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A GPGPU PROGRAMMING
FRAMEWORK BASED ON
A SHARED-MEMORY MODEL
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Abstract

Although general purpose computation on GPU (GPGPU) seems
to be a promising method for high-performance computing, current
programming frameworks such as CUDA and OpenCL are difficult
and not portable enough. Therefore, we propose a new frame-
work MESI-CUDA for easier GPGPU programming. MESI-CUDA
provides shared variables which can be accessed from both CPU
and GPU. Our compiler translates user’s shared-memory-based pro-
gram into a CUDA program automatically generating the memory
allocation and data transfer code. The compiler also overlaps
kernel executions and data transfers by optimizing the scheduling.
The evaluation results show that programs using MESI-CUDA can
achieve the performance close to hand-optimized CUDA programs,

largely reducing user’s coding cost.
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1. Introduction

The performance of graphic chips, known as graphics pro-
cessing units (GPU), is improving rapidly outpacing the
Moore’s law [1]. Therefore, general purpose computation
on graphics processing units (GPGPU) [2] is expected to be
a practical platform for high-performance computing. Pro-
gramming frameworks such as CUDA [3] and OpenCL [4]
are provided for the purpose.

However, such frameworks are based on the low-level
description of the memory allocation and data transfer.
Although such description enables detailed optimization
of the program, it also makes programming very difficult.
The user must explicitly specify data transfers between
the host (CPU) memory and the device (GPU) memory.
Furthermore, the GPU has complicated memory hierarchy
whose specification differs in different chips. It makes the
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cost of tuning GPU programs very large and also reduces
portability.

Therefore, we are developing a new programming
framework named MESI-CUDA based on more abstract
parallel description. Low-level code, such as the memory
management, data transfer, and scheduling of parallel ex-
ecution, is automatically generated. Our compiler trans-
lates a shared-memory style parallel program into a CUDA
program, generating code for the data transfer between the
host and the device memories. Device-dependent memory
hierarchy, such as the global/shared memories, is hidden
from the user and their usage is optimized by the compiler.
The scheduling of kernel executions and data transfers is
also determined by the compiler, overlapping the com-
putation and the transfer. This approach enables easier
and portable programming, leaving the device-dependent
optimization to the compiler.

This paper is organized as follows: Section 2 gives
a brief introduction of the GPU and CUDA and points
out the current issue. In Section 3, we discuss related
works. Section 4 details MESI-CUDA, and in Section 5,
we illustrate its implementation. In Section 6, we show the
evaluation results, and in Section 7, we discuss our future
works. In Section 8, we state the conclusion.

2. Background
2.1 GPU Architecture

GPU is a collection of streaming multiprocessors (SM),
each consisting of certain number of processor cores. Com-
pared with general purpose CPU, these GPU cores are
simple without complex features such as branch prediction
and execution reordering, but their number is very large.
For example, NVIDIA GeForce 9800 GTX and Tesla C2050
have 128 and 448 cores, respectively.

The GPU has hierarchical memories. FEach core has
registers and a local memory, each SM has a small shared
memory which is shared among the cores in the SM,
and a GPU has one global memory shared by all SMs.
Furthermore, the GPU has constant and texture memories
for specific purposes. They are shared by all SMs like
the global memory but has some restrictions such as they



1 #include <stdio.h>
#define N 3200
#define S (Nssizeof(int))

[TV o8]

—global__ void add_array(int *x, int =a){
int id = blockDim.x*blockIdx.x + threadIdx.x;
a{id] = afid] + x{id];

}

=1 oy N b=

9 int id = blockDim.x*blockIdx.x + threadIdx.x;
10 flid] = d[id] = e[id];
11 }

12 int main() {

13 int xha, =*hb, =*hc, =hd, =*he, =*hf;
14 int xda, *db, *dc, *dd, xde, *df;
15 cudaMallocHost (&ha, S);

20 cudaMallocHost (8hf, S);
21 cudaMalloc(&da, S);

26 cudaMalloc (&df, S);
27 cudaStream t sa, sb;
28 cudaStreamCreate (&s
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a3 cudaStreamCreate (&sh) ;
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30 init_array (ha);

34 init_array (he);

8 __global__ wvoid prod_array(int =d, int *e, int =f){

35 cudaMemcpyAsync (da, ha, S, HtoD, sa);
36 cudaMemcpyAsyne (db, hb, S, HtoD, sa);
37 cudaMemcpyAsync (de, he, S, HtoD, sa);
38 cudaMemcpyAsync (dd, hd, S, HtoD, sb);
39 cudaMemcpyAsync (de, he, S, HtoD, sb);

40 add_array<<<N/128, 128, 0, sa>>>(db, da);
41 cudaMemcpyAsync (ha, da, S, DtoH, sa);

42 cudaStreamSynchronize (sa) ;

43 output_array (ha);

44 add_array<<<N/128, 128, 0, sa>>>(dc, da);
45 cudaMemcpyAsync (ha, da, S, DtoH, sa);

46 prod_array<<<n/1i28, 128, 0, sb>>>(dd, de, df};
47 cudaMemcpyAsync (hf, df, S, DtoH, sb);

48 cudaStreamSynchronize (sa) ;

49 output_array (ha);

50 cudaStreamSynchronize (sb) ;

51 output_array (hf);

L3 cudaFreeHost (ha) ;

57 cudaFreeHost (hf) ;
58 cudaFree (da);

63 cudaFree (df) ;

64 cudaStreamDestroy (sa) ;
65 cudaStreamDