely that in many
cases a predator will consume more individuals of other
species when one of its preys becomes relatively less abun-
dant. This behaviour is termed predator switching. With
predator switching, the interaction strength depends on
the relative abundance of the prey species. Mathematical
models involving one predator and two prey species have
been generally studied in which the predator feeds more
intensively on the more abundant species. One may refer
to [1–12].

Prey species of large size such as wildebeest, zebra, and
Thomson’s gazelle live in huge herds and are dependent
upon self-defence, group defence, and group alertness and
consolidate themselves to fight back or scare away the
predator. Here, the predator will switch towards the
prey species which are fewer in number. For example,
pairs of musk-oxen can be successfully attacked by wolves
but groups are rarely attacked [13]. There are many
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such examples of group defence [14, 15]. Mathematical
models of the prey–predator interaction where the prey
exhibits group defence have been studied by Freedman
and Walkowicz [16], Ruan and Freedman [17], and Khan
et al. [18].

Mukherjee and Roy [19] studied a complex prey–
predator system consisting of two prey species and two
types of predators (dominant and mutant of the same
species) with predatory switching. They considered that a
predator would prey more heavily on some species if other
prey species decline in relative abundance, i.e., the preda-
tor interacts with the prey species which are in abundance.
This is found to be the case when prey species are relatively
smaller in size with little or insignificant defence capability.
We consider a similar type of prey-predator system where
prey species are of large sizes and live in huge herds. They
have the ability of group defence but it will be effective
when the population of prey species is large. The predators
will feed on both prey species. Because of group defence
ability of the prey, predator will switch towards those prey
species which are fewer in number. Stability analysis has
been carried out for nontrivial equilibrium state to obtain
a condition for a feasible equilibrium to be asymptoti-
cally stable. We use direct method of Lyapunov to study
stability subject to large perturbations of the initial state.

Tansky [7] considers a general volterra type of two
prey–one predator model that may be expressed as follows:

dx1

dt
=

(
γ1 − b1y

1 + (x2/x1)
n

)
x1

dx2

dt
=

(
γ2 − b2y

1 + (x1/x2)
n

)
x2

dy

dt
=

(
−μ+

b1x1

(x2/x1)
n +

b2x2

1 + (x1/x2)
n

)
y

where x1(t), x2(t), and y(t) denote the abundances of
the two prey species and the predator species, respec-
tively. γ1 and γ2 are the specific growth rates of the prey
species in the absence of predation and μ is the per capita
death rate of the predator. The functions b1

1+ (x2/x1)n
and

b2
1+ (x1/x2)n

possess the characteristic property of switching

through functional response of relative abundance of the
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prey species. When n=1, this is a simple multiplicative
effect, whereas for n> 1, the effect is stronger [8].

This paper is organized as follows. The model is
formulated in Section 2 and coexisting state is given in
Section 4. Stability of equilibrium points is discussed in
Section 5. Section 6 includes the asymptotic stability
analysis of the coexisting equilibrium. Section 7 describes
the numerical approach and the final discussion and results
are summarized in Section 8.

2. Formulation

We study here a complex prey–predator system consisting
of two prey species of large sizes, which exhibit group
defence and compete with each other for the use of a
common resource. We are considering that both prey
species obey logistic growth, i.e., the population density
of each prey is resource limited. There are two predators
feeding on both of them and these predators switch towards
that habitat where prey species are numerically less [20].
The model is described by:

dx1

dτ
= γ1x1 − α1x

2
1 − η12x1x2 − β1x1x2z1

x1 + x2
− β2x1x2z2

x1 + x2

dx2

dτ
= γ2x2 − α2x

2
2 − η21x1x2 − q1x1x2z1

x1 + x2
− q2x1x2z2

x1 + x2

dz1
dτ

=

(
−d+

l β1x1x2

x1 + x2
+

l q1x1x2

x1 + x2

)
z1

dz2
dτ

=

(
−d+

l β2x1x2

x1 + x2
+ l

q2x1x2

x1 + x2

)
z2 (1)

where,

xi =population density of the prey species in

two different habitats;

zi =population density of predator species;

