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Abstract

Finding similarity between a pair of protein structures is one of the
fundamental tasks in many areas of bioinformatical research such
as protein structure prediction, function mapping, etc. We propose
a method for finding pairing of amino acids based on densities of
the structures and we also propose a modification to the original
template modeling-score (TM-Score) rotation algorithm that assess
similarity score to this alignment. Proposed modification is faster
than TM and comparably robust according to non-optimal parts in
the alignment. We measure the qualities of the algorithm in terms of
structural classification of proteins (SCOP) classification accuracy.
Regarding the accuracy, our solution outperforms the contemporary
solutions at two out of three tested levels of the SCOP hierarchy.
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1. Introduction

Proteins and their interactions are crucial for every living
organism. To be able to understand protein interactions
and their evolution, the study of protein structures is
inevitable. In face of large number of determined protein
structures in the protein data bank (PDB) [1] a need for
certain form of organization of these structures emerged.
From all the classifications, manually curated hierarchical
evolutionary classification SCOP [2] was established as
the gold standard for organizing protein structures. The
hierarchy contains four levels — family, superfamily, fold
and class. Proteins in the same family can have high
sequence similarity (>30%) or lower sequence similarity
(>15%) with very similar function or structure. Proteins
sharing common evolutionary origin (based on structural
and functional features) but differing in sequence reside
in the same superfamily. Structures having same major
secondary structures in similar topological distribution are
in the same fold. And finally, similar folds are grouped into
classes.

In the face of growing size of PDB, there became a
need to automate the work of a human expert, hence
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being able to assess a correct classification to a newly
discovered protein automatically. This task facilitates
the process of determination of protein function (which is
grossly determined by the structure) since establishing a
similarity class gives a hint to the function of the protein.

Algorithms solving structural similarity problem usu-
ally describe protein structures by a set of features based
on 3D distances of proteins’ amino acids (and sometimes
other qualities such as amino acid burial, solvent expo-
sure, hydrophobicity, secondary structure elements — SSE,
etc.). Purpose of these features is to chracterize the protein
structure as closely as possible and use them to describe
similarity of a pair of proteins in terms of partial simi-
larities of the amino acids (hence features by which they
are represented). Since protein structures do not have a
fixed coordinate frame, features (that are independent on
the absolute position in space) are usually used to find
matching pairs of amino acids in the respective proteins.
Given the alignment, an algorithm is used to rotate and
translate one of the structures to optimally fit the other.
Here, the optimality is expressed in the sense of a distance
function (various methods can use various distance func-
tions) that has to be minimized or maximized. It has been
shown that finding an optimal pairing of amino acids is
NP-hard [3].

In this paper, we approach both problems — we propose
an algorithm for pairing amino acids (Sections 2.1, 2.2)
and this pairing is forwarded into an improved algo-
rithm for computing template modelling-score (TM-Score)
(Section 2.3).

Let’s revisit few well-known algorithms used for com-
parison of protein structures. Distance alignment matrix
method (DALI) [4], one of the first methods to compare
protein structures, employs matrix of inter-residual dis-
tances and uses its parts to find similar substructures that
are utilized for finding the alignment by Monte Carlo al-
gorithm. Combinatorial extension (CE) [5] utilizes aligned
fragment pairs (AFP) to describe pairs of consecutive
residues in both structures sharing substantial structural
similarity and these pairs are then connected to obtain
the alignment. Another well-known example is sequen-
tial structure alignment program (SSAP) [6] which utilizes
dynamic programming (DP) to assess similarity to pairs
of amino acids which are represented by so-called views
(vector of distances to all the other amino acids). Optimal



paths in the individual DP matrices are used to fill in DP
matrix at second level that outputs the final alignment.

