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PREDICTION OF PROTEIN FUNCTION

FROM CONNECTIVITY OF PROTEIN

INTERACTION NETWORKS

L. Shi,∗ Y.-R. Cho,∗∗ and A. Zhang∗

Abstract

Determining protein function on a proteomic scale is a major

challenge in the post-genomic era. Right now only less than half

of the actual functional annotations are available for a typical

proteome. The recent high-throughput bio-techniques have provided

us large-scale protein–protein interaction (PPI) data, and many

studies have shown that function prediction from PPI data is a

promising way as proteins are likely to collaborate for a common

purpose. However, the protein interaction data is very noisy, which

makes the task very challenging.

In this paper, a distance matrix is proposed based on the small-

world property and connectivity of the PPI network. It measures the

reliability of edges and filters the noise in the network. In addition,

we design an ANN (artificial neural network) method to predict

protein functions with integration of several protein interaction data

sets. Our approach is tested with MIPS functional categories and the

experiential results show that our approach has better performance

than other existing methods in terms of precision and recall.
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1. Introduction

The classical way to predict protein functions is to find
homologies between an unannotated protein and other pro-
teins using sequence similarity algorithms, such as FASTA
[1] and PSI-BLAST [2]. The function of the unannotated
protein can then be assigned according to the annotated
proteins with similar sequences. In addition, several com-
putational approaches are proposed based on correlated
evolution mechanisms of genes. For example, the domain
fusion analysis infers that a pair of proteins interacts with
each other and thus performs related functions [3].
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In recent years, the high-throughput bio-techniques
have provided additional opportunities for inference of
protein functions. Protein–protein interaction (PPI) data,
enriched by high-throughput experiments including yeast
two-hybrid analysis [4, 5], mass spectrometry [6, 7] and
synthetic lethality screen [8], have provided the important
clues of functional associations between proteins. Proteins
are likely to collaborate for a common purpose. Therefore,
the functions of an unannotated protein can be deduced
when the functions of its binding partners are known.

There are several approaches proposed to predict pro-
tein functions with protein interaction networks. The
neighbour counting method [9] uses the majority-rule to la-
bel a protein with the functions that occur most frequently
in its interaction partners. Some caveats of this approach
are that it can only predict up to three functions and it
doesn’t take into account any significance value and the
full topology of the network. To solve the above problem,
Hishigaki et al. [10] use a chi-square statistics to calculate
the significance of the functions of neighbour proteins. In
detail, they examine the n-neighbourhood of a protein. For
a protein p, each function f is assigned a score. Those
functions with higher score than a threshold will be kept
as predicted functions for protein p. A shortcoming of this
approach is that within the n-neighbourhood, proteins at
different distances from p are treated in the same way.
Chua et al. [11] try to tackle the problem by investigat-
ing the relation between network distance and functional
similarity. They focus on the 1- and 2-neighbourhoods of a
protein, and devise a functional similarity score that gives
different weights to proteins according to their distances
from the target protein. In addition, these methods can
only predict the proteins which have at least one interac-
tion partner. This means lots of unknown proteins cannot
be predicted by these methods. Moreover, the predicted
annotations for an unknown protein are limited by the
annotations of its interacting partners.

To avoid those limitations, several other approaches are
proposed to use the global topology of protein interaction
networks. Vazquez et al. [12] assign a function f to
each unannotated protein p so as to maximize the number
of edges that connect proteins assigned with the same
function. This optimization problem, which generalizes the
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computationally hard problem of minimum multiway cut,
is heuristically solved using simulated annealing. Karaoz
et al. [13] use a similar approach but handle one function
at a time. They apply a local search procedure in which
for every vertex in turn (until convergence), the state of
the vertex is changed according to the majority of the
states of its neighbours. This procedure guarantees a
solution with value at least half of the optimum. Nabieva
et al. [14] apply the concept of functional flow which
is propagated from an annotated protein to unannotated
proteins. After simulating the spread over time of this
functional flow through the network, each unannotated
protein is assigned a score for having the function based
on the amount of flow it received during the simulation.
Relying on a Markovian assumption that the function
of a protein is independent of all other proteins given
the functions of its immediate neighbours, Deng et al.
[15] adopt the Markov random field (MRF) model to
simulate the protein interaction network with functional
annotations, which fit the network and got good result.
Letovsky and Kasif [16] also use an MRFmodel but with an
assumption that the number of neighbours of a protein that
are annotated with a given term is binomially distributed,
where that distribution’s parameter depends on whether
the protein has that function or not. Lee et al. [17] develop
a kernel logistic regression (KLR) method, which uses
diffusion kernels and incorporated all indirect neighbours
in the networks. While these approaches demonstrated
that using machine learning and statistical methods can
improve prediction performance, they bank on the same
functional concept that the interaction partners of a protein
are likely to share similar functions with it [11].