β1, β2 =encounter rates of predators y1 and y2
with prey x1;

q1, q2 =encounter rates of predators y1 and y2
with prey x2;

αi = intraspecific competition coefficient of

prey i;

η12, η21 = interspecific competition coefficient

between the prey species;

γi =per capita birth rate of prey species in two

different habitats;

d=death rate of the predators;

l=the rate of conversion of prey to predator.

To avoid mathematical complexity and to reduce the
number of parameters, we consider here the conversion
rates of predators 1 and 2 to be the same. Furthermore, if
we transform the variables and parameters by:

γ1
l

= ε1,
γ2
l

= ε2,
α1

l
= k1,

α2

l
= k2,

η12
l

= a12,

η21
l

= a21,
z1
l

= y1,
z2
l

= y2,
d

l
= μ,

and lτ = t, we obtain the equations:

dx1

dt
= ε1x1 − k1x

2
1 − a12x1x2 − β1x1x2y1

x1 + x2
− β2x1x2y2

x1 + x2

(2a)

dx2

dt
= ε2x2 − k2x

2
2 − a21x1x2 − q1x1x2y1

x1 + x2
− q2x1x2y2

x1 + x2

(2b)

dy1
dt

=

(
−μ+

β1x1x2

x1 + x2
+

q1x1x2

x1 + x2

)
y1 (2c)

dy2
dt

=

(
−μ+

β2x1x2

x1 + x2
+

q2x1x2

x1 + x2

)
y2 (2d)

We assume all parameters considered here are positive.

3. Boundedness of the Positive Solutions

Set D:= (x1, x2, y1, y2)∈R
4
+ such that xi ∈ (0, εi/ki) and

yi > 0 for i=1, 2.

Lemma 1. All trajectories of (2) with initial condi-
tions from D remain bounded.
Proof: Choose the function:

u(t) = x1(t) + x2(t) + y1(t) + y2(t) (3)

and calculating the derivative of u(t) along the solution of
(2), we have:

u̇ = (ε1x1 − k1x
2
1 − a12x1x2) + (ε2x2 − k2x

2
2 − a21x1x2)

− μy1 − μy2

For a positive constant ρ, we have:

u̇+ ρu ≤ x1(ε1 − k1x1 + ρ) + x2(ε2 − k2x2 + ρ)

+ (ρ− μ)y1 + (ρ− μ)y2

If ρ<μ, then there is a constant c1 =
1
4

[
(ρ+ ε1)

2

k1
+ (ρ+ ε2)

2

k2

]
such that u̇+ ρu< c1 for all (x1, x2, y1, y2)∈R

4
+.

This leads to 0≤u≤ c1
ρ +u(0)e−ρt and for t→∞,

0≤u≤ c1
ρ .

Hence, we obtain the boundedness of the positive solutions
for the system (2).

4. Coexisting State

We will study the coexisting state of (2) given by
E=(x1, x2, y1, y2). We can find such equilibrium point
by assuming that the total energy intake of predators at
equilibrium which search for prey 1 is the same as that
of predators which search for prey 2. This is a natural
assumption because we are considering two types of preda-
tors of the same species with the same death rate and same
conversion rate. Therefore,

β1y1 + β2y2 = q1y1 + q2y2 (4)

Proposition 1. If q2β1 − q1β2 �=0 and (4) is satisfied,
then at least one coexisting state E ∈D.
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We find the coexisting state of system (2) in the usual
manner by equating the derivatives on the left hand sides
to zero and solving the resulting algebraic equations. Let
us define x=x1/x2. The equilibrium E=(x1, x2, y1, y2) is
given by:

x1 =
(1 + x)μ

β1 + q1
, x2 =

(1 + x)μ

x(β1 + q1)