Now, we will briefly describe newer algorithms to
which we will compare our solution of the problem. The
most well-known algorithm is probably TM-align [7], since
it is the solution with which the TM-score [8] is usually
presented. TM-score is considered as the standard for
evaluating similarity of two structures given an alignment
(see Section 1.1). TM-Align uses three initial alignments
achieved by DP based on SSEs and/or distances of C,
amino acids. For these alignments TM-score rotation ma-
trix is computed and used as the basis for scoring matrix
for further iterative steps of the DP. Vorolign [9] uses global
DP solution where scoring matrix is based on features ob-
tained from Voronoi tessellation. The same group of au-
thors presented later a solution called phenotypic plasticity
measure (PPM) [10]. PPM identifies core blocks (blocks in
the two structures sufficiently similar) which are then used
to create a graph of core blocks. The path in the graph that
minimizes the cost of mutation is chosen. Finally, the most
recently presented solution is Vorometric [11]. Vorometric
achieves in general the highest classification accuracy and
(similarly to Vorolign) employs Voronoi contacts enriched
with SSE information to obtain a metric scoring matrix
enabling indexing of global DP computations, thus highly
increasing classification speed.

1.1 Protein Structure Similarity Measures

Probably the most often employed measure is the root
mean square deviation (RMSD). Given the alignment, the
optimal superposition minimizing RMSD distance can be
found in polynomial time by Kabsch algorithm [12]. In
RMSD, distances (after translation) among paired amino
acids are computed and then aggregated to get the dis-
tance:

RMSD =

N stands for the length of the alignment and d; for the
distance between ith pair of aligned amino acids.

But such a distance could be easily influenced by
outliers (partial distances being far from average) and is
not sensitive to highly conserved local substructures. To
handle these issues, TM-score [8] was proposed which puts
emphasis on closer pairs by weighting them higher. The
superposition is obtained by its own algorithm exploiting
Kabsch (see Section 2.3 for details and optimizations).
TM-score value (to evaluate quality of the superposition)
is defined as:

La
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TM-score = 7 _— (2)
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Let’s assume that TM-score is used for classification
purposes where an unknown structure (target) is being
classified. Then Ly stands for length of this structure, L 4
is length of the alignment, d; distance between ith pair of
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aligned amino acids and dy is a normalization parameter
(see [8] for details).

2. Methods

In this section we describe our approach to protein struc-
ture alignment which consists of finding best possible align-
ment of amino acids based on the density of the residues.
Afterwards we revisit the TM-score algorithm for finding
optimal superposition based on given alignment presented
in [8].

The alignment is the crucial component of the process
of superposing protein structures. Given a meaningless
alignment, no method is able to provide a good superposi-
tion. Since the problem is computationally very expensive,
only heuristics are employed to find the alignment. Our
proposed heuristic understands individual amino acids as
viewpoints from which the rest of the protein is viewed.
Then we pair similar viewpoints from respective protein
structures with the help of local or global dynamic pro-
gramming.

2.1 Protein Structure Representation

Our protein structure representation is based on distances
and density of the amino acids (their C, atoms) that
we presented in [13]. A protein structure (of size n) is
represented by a set of n feature vectors each of them
describing the neighborhood of an individual amino acid.
We present several semantics of feature vectors based on
density of amino acids in nested 3D rings with the center
in the amino acid from which the protein is viewed (see
Fig. 1). Based on widths or perimeters of those rings,
feature vectors are extracted which we call viewpoint tags
(VPT) since they are blueprints of the protein according
to given amino acids.

For the following alignment step, each amino acid in
both proteins to be superposed is converted into feature
vector (VPT) based on one of the semantics. The VPTs
are then used for forming the alignment.

The description of the VPT semantics follows.