Although previous methods have proven to be useful
to predict protein functions from PPI networks, they still
suffer several limitations. Protein interaction data derived
from the high-throughput techniques are typically very
noisy. The data may include many false negatives (true
interactions which remain undetected) and false positives
(putative interactions that in fact do not occur). Sprinzak
et al. [18] reported that the reliability of high-throughput
yeast two-hybrid assays is about 50%. So how to filter the
PPI data to overcome those noise is a big challenge.

In graph theory, a network can be represented as either
a weighted graph or an unweighted graph. Previously a
protein interaction network is normally represented as an
unweighted graph, as it is easy to use and implement.
However, as the PPI data includes a large number of
unreliable interactions, the unweighted graph is far from

Table 1
The Percentage of Function-Relevant Interactions in Three Protein Interaction Data Sets

Data Set Total Number of Number of Functional- Percentage
Interactions Relevant Interactions

DIP 14,162 5,216 36.83

MIPS 13,877 4,189 30.18

BioGrids 117,675 36,446 30.97

optimal in representing the data. In this paper, we build
a weighted graph model of protein interaction networks.
Based on that, we propose a topological measurement to
reflect our knowledge of small-world network property of
the network to filter the protein interaction network and
then get a more reliable protein interaction network. In
fact, one protein may have multiple functions, which make
it a typical multi-label problem. In a weighted graph, it
is adequate to use artificial neural network (ANN) model
to predict protein functions. In this paper, we investigate
the problem of predicting protein functions from protein
interaction data and make the following contributions:
• We analyze the reliability of connections in several
protein interaction networks.

• We propose a novel topological measurement to cal-
culate the interaction reliability between two proteins
and filter the PPI networks.

• We propose an ANN-based method to predict the
functions of proteins.
The remainder of the paper is organized as follows.

In Section 2, we present our weighted graph model and
topological measurement to rebuild protein interaction net-
works. In Section 3, we present our ANN-based predic-
tion model. Extensive experimental results are reported in
Section 4. The paper is concluded in Section 5.

2. Weighted Graph Model of Protein Interaction
Networks

Many methods are based on the assumption that inter-
acting proteins should share common functions. Table 1
shows the percentage of function-relevant interactions
in three PPI data sets, namely, DIP, MIPS and BioGrid
(see Result Section for detailed description). An inter-
action is considered to be function-relevant if the two
proteins involved in the interaction have at least one func-
tion in common. In this test, we adopt FunCat(version
20070316) [19] in the MIPS database as our annotation
categories. From Table 1, we can see that only 30–40%
observed interactions are relevant in functions. In other
words, most of the observed interactions do not share func-
tions. Among those sharing function pairs, some of them
share more functions than the others. Table 2 shows the
percentage of function-consistent protein pairs which are
observed to interact in the three data sets. Formally, we
define two proteins P1 and P2 to be funtion-consistent if
|F (P1)∩F (P2)
F (P1)∪F (P2)

| ≥ 1
2 , where F (P1) and F (P2) are functions of

P1 and P2, respectively. As shown, only a small percentage
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Table 2
The Percentage of Function-Consistent Protein Pairs which Interact in Protein Interaction Data Sets

Data Set Total Number Number of Functional- Percentage
of Interactions Consistent Interactions

DIP 20,099 1,283 6.38

MIPS 21,795 898 4.12

BioGrids 21,499 2,718 12.64

of function-consistent protein pairs are observed to inter-
act in the interaction data sets. These observations suggest
two things: the protein interaction data may have many
false interactions which need to be removed from protein
interaction data and a weighted graph needs to be built to
show the reliability between two proteins and to show the
functional similarity between two proteins. As proteins
with similar functions are likely to interact with each other
in cells, we assume that the more reliable two proteins are,
the more chance that they share common proteins.