From (2a) and (2b) at equilibrium we get:

β1y1 + β2y2 =
x1 + x2

x2
[ε1 − k1x1 − a12x2]

q1y1 + q2y2 =
x1 + x2

x1
[ε2 − k2x2 − a21x1]

Multiplying the first equation by q2 and the second
equation by β2 and subtracting, we obtain:

y1(β1q2 − β2q1) = (x1 + x2)

[
q2
x2

(ε1 − k1x1 − a12x2)

−β2

x1
(ε2 − k2x2 − a21x1)

]

=
x2(1 + x)

x1x2
[q2x1(ε1 − k1x1 − a12x2)

− β2x2(ε2 − k2x2 − a21x1)]

or

y1 =
(1 + x)

x1(β1q2 − β2q1)
[q2x1(ε1 − k1x1 − a12x2)

− β2x2(ε2 − k2x2 − a21x1)]

Similarly, we find the value of y2 which is:

y2 =
(1 + x)

x1(q1β2 − q2β1)
[q1x1(ε1 − k1x1 − a12x2)

− β1x2(ε2 − k2x2 − a21x1)] (5)

From (2c) and (2d), a steady state with coexistence of all
four types of individuals require:

β1 + q1 = β2 + q2 (6)

This means that the mutant and wild-type predators are
equally efficient to interact with both prey species. If they
are not, then steady state will not exist and presumably
one of the predator will become extinct. From (6) we get
that the equilibrium will exist if β1 = q2 and β2 = q1. We
note that y1 and y2 will not exist if β1 =β2 and q1 = q2.

Equating the two equivalent relations:

β1y1 + β2y2 = (1 + x)[ε1 − k1x1 − a12x2]

and

q1y1 + q2y2 =
(1 + x)

x
[ε2 − k2x2 − a21x1]

we get the resulting equation for x:

x3k1 + x2(k1 + a12 − ε1S − a21)

+ x(a12 + ε2S − k2 − a21)− k2 = 0 (7)

where S= β1 + q1
μ2 . As the leading and absolute terms are

positive and negative, respectively, there is at least one pos-
itive root of (7). This equilibrium exists if either (q2 >β2

and q1 <β1) or (q2 <β2 and q1 >β1) is satisfied. Moreover,
the equilibrium is always positive (see Appendix).

We note that the function f(x) given by (7) will
have only one positive root ifB> 0 and C > 0 orB2 < 3k1C
where B= k1 + a12 − ε1S− a21 and C = a12 + ε2S−
k2 − a21.

5. Stability

5.1 Behaviour of the System around Zero Equilib-
rium E 0(0, 0, 0, 0)

The stability matrix is not defined at the zero equilibrium
E0. However, it is simple to prove that this equilibrium
is unstable. The system cannot approach this equilibrium
for large time if x10 > 0 or x20 > 0, where x10 =x1(0) and
x20 =x2(0).

Lemma 2. (i) If x10 > 0 or x20 > 0 then no trajectory
can approach the origin for large times. Hence, E0 is
unstable.

(ii) If x10 =0 or x20 =0 then all trajectories will
approach the origin for large times.

Proof: (i) From (2a),
d

dt
(lnx1)→ ε1 as x1 → 0, x2 → 0,

y1 → 0, and y2 → 0.
Hence, there is a small ball with centre Eo and radius

ε1, such that within this ball
d

dt
(lnx1)≥ ε1

2
.

If (x1, x2, y1, y2)→ (0, 0, 0, 0) as t→∞ then there exist
t0 such that x10 > 0 and we get x1 ≥x10e

ε1
2 (t−to). This

shows that as t→∞, x1 →∞. Similarly, we can show for
x2 from (2). Hence, no trajectory will approach towards
origin.