Let vp represent a particular viewpoint, then wvpl[i]
stands for the ¢th ring, rad(vp[i]) for the distance
from the viewpoint to the further edge of the ith ring,
width(vpli]) = rad(vpli]) — rad(vp[i — 1]) (width(vpl0]) =
rad(vp[0])) and let dens(vpli]) be the density (sum) of the
residues in the ith ring (see Fig. 1). Finally, let V PTTi] be
the ith coordinate of the feature vector (viewpoint tag).
Based on these terms, we propose several VPT semantics.

e sRad: For sRad (radius based semantics) it holds:
— Vi, j: dens(vpli]) = dens(vp[j]) =p
— Vi: VPT[i]=rad(vp[i])
where p is a user-defined parameter representing percent-
age of amino acids in the protein.
e sDens: For sDens (density based semantics) it holds:
— Vi, j: width(vpli]) = width(vp[j]) = w
— Vi: VPTi] = dens(vpli])
where w is a user-defined parameter representing width of
the rings in A.



Figure 1. Visualization of a protein with PDB ID Iapc
in 2D. Vertices on the curve correspond to C, residues of
individual amino acids. dens(vp[2]) equals number of dots
in rings.

e sRadSSE, sDensSSE: s*SSE is identical to s* ex-
cept for semantics of vp which slightly differs. Only
residues belonging into an « helix or a 3 sheet are
taken into account when defining viewpoints. More-
over, residues from distinct SSE types are stored sep-
arately. Hence dimension of the VPT increases twice.
ith ring is represented by V PT[2i] (« type residues)
and VPT[2i + 1] (8 type residues). V PTi] is defined
the same as in the sRad (sDens) VPT semantics.

e sDir: For sDir (direction based semantics) it holds:

— Vi, j: width(vp[i]) = width(vplj]) = w
—Vi: VPT[i]|= Y (pairs of consequent residues in
the ith ring with the orientation from the vp)
where w is a user-defined parameter representing width of
the rings in A. sDir semantics aims to detect shape of the
curve within the bounds of the density/distance approach.
We utilize weighted euclidean distance for VPTs com-
parison. Weighting is used for emphasizing the fact that
for assessing similarity to a pair of viewpoints, their close
neighborhood is more important than the more distant one.
Hence, our weighting scheme favors the close neighbor-
hood by putting more weight on the first few coordinates.
Specifically, for ith coordinates of the feature vectors, we
define weighting scheme w as w(i) =n — log(i).

2.2 Finding an Alignment

Using VPTs and distance functions from Section 2.1, we
apply DP to find optimal pairs of amino acids (similar
viewpoints) following sequence order. This solution can re-
semble sequential structure alignment program (SSAP) [6],
but despite SSAP we do not need to accomplish two levels
of DP, since our viewpoints based on VPTs substitute the
first level of DP. We compute distances between all pairs
of VPTs in the given proteins and these are stored in a
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matrix that is subsequently used as scoring matrix for the
DP phase. Moreover, in contrast to SSAP we use variable
gap costs and modified TM-score for scoring.

2.2.1 Needleman—Wunsch (Global Alignment)

Needleman and Wunsch (NW) [14] is a DP programming
algorithm that was originally invented to optimally align
two protein sequences given a substitution (distance) ma-
trix (expressing similarity of pairs of amino acids). The
core of the algorithm is a recursive function deciding
whether ith and jth letters should be aligned or whether a
gap should be introduced into one of the sequences. The
decision is based on the S[i,j] and on the already com-
puted values in the DP matrix. The value of the optimal
alignment is finally stored in the lower right corner of the
DP matrix and the alignment can be determined by a
backtracking procedure starting at that point. To penalize
gaps in the alignment, the gap price (o) is introduced. An
extension to NW algorithm allows to penalize differently
start and continuation of a gap which we utilize in our al-
gorithm. Originally, NW was proposed as a maximization
problem where similar amino acids scored higher and gap
penalties were usually negative. To use NW with VPTs
we replace the maz with min function because our sub-
stitution matrix S contains lower values for similar pairs
of viewpoints, hence optimal alignment is that one having
minimal overall score.