We define a weighted protein interaction network
[20] as follows: A weighted protein interaction network is
a weighted undirected graph G=(P, I,W ), where P is a
set of vertices, I is a set of edges between the vertices
(I ⊆ (u, v)|u, v ∈P ) and W is a function making each edge
in I to a real value in the range of [0 . . . 1]. Each ver-
tex v ∈P in the graph represents a protein. Each edge
(u, v)∈ I represents an interaction between proteins u and
v. For each edge (u, v), w(u, v) is the weight of (u, v)
which represents the probability of this interaction being
a true positive. Figure 1 shows our weighted protein in-
teraction network model. The nodes represent the pro-
teins, the edges between nodes represent the interactions
between proteins and the numbers on the edges represent
the weights between interacted proteins.

Figure 1. A weighted protein interaction network model.
Node U and V are proteins. Node a, b, c, d, and e are the
neighbours of U and V. The number on the edge between
two nodes is the weight of the edge.

In this paper, we use the following additional termi-
nologies: A neighbour of a vertex v is a vertex adja-
cent to v, also called direct neighbour. Level-k neigh-
bour of vertex v is a vertex having k edges or steps to

reach vertex v. The degree of a vertex v, denoted as
D(v), is the sum of weights of the edges connecting v:
D(v)=

∑
(u,v)∈ I w(u, v). A walk is an alternating se-

quence of vertices and edges, with each edge being incident
to the vertices immediately preceding and succeeding it in
the sequence. A path is a walk with no repeated vertices.

Generally, there are two approaches to give a proba-
bility estimate for each interactions: We can use either the
probability estimates of single interactions or the reliability
estimates of interaction data sets.

Reliability estimates for single interactions are often
achieved by incorporating known protein properties. These
properties include paralogs (PVM) [21], protein domain
information (DPV) [22] and the Bayesian integration of
several information [23]. The probability estimate for
any specific protein interaction is directly based on the
domain knowledge of the proteins involved and therefore
is intrinsically biased towards those proteins that we know
well about.

Reliability of an interaction data set can be estimated
by comparing the data set with reliable interaction data
sets (usually those from small-scale experiments) [24, 25]
or comparing the statistics of the data set with those
of known reliable interaction data sets. The statistics
include gene expression profile [21] and protein annotation
[18]. Comparatively, as the reliability in this approach is
estimated using the global statistics of the data set instead
of any specific proteins, it is less biased towards any specific
interactions in the data set. Therefore, we choose this
approach for our initial estimate of probabilities.

We first combine several different protein interaction
data sets S= {S1, S2, . . . , Sn}, where each set Si includes
many interactions. If an interaction (u, v) appears only in
one data set, we will set its probability as the reliability of
this data set:

w(u, v) = rk for each (u, v) ∈ Sk (1)

where rk is the estimated reliability of the protein inter-
action data set Sk. The interaction (u, v) may appear in
several data sets, i.e.:

(u, v) ∈ S1 ∩ S2 . . . ∩ Sn (2)

where n> 1. In this case, its probability is set to:

w(u, v) = 1− (1− r1)× (1− r2) . . .× (1− rn) (3)
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where ri is the estimated reliability of Si. This formula
reflects the fact that interactions detected in multiple
experiments are generally more reliable than those detected
by only one experiment. Estimating the prior probability
for each interaction in this manner represent our prior
knowledge of the probability of interactions.

We then consider the topological features of PPIs. In a
small-world protein interaction network [26], high cluster-
ing coefficient property predicates that proteins are likely
to form dense clusters by interactions. Therefore true pos-
itive interactions in protein complexes and tightly coupled
networks demonstrate dense interconnections. However,
considering that there are many false positives in the data,
we decide to measure the significance of two proteins’s co-
existing in a dense network as an indication of interaction
reliability. In this paper, we consider all length k paths
between two vertices and try to evaluate the significance of
the paths. Then we combine the significance measurements
for all different ks into our final topological measurement.

Definition 1. The PathStrength of a path p, de-
noted as PS(p), is the product of the weights of all the
edges on the path, i.e.:

PS(p) =
l∏

i=1

w(vi−1, vi)

for path p=<v0, v1, . . . , vl>.

The PathStrength of a path indicates the probability
that a walk on the path can reach its ending vertex.

Definition 2. The k-length PathStrength between
two vertices A and B, denoted as PSk(A,B), is the
sum of the PathStrength of all k-length paths between
vertices A and B, i.e.:

PSk(A,B) =
∑

p=<v0=A,v1,...,vk=B>

PS(p)

By summing upon all these paths, the k-length Path-
Strength between two vertices reflects the strength of
connections between these two vertices by a k-step walk.