(ii) If x10 =x20 =0 then x1(t) and x2(t)= 0 for all t.
Let y10 = y1(0) and y20 = y2(0).
(a) If y10 > 0 and y20 =0 then y1(t)→ 0 as t→∞ and

y2(t)= 0 for all t.
(b) If y10 =0 and y20 ≥ 0 then y1(t)= 0 for all t and

y2(t)→ 0 as t→∞.
(c) If y10 > 0 and y20 > 0 then y1(t)→ 0 and y2(t)→ 0 as

t→∞.

5.2 Behaviour of the System around E 1(x1, 0, 0, 0)
and E 2(0, x2, 0, 0)

It can be easily shown that the other possible equilibrium
points E1(x1, 0, 0, 0) and E2(0, x2, 0, 0) will be neutrally
stable and E3(x1, x2, 0, 0) will be stable if:

μ = Max

(
β1x1x2

x1 + x2
+

q1x1x2

x1 + x2
,
β2x1x2

x1 + x2
+

q2x1x2

x1 + x2

)

and unstable otherwise.
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5.3 Behaviour of the System around E 4(x1, x2, y3,
y4)

The stability matrix reduces to:

J(E4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14

b11 b12 b13 b14

c11 c12 0 0

d11 d12 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

where,

a11 = −k1x1 +
β1x1x2y1
(x1 + x2)2

+
β2x1x2y2
(x1 + x2)2

a12 = −a12x1 − β1x
2
1y1

(x1 + x2)2
− β2x

2
1y2

(x1 + x2)2

a13 = − β1x1x2

x1 + x2
, a14 = − β2x1x2

x1 + x2

b11 = −a21x2 − q1x
2
2y1

(x1 + x2)2
− q2x

2
2y2

(x1 + x2)2

b12 = −k2x2 +
q1x1x2y1
(x1 + x2)2

+
q2x1x2y2
(x1 + x2)2

b13 = − q1x1x2

x1 + x2
, b14 = − q2x1x2

x1 + x2

c11 =
β1x

2
2y1

(x1 + x2)2
+

q1x
2
2y1

(x1 + x2)2
,

c12 =
β1x

2
1y1

(x1 + x2)2
+

q1x
2
1y1

(x1 + x2)2

d11 =
β2x

2
2y1

(x1 + x2)2
+

q2x
2
2y2

(x1 + x2)2
,

d12 =
β2x

2
1y2

(x1 + x2)2
+

q1x
2
1y2

(x1 + x2)2
(9)

The characteristic equation associated to system(2)
around E4 takes the general form:

λ4 + e1λ
3 + e2λ

2 + e3λ+ e4 = 0 (10)

where,

e1 = −a11 − b12

e2 = a11b12 − b13c12 − b14a12 − a12b11 − a13c11 + a14d11

e3 = a11b13c12 + a11b14d12 − a12c11b13 − a12b14d11

− a13b11c12 + a13b12c11 + a14b11d12 − a14b12d11

e4 = a13b14c11d12 − a13b14c12d11 + a14b13d12c11

− a14b13c12d11 (11)

By Routh–Hurwitz criterion, we need to show the
following statements:
(i) ei > 0 for i=1, 2, 3, 4.
(ii) e1e2 − e3 > 0.
(iii) e3(e1e2 − e3)− e4e

2
1 > 0.

If the above conditions are satisfied then the non-zero
equilibrium E4 will be locally stable.