2.2.2 Smith—Waterman (Local Alignment)

To be able to concentrate more on conserved parts of the
relative protein structures we also use Smith and Waterman
(SW) algorithm [15]. SW was also proposed for protein
sequences to find highly similar (conserved) subsequences.
The DP recursion is very similar to NW — a parameter
is added to the maxz function to recognize fields in the
DP matrix where it does not make sense to continue an
alignment and at which point a new one should start —
this value is usually 0. Hence, if at a position the DP
score drops under 0, no alignment crossing this point could
possibly achieve higher score than alignment starting at
that point. Moreover, score of the alignment is not found
at the lower right position in the DP matrix anymore,
instead it resides at the position with the highest score.
That position also represents end of the local alignment
(its starting point is the position with the first zero while
backtracking from that point).

Using SW with our algorithm is not so straightforward
as using NW. If minimization would be the only change
to the algorithm then, because of adding zero (minimum
value ensuring locality of the alignment) to the recursive
formula, in each alignment of length at least one would
score higher than zero and hence would be impossible to
achieve. To be able to utilize local alignment we keep
the maximization but modify the substitution matrix. At
first we modify the cells so that lower values imply lower
similarity by S[i,j] =¢/Si, j] (c being a constant value).
Moreover, median p is computed from the modified values
and 3/4+ u (empirically determined) is subtracted from



each value in S. So we introduce negative values into
the scoring matrix inevitable for local alignment to behave
correctly.

2.2.8 Gap Costs

Both types of alignment allow using different costs for
opening a gap and extending an already opened gap. In
all algorithms, we are aware of, this price is constant.
But since the substitution matrix is not constant in our
case (as it usually is for sequence alignment algorithms),
the gap costs should not be constant either. For this
reason, we employ variable gap costs (varying for each
single pair of structures) that was empirically determined
as OGP =y for open gap penalty and EGP=pu/2 for
extend gap penalty.

2.3 Scoring

As stated earlier, the quality of the final superposition is
strongly dependent on the initial alignment that is passed
to the superposition method. But this method itself can
be robust regarding non-optimalities in the alignment. For
example with the same set of alignments we are able
to achieve higher classification accuracy with TM-score
than with RMSD. It is not only the consequence of the
formula itself but also the transformation procedure that
superposes the structures (to this superposition the formula
is applied). Hence, we not only use the TM-score formula
but we also improve the rotation procedure (by adding
iterative steps of DP) to increase the robustness of the
TM-score as a whole. Moreover, we propose a modification
to increase the speed of the algorithm causing only a small
or no decrease of the classification accuracy.

2.3.1 Reducing the Number of Initial States of TM-
Score

One of the problems of the TM-score is the absence of
a fast algorithm for computing the superposition of the
alignment. The algorithm presented in [8] is a relatively
slow heuristics. Its main idea lies in finding such a cut
(subset) of the input alignment whose RMSD superposi-
tion maximizes the TM-score formula.! The algorithm
uses various initial cuts of the alignment. For each, its
RMSD superposition and TM-score according to this su-
perposition are computed and a new cut of the alignment is
created. The new cut includes those pairs of the alignment
that are spatially near in the superposition. The process
is repeated until stabilization of the cuts (two subsequent
cuts are identical) or maximum number of iterations (typ-
ically 20) is achieved. In the end, from all the superposi-
tions that one maximizing TM-score is returned. Hence,
the main factor influencing speed of the algorithm is the
number of initial cuts. The algorithm examines initial cuts
of lengths L, L/2 ...maxz(L/2%,4), L being length of the
input alignment. For each length, all possible continuous
cuts of given length are taken.

1 Superposition of the cut is then applied to the original align-
ment.
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To speed up the algorithm, we reduce number of the
initial cuts. In an extreme variant (called FAST), we
use only one initial cut that includes the whole (initial)
alignment (with such an approach, quality of the initial
alignment and similarity of the proteins should be consid-
erably high). In other variant (called FAST SSE), we
take the whole alignment as in the previous variant and its
continuous cuts having pairs coming from identical SSEs.
The reason for considering those cuts is based on the as-
sumption that cuts with this property should be included
in the optimal cut of the initial alignment.