Definition 3. The k-length MaxPathStrength be-
tween two vertices A and B, denoted as MaxPSk(A,B),
is defined as :

Table 3
Fraction of Annotated Yeast Proteins That Share Function With (1) Level-1 neighbours exclusively; (2) Level-2 neighbours

exclusively; (3) Level-3 neighbours exclusively; (4) Level-4 neighbours exclusively

Shared Functions With Number of Number of Fraction
Corresponding Sharing Common [%]
Neighbours Functions

Level-1 neighbours exclusively 4,812 1,136 23.61

Level-2 neighbours exclusively 203,574 40,275 19.78

Level-3 neighbours exclusively 1,381,525 185,182 13.45

Level-4 neighbours exclusively 913,742 49,068 5.17

MaxPSk(A,B) =⎧⎪⎨
⎪⎩

√
D(A)×D(B) if k = 2

D(A)×D(B) if k = 3∑
Pi∈N(A),Pj∈N(B) MaxPSk−2(Pi, Pj) if k > 3

MaxPathStrength measures the maximum possible
PathStrength between two vertices. As we consider
only PSk(A,B) for k > 1, we define MaxPSk(A,B) only
for k > 1 case. By dividing the PathStrength by this
maximum possible value, we get the significance mea-
surement of k-length paths.

Definition 4. The k-length PathRatio between two
vertices A and B, denoted as PRk(A,B), is the ratio
of the k-length PathStrength to the k-length MaxPath-
Strength between two vertices A and B, i.e.:

PRk(A,B) =
PSk(A,B)

MaxPSk(A,B)

We sum this measurement on all different lengths
and get our final topological measurement :

Definition 5. The PathRatio between two vertices
A and B, denotes as PR(A,B), is the sum of k-length
PathRatios between A and B for all possible k > 1, i.e.:

PR(A,B) =

|P |−2∑
k=2

PRk(A,B)

where |P | is the number of vertices in the graph.
The value of PathRatio reflects the reliability between

two proteins in the network. In a protein interaction
network, the closer two proteins, the more chances they
should share common functions. Table 3 shows clearly
that there are quite strong functional influence between
level-1 and level-2 neighbours, still some influence for level-
3 neighbours, but weaker influence for neighbours higher
than 3 in the yeast protein interactions. So in this paper,
when we calculate the PathRatio between two vertices, we
just calculate the PathStrength up to the third level. The
bigger the value of PathRatio, the more reliable these two
proteins are, i.e., the higher probability that these two
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proteins share common proteins. In this way, we changed
this weighted graph to a functional similarity interaction
network.

Figure 2 shows that our assumption works well for
some simple protein function prediction methods, such as
neighbour counting method [9]. In this test, function
prediction performance from the weighted interaction net-
work was assessed comparing to an unweighted interaction
network. The result shows how significantly the weighted
graph can improve the prediction performance.

Figure 2. Comparison of neighbour counting method with
unweighed and weighted protein interaction graphs.

This new interaction network is different from the
former one in the following ways:
• The neighbours of one annotated protein include both
direct neighbours and indirect neighbours up to level-3.

• These functional similarity based weighted networks
have the weight for each pair of neighbours, which indi-
cates the chance that they may have similar functions.

3. Function prediction algorithm

Typically one protein can have multiple functions, so we
transfer function prediction problem into a typical multi-
label problem with functions as labels and proteins as
instances or items. Recently, the issue of learning from
multi-label data has attracted significant attention from a
lot of researchers in the area of machine learning and pat-
tern recognition. Many existing problems can be classified
into this category, such as semantic annotation of images
[27] and video [28], music categorization into emotions [29]
and directed marketing [30]. Traditionally, instances or
items are independent and don’t connect with each other,
so many probabilistic methods can be used in this scenario.
But in our case, as proteins are connected and the protein
interaction network has been proved to have small-world
properties [26], it automatically leads us to use ANN to
solve this problem and use the PathRatio as the weight W
and the neighbours as the nodes. ANN is a computational
model based on biological neural networks. It consists of an

interconnected group of artificial neurons and processes in-
formation using a connectionist approach to computation.
In most cases, an ANN is an adaptive system that changes
its structure based on external or internal information that
flows through the network during the learning phase. Here
we escape the adaptive part and only use a simple model
called perceptron. In the network we built from the last
section, every annotated protein should have a list of vari-
ables indicating if this protein has any particular functions.
For example, if there are 4 functions {f1, f2, f3, f4}, and
protein p has {f1, f2, f4}, the function vector v of protein
p will be (1, 1, 0, 1). Then for an unannotated protein u,
the set of possible functions f it may have can be predicted
using the following formula:

Figure 3. ANN-based function prediction model. U is the
unannotated protein, V1∼n are U ’s neighbours, W1∼n are
the PathRatio value of the edge, t is the user defined
threshold, f is the binary vector indicating the functions
predicted for U .

f̂ = sign(w× v)

= sign[wdvd + wd−1vd−1 + . . .+ w1v1 + w0v0]
(4)

where w0 =−t, v0 =1, w×v is a dot product between the
weight vector w and the input attribute matrix v, t is the
threshold value to be set, vi is the function vector of the
neighbour i and wi is the functional similarity weight
between neighbour i and protein u, where i is the index
of the neighbours of protein u, and d is the number of
neighbours that the unannotated proteins has. Function
sign outputs 1 if w×v is bigger than 0, otherwise, it
outputs −1. The result f is a vector indicating if protein
u has the corresponding function. This ANN based model
is shown in Fig. 3. The proposed ANN model unites
the functional information from the neighbours of the
unannotated protein and assigns those information with
different weights which represent the functional similarities
between the neighbours and the unannotated protein. As
this model fully uses the neighbours up to level-3 and treat
different neighbours separately, it overcomes weak points
of previous methods, such as narrow neighbourhood and
equal effection from neighbours. The flowchart of the
proposed algorithm is shown in Fig. 4 and it is divided
into four major steps: input and initialization, building
weighted network, function prediction model, result and
evaluation. The detail of each step is explained as follows:
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Figure 4. A flowchart of the proposed function prediction
algorithm.

1. Input and initialization: Input DIP, MIPS and Bio-
Grid PPI data sets and initialize the threshold of the
weight for the edge.

2. Filtering and building weighted network : Use the
formula of PathRatio to calculate the weight of each
edge and keep the edges which have bigger weight than
the threshold. Then integrate all interactions into one
weighted network.

3. Prediction model : Transfer the weighted network into
an ANN-based model. For each unannotated protein,
keep the functions which have bigger value than the
threshold.

4. Result and evaluation: Get the predicted functions
for each unannotated protein and evaluate the result
with leave-one-out cross-validation.

4. Experimental Results

4.1 Cross-Validation of Function Prediction

For our experiments, we built protein interaction networks
from three different yeast interaction networks. The first
one is MIPS data set [19], which contains 3,882 proteins
and 13,877 interactions. The second one is BioGrid data
set [31], which contains 4,265 proteins and 117,675 inter-
actions. The third one is DIP data set [32], which contains
4,935 proteins and 14,162 interactions.

To evaluate the effectiveness of our method, we used
FunCat as the functional annotations from MIPS database
[19]. The scheme of FunCat is a tree-shaped hierarchical
structure. To avoid overly specific annotations, we cut
the scheme at the third level and obtained 259 functional
categories.

We assessed the performance of our function prediction
approach by the leave-one-out cross-validation method [33].
For each protein in annotations, we assumed it is un-
annotated and predicted its function using its interaction
information and the annotations of the other proteins.
Then we compared the predicted functions with the true
annotations. Let ni be the number of annotated functions
for protein Pi, mi be the number of predicted functions for
Pi, ki be the size of common functions of mi and ni and n
is the total number of distinct proteins with annotations.
Precision and recall are then calculated as:

Recall=

∑n
1 ki∑n
1 ni

(5)

and

Precision=

∑n
1 ki∑n
1 mi

(6)

When we implemented our proposed method, first we
integrated MIPS, DIP and BioGrid protein interaction
data sets using (3), and the reliability of each data set
was estimated by EPR (expression profile reliability) index
[21]: 0.85 for DIP, 0.73 for MIPS, 0.81 for BIOGRID. Then
we rebuilt the weighted graph with weight threshold 0.2,
which means we only keep interactions whose weight is
above 0.2. At this point, we achieved an interaction graph.
Then we used the prediction algorithm we proposed above
to predict the functions of each protein in the data set.