6. Asymptotic Stability of Coexisting State E 4(x1,
x2, y1, y2)

An ecosystem model is asymptotically stable if every tra-
jectory of the model which begins at a positive octant state
remains in the positive octant for all finite values of the
time variable t and converges to positive equilibrium as
t→∞. We make use of the general Lyapunov function:

V (x1, x2, y1, y2) =
2∑

i=1

[
(xi − xi)− xi ln

(
xi

xi

)]

+
2∑

i=1

[
(yi − yi)− yi ln

(
yi
yi

)]
(12)

Calculating the derivative along each solution of sys-
tem (2), we have:

dV

dt
=

2∑
i=1

(
dxi

dt
− xi

xi

dxi

dt

)
+

2∑
i=1

(
dyi
dt

− yi
yi

dyi
dt

)
(13)

The assumption:

x1

x2
≈ x, the root of (7) for all t ≥ 0 (14)

reduces (13) to:

dV

dt
≈ (x1 − x1)[−k1(x1 − x1)− a12(x2 − x2)]

− (x2 − x2)[−k2(x2 − x2)− a21(x1 − x1)]

+
x1x2 − x2x1

(x1 + x2)(x1 + x2)
[(β1y1 + β2y2)(x1 − x2)

− (β1y1 + β2y2)(x1 − x2)]

and finally we get:

dV

dt
≈ −k1(x1 − x1)

2 − k2(x2 − x2)
2

− a12(x1 − x1)(x2 − x2)− a21(x1 − x1)(x2 − x2)

= −(x1 − x1, x2 − x2)

⎡
⎣ k1 a12

a21 k2

⎤
⎦
⎛
⎝ x1 − x1

x2 − x2

⎞
⎠

= −PT QP

where,

Q =

⎡
⎣ k1 a12

a21 k2

⎤
⎦, P =

⎡
⎣x1 − x1

x2 − x2

⎤
⎦ and pi = xi−xi, i = 1, 2

Hence,

dV

dt
≤ 0 if k1p

2
1 + k2p

2
2 + (a12 + a21)p1p2 ≥ 0

or
(a12 + a21)

2

k1k2
≤ 4 (15)

Here the equality holds if x1 =x1 and x2 =x2.
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Figure 1. The graph of x1, x2, y1, and y2 versus t for the first set of parameter values given in Section 7 for the first set of
initial conditions.

Figure 2. The graph of x1, x2, y1, and y2 versus t for the first set of parameter values given in Section 7 for the second set of
initial conditions.

We summarize the preceding details in the following
theorem.

Theorem 1. Suppose E4 =(x1, x2, y1, y2) exists, the
condition (14) is satisfied and x is the real positive root
of (7), then the positive equilibriumE4 is asymptotically

stable provided (15) is satisfied.

7. Numerical Results

The system (2) is integrated using the standard routines
available in Matlab for different sets of realistic parameter
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Figure 3. The graph of x1/x2 versus t and x1/x2 versus t for the parameter values given in Section 7 for the first set of initial
conditions. x1/x2 is given in ∗.

Figure 4. The graph of x1/x2 versus t and x1/x2 versus t for the parameter values given in Section 7 for the second set of
initial conditions. x1/x2 is given in ∗.
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Figure 5. The graph of x1 versus t for the second set of parameter values given in Section 7 for varying β1 values.

Figure 6. The graph of y1 versus t for the second set of parameter values given in Section 7 for varying β1 values.

values. As a result, we present below results on two sets
of parameter values. These values yield a coexisting equi-
librium E=(x1, x2, y1, y2) satisfying the conditions (7),
(14), and (a12 + a21)

2 ≤ 4k1k2. The values of first such

set are k1 =1, μ=0.28, a1,2 = a2,1 =0.01, ε1 =1, β1 =0.4,
q1 =0.12, ε2 =1.2, k2 =0.8, β2 =0.07, and q2 =0.45. The
coexisting equilibrium corresponding to these values is
x1 =0.8742, x2 =1.4020, y1 =0.4018, and y2 =0.2960 be-
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Figure 7. The graph of x2 versus t for the second set of parameter values given in Section 7 for varying β2 values.