In general, FAST and FAST SSE approximations
show worse results (lower value of the TM-score) than the
full TM-score algorithm. However, the level of decrease
of the TM-score value is dependent on similarity of the
proteins (see Fig. 2). For proteins being significantly sim-
ilar full TM, FAST and FAST SSE give comparable re-
sults. The vertical line in Fig. 2 shows the average value
of TM-score similarity from the query to the most similar
database protein (the exact value is 0.72 with 0.11 being
the standard deviation). These proteins are important for
us since according to them the classification is carried out
and for these proteins the difference between original TM
and FAST* modifications is very small.

To classify a query protein, we find the most similar
protein in the database. As stated in preceding para-
graph, for structurally similar proteins full TM and FAST*
variants differ only slightly. We employ this quality and
use FAST* heuristics as a prestep since they are much
faster than the full TM (see Sections 3.3 and 3.1.1). The
database is scanned with FAST* heuristics and then one
of the following methods is applied to pick up database
proteins (candidate set) that are to be aligned to the query
with the full TM-score method:

e top kNN (k nearest neighbors) fitraltion — k most
similar proteins to the query are forwarded into the
next stage where they are ordered according to the full
TM-score

e range filtration — only proteins in a given distance
from the most similar protein are further examined?

2.3.2 Iterations of TM-Score

One of the major qualities of the TM-score formula lies
in concentrating on strong local structural similarities.
Hence, an alignment with highly similar regions shows high
TM-score. On the other hand, a superposition looking
optically well (Fig. 3a®) can obtain lower TM-score than it
should according to the look. In such case, correction of
the alignment by DP should increase the TM-score value.
Similarly to [17], we employ NW with scoring matrix S,
defined as:

Slivj) = ——— 3)

2
dij
1+ (%)
2 Such an apporach is more effective than the more common
method where proteins in a given distance from the query are

considered since it is more query-specific.
3 Image generated by VMD [16].
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Figure 2. The average difference of FAST and FAST SSE modifications according to the full TM-score (y-axis shows the

average decrease of the score).
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Figure 3. Superposition and alignment (aligned residues connected by black bars) of the proteins dlnyef and d1n2fa_ before
(a) an after and (b) iterative DP (with TM-scores 0.56553 and 0.70329).

d;; being the euclidean distance of the ith and jth residues
of the proteins and dy the normalization parameter.

The optimal path through the DP matrix represents
the alignment having best TM-score value according to
the given superposition. We modify NW to increase speed
and to avoid extensive modifications in the alignment by
considering only an area (belt) in the DP matrix with a
constant width going along the original alignment (we set
width of the belt to 33 if not stated otherwise). Based on
the newly obtained alignment, the whole process of com-
puting TM-score superposition can be iteratively repeated
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(we run two iterations of DP). Superposition and align-
ment after two DP iterations demonstrates Fig. 3b (black
bars represent the alignment).

3. Experimental Evaluation

To evaluate our method and to compare it with other
algorithms, we employ simple classification accuracy (CA —
ratio of proteins classified into the correct SCOP “family”)
and precision-recall curves in our experiments. If not
otherwise stated, our algorithm uses sDens semantics
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fast =FAST modification).

(eight rings each having width SA) to extract feature
vectors.* The machine running experiments was 2.4 GHz
4 x Six-Core AMD Opteron CPU, 96 GB RAM with Red
Hat Linux Server 5.4.

Using dataset originally presented in [9] (also used
in [10, 11]) (CA of other methods is acquired from these
papers) allows us to compare our method to the best con-
temporary solutions. This dataset contains 979 test pro-
teins present in version 1.67 of ASTRAL compendium [17]
(based on SCOP classification) but not present in version
1.65. Test proteins were scanned against ASTRAL25 (each
pair of proteins sharing no more than 25% sequence iden-
tity) version 1.65 database containing 4,357 objects, eval-
uating number of correctly classified proteins into family,
superfamily and fold according to the SCOP classification.