Figure 5 shows the precision and recall plots with
respect to the threshold of prediction confidence, which is a
user-dependent parameter in our algorithm. When we use
3.8 as the threshold of prediction confidence, our algorithm
predicts fewer functions for each protein, but most of the
functions are correctly predicted comparing to the actual
annotations, and the precision for this threshold is close
to 0.9. As a lower threshold is used, recall increases while
precision decreases monotonically. Approximately, when
the recall is 0.2 and 0.4, we had the precision of 0.8 and
0.6, respectively.

4.2 Comparison with Other Approaches

We evaluated the performance of our ANN method with
two previous approaches: the neighbour-counting method
[9] and the indirect-neighbour method [11].

Indirect-neighbour method [11] computes the likeli-
hood that an unknown protein p has a function using
the functional similarity weights between p and direct and
indirect neighbours. The functional similarity weight of
two proteins is calculated by the commonality of their
neighbours in the protein interaction network. We used a
threshold of the likelihood to generate the output set of
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Figure 5. Precision and recall plots by cross-validation
for protein function prediction. The performance of our
function prediction algorithm was assessed by the leave-
one-out cross-validation using the proteins that appear in
the interaction data from DIP and are annotated on the
functional categories in MIPS. As a higher threshold of
prediction confidence is used, precison increases whereas
recall decreases.

predicted functions for each protein. We then obtained
different output sets by various thresholds. Neighbour-
counting method computes the frequency of each function
among the direct neighbours of protein p and then sorts it
to get the top k functions.

Figure 6 shows the precision and recall of the three
approaches on the filtered data set. Our ANN-based
method remarkably outperforms the neighbour-counting
method, as neighbour-counting method only considered the
direct neighbours and missed lots of functional information
from other proteins in the protein interaction network.
Our approach is slightly better than indirect-neighbour
method when recall is between 0 and 0.2, but when recall
is bigger than 0.2, our method has the precison of more
than 0.1 higher than the indirect-neighbour method. This
result indicates three things: (1) fully understanding the
small-world property of the protein interaction network is
very important to predict the functions of proteins. (2) the
more functional information you use to predict unknown
proteins, the better result you may get, and (3) a weighted
graph is more suitable to represent protein interaction
networks than unweighted graph to predict the functions
of proteins, and the more reliable the graph is, the more
accurate the result will be.

It is worth mentioning that since building a weighted
graph and function prediction are completely independent,
different approaches can be adopted for these two steps,
such as using IRAP [34] or IG2 [35] to build the weighted
graph and using KNN or other machine learning methods
to predict the functions of proteins.

Figure 6. The precision–recall relationships of our ANN-
based method are compared with two competing meth-
ods: indirect neighbours methods and neighbour counting
methods. For any recall value, our approach substantially
outperformed the other two methods.

4.3 Discussion

Through recent advances of high-throughput techniques,
a significant amount of protein interaction data has been
accumulated. Protein functions have been predicted from
the interaction data because the evidence of interactions
can be interpreted as functional links. However, we ob-
serve that only a small fraction of current interaction data
from major interaction databases are related to functional
linkage. The results indicate that more than 60% of inter-
acting protein pairs are not linked by similar functions. In
other words, at most 40% of protein pairs have been moti-
vated by similar functions. This observation has been also
demonstrated by the limited accuracy of previous function
prediction methods.

Our method uses the small-world property of pro-
tein interaction networks and derives functional informa-
tion from both direct neighbours and up to level-3 neigh-
bours, which is more comprehensive than just using direct
neighbours and neighbourhood information. Also using a
weighted interaction network is more suitable than using a
unweighted network as different neighbours have different
contributions to the functions of unknown proteins.

In our experiments, function prediction has been con-
ducted with yeast PPI data. However, our ANN-based
framework can be well-applicable to higher-level organisims
because of its efficiency.

5. Conclusion

Functional characterization of proteome is a central goal in
the field of bioinformatics. The experimentally determined
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protein interactions are crucial data sources to uncover the
functional knowledge of uncharacterized proteins. How-
ever, a pre-process to access the functional linkage of in-
teracting proteins from current interaction data is required
for predicting protein function successfully.

In this paper, we presented an ANN-based method to
integrate direct neighbours, level-2 neighbours and level-3
neighbours based on a weighted protein interaction net-
work to predict the functions of proteins. Our results imply
that function prediction from protein interaction networks
using a weighted network is a promising way, and inte-
grating more data sets and more protein function related
information may achieve better results. This is also our
future research for functional knowledge discovery.
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