Figure 8. The graph of y2 versus t for the second set of parameter values given in Section 7 for varying β2 values.

cause the only real root to the cubic equation (7) is
x=0.6236. The results for two different sets of initial
conditions are given in Figs 1–4. Figure 1 corresponds to
the first set of initial conditions and Fig. 2 corresponds

to second set. In Figs 3 and 4, we demonstrate the fact
that the condition (14) holds once the coexisting state is
attained. In a similar way, we perform simulations for a
second set of parameter values which are k1 =0.95, μ=0.2,
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a1,2 =0.1, a2,1 =0.01, ε1 =1.2, q1 =0.12, ε2 =1, k2 =0.8,
and q2 =0.45. The coexisting equilibrium corresponding
to these values when β1 =0.4 and β2 =0.07 is x1 =0.7936,
x2 =0.7464, y1 =1.6973, and y2 =1.2506 because the only
real root to the cubic equation (7) is x=1.0632. In Figs.
5 and 6, we present the behaviour of x1 and y1 against t
for varying β1 values. Similarly, behaviour of x2 and y2
against t for varying β2 values are given in Figs 7 and 8. It
can be seen from these figures that the stability increases
when β1 and β2 decreases.

8. Summary

Prajneshu and Holgate [8] studied a system involving one
predator and two prey species in which the predator feeds
more intensively on the more abundant species. Later
Khan et al. [10] studied one prey and one predator model
where prey lives in two different habitats separated by a
barrier. In both models authors considered prey of small
size having insignificant defence capability where predator
feeds prey indiscriminately and feeds preferentially on the
most numerous species. In this paper, we have considered
a system having two predators (dominant and mutant of
the same species) interacting with two prey species where
interspecific and intraspecific competition hold between
prey species. The predator can feed on either prey species.
Both prey species have the ability of group defence to fight
back or scare away the predator but it will be effective
when the population of prey species is large. Because of
the group defence ability of the prey, the predator will se-
lect the prey species which is numerically less because prey
in less number will not be able to defend itself against the
predator. Hence, switching of the predator in this model
will be in opposite direction contrary to what was consid-
ered in [8, 10]. Advantage of our model over other two
previous models is that it explains the interaction of prey–
predator when prey is of large size like zebra, buffalo, kon-
goni, and Thomson’s gazelle while models [8, 10] explain
prey–predator interaction for prey like vole, Dik-dik, etc.

In our study, we found that if interspecific interactions
a12 = a21 =0 or very weak in comparison to intraspecific
competition k1 and k2, then coexisting state will be asymp-
totically stable. It is quite natural because prey species
living in the same habitat will interact much more than
the prey species living in different habitats. If a12 and
a21 are not very small in comparison to k1 and k2, then
coexisting state will be asymptotically stable if the ratio
of the sum of squares of interspecific competition and the
product of intraspecific competition is less than or equal
to 4 and unstable if the ratio is greater than 4. A detailed
Hopf bifurcation analysis on the model (2) is expected in a
follow-up study by the authors.

In the real world, ecosystem is subjected to large
perturbations of the initial state and system dynamics.
We have used direct method of Lyapunov for studying
stability relative to finite perturbations of the initial state.
We have found conditions for a feasible equilibrium to be
asymptotically stable. Corresponding numerical results
have also been presented.

Appendix

y1 and y2 will exist iff q2β1 − q1β2 �=0. So there are only two
possibilities. Either q2β1 >q1β2 or q2β1 <q1β2. Consider
q2β1 >q1β2. Then y1 > 0 if q2x1(ε1 − k1x1 − a12x2)>β2x2

(ε2 − k2x2 − a21x1). From equations (2a) and (2b), at equi-
librium we get q2x1(β1y1 +β2y2)>β2x2(q1y1 + q2y2)x.

Using equation (4) and relation x=x1/x2 give q2 >β2.
Similarly, we can show that y2 > 0 if β1 >q1. Hence,

y1 > 0 and y2 > 0 if q2 > β2 and β1 > q1.

Exactly in the same way, by considering q2β1 <q1β2, we
can show that,

y1 > 0 and y2 > 0 if q2 < β2 and q1 > β1.
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