3.1 Classification Accuracy (CA)

As stated earlier, a protein is classified correctly if a
method classifies identically as SCOP does on a given level
(family, superfamily, class). CA is an aggregation measure
expressing quality of a method by summing the correct
classifications and dividing them by the number of proteins
to be classified (ratio of correctly classified proteins).

3.1.1 Belt-based Restriction Fvaluation

In Section 2.3.2, we described how we employ belt for
restriction of the space of the DP matrix in which the
alignment’s improvement takes place. Hence, the new
alignment, for which TM-score algorithm is computed, lies
within a belt defined by the previous alignment. The
advantage of the belt should be twofold — higher CA
(the new aligment sticks closer to the previous one and

4 The values or parameters of the semantics are based on results
in [13].
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Table 1
Classification Accuracy on SCOP Levels

Family | Superfamily | Fold
db-iTM 86.6 95.8 98.2
db-iTM, i 86.9 95.8  |98.2
db-TMoyrig 85.4 93.4 96.7
Vorometric-TM | 90.7 94.9 97.6
PPM 88.3 94.5 97.5
Vorolign 86.4 92.4 97.7
TM-align 83.8 92.6 95.9
CE 84.6 91.9 94.1
BLAST 48.9 52.5 52.8

thus it relies more heavily on the initial alignment) and
lower runtime (less time is spent in the DP). Figure 4
presents the results. Figure 4a shows how width of the
belt influences the CA. We can see that the optimal belt
witdh is about 33 where superfamily CA reaches 95.8%
(41 wrong classifications out of 979). On family level,
original TM-score outperforms the FAST heuristics but on
other levels, both versions are comparable. Here we must
stress out that although CA of both methods is almost
equal, they do not return identical results. There are few
proteins which are identified correctly with original TM
and incorrectly with FAST TM and vice versa. Precision—
recall experiments in Section 3.2 indicate that the overall
quality of original TM is slightly better than that of FAST
heuristics. On the other hand, FAST version is much faster
as Fig. 4b demonstrates.® Original version of TM takes

5 The time values do not include 50s for alignment computation.
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about 365s per classification whilst FAST modification
runs only 8.6s for belt width 33. Speed evaluation offers
an interesting observation — with descreasing width of the
belt the runtime of original version increases but that of
FAST version decreases or stays constant. This can be
explained by analysing components of the runtime. The
main component of the runtime of original TM is the TM
transformation procedure itself, not the DP which takes
only about 7s of the overall time. With small belt width
the DP is run more often, hence more time is spent in the
TM procedure which consumes most of the runtime. On
the other hand, in FAST version the TM takes only 1s and
hence the main determinant is the DP, which is restricted
by the belt.

3.1.2 Comparison of CA with Other Methods

Methods to be compared to our solution include BLAST
[18] (used with its standard settings), CE [5], PPM [10],
TM-align [7], Vorolign [9] and Vorometric [11] (its TM
variant applying TM-score superposition).

In Table 1, db-iTM represents our method with fast
iterative TM (TM_FAST). Original TM score rotation
algorithm (exploiting sDens semantics) is marked as db-
TMorig and db-iTM,,4 is its iterative version. The re-
sults demonstrate superiority of db-iTM,,;; and db-iTM
in superfamily and fold CA. On family level, Vorometric,
PPM as well as Vorolign outperform our solution which is
probably caused by not taking sequence into account at all
(as stated earlier, SCOP families are largely determined
by sequence identity). We can observe poor results of
BLAST (exclusively sequence-based method) which can be
definitely attributed to the level of difficulty of the test set
aiming at low sequence similar proteins.

We believe that the accuracy of our method lies in
quality of the initial alignment and in iterative use of the
TM-score (where using the belt further increases the ac-
curacy by concentrating on polishing the found alignment
instead of seeking for other possibilities). Other methods,
such as Vorolign and Vorometric, use TM-score formula
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for the evaluation of their superpositions but these super-
positions are not achieved with the help of the TM-score
algorithm but with Kabsch (RMSD) algorithm. Avoiding
the TM-score transformation algorithm is understandable
since its runtime in the original version is very high which
we investigate in further section.

3.2 Precision—Recall Experiments

More practical for real is a method returning multiple
results/proteins (instead of the classification only) which
can be manually revisited. Among those returned answers
should of course prevail correct classifications. Information
retrieval (IR) field offers utility to evaluate quality of the
method according to this requirement — precision—recall
curves. In our case, precision is defined as correctly clas-
sified proteins /retrieved proteins and recall as correctly
classified proteins /proteins in the query’s “family”.

In Fig. 5% precision-recall curves are shown belonging
to sRad(SSE), sDens(SSE) and sDir semantics using
db-iTM and not using prefiltration (for non-SSE semantics,
results for both local and global algorithms to obtain the
initial alignments are shown). At most of the recall levels,
sDensSSE semantics dominates but on low recall levels
the dominate semantics is sDens which is why we use it in
the CA experiments. We can also see that using local DP
(SW) is more suitable than using global one (NW).

3.3 Prefiltration Evaluation

The above experiments show that original db-iTM ;4 and
db-iTM (FAST) methods provide almost identical results
except the fact that FAST is much faster then the original
TM (db-iTM orig takes 363 s whereas db-iTM takes only
8.48). But there is still a need for original TM — the
overall results of full TM might be more valuable as Fig. 6a
suggests. The set of top scored proteins contains more

6 Only our solution is presented here since we were not able
to obtain source codes of the other methods.
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Figure 7. Impact of the prefiltration candidate set size on the runtime and CA (the upper dashed line represents runtime of
the full TM version, the lower dotted line represents its CA).

proteins from the query’s superfamily in case of original
TM than when using the FAST variant.

To obtain original TM results in lower time, we propsed
using prefiltration (see Section 2.3.1 — fullscan is carried
out with non-iterative FAST TM, which takes only 0.4s,
and then the proteins in a given range from the top scored
protein are rescored with original TM). Figure 6b shows
what is the minimal range to be applied to the results
of db-TM to obtain identical results as db-iTM ;4 does
(not only identical CA but also the same query proteins
are classified identically in original and FAST version).
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In Fig. 7, both possible type of filtering (kNN and
range) are presented. Figure 7a shows that for filtration set
size of about 1,300 (hence for the whole DB db-TM is com-
puted and 1,300 top proteins are verified by db-iTM 4yg)
the accuracy is identical to db-iTM o4 (if prefiltred by
FAST SSE. in case of FAST the threshold is 2300). For
such a set size the runtime is 179s, hence less than 50% of
the runtime of the full version. Using range prefiltration,
the results are even better since when CA of the prefiltra-
tion method hits the accuracy of full TM the runtime is 37s
in case of using TM FAST SSE for prefiltration and 46s



using TM _FAST. Hence, we are able to achieve accuracy
of the full TM method in only 10% of its time. Moreover
the range threshold from which prefiltration and original
TM give identical results is 0.34 as Fig. 6b demonstrates.
The range that is needed to hit the CA of original TM
when prefiltering by db-TM is higher, hence we not only
achieve the same CA but we also obtain identical results
(structure of the result).

4. Conclusion

We proposed a novel algorithm aimed at classification of
protein structures. The novelty of the method lies in
using density-based representation of protein structures
together with DP. Resulting alignment is forwarded to
TM-score rotation procedure. Based on the result, the
alignment is repaired by global dynamic programming with
belt bounding the alignment. This modification increases
both speed and accuracy. We also proposed modification
of the TM-score rotation procedure highly increasing the
speed of the algorithm causing only slight deterioration
of the accuracy. Finally we enhanced the method with
prefiltration step that leads to a fast method outperforming
other algorithms at the superfamily and fold level.”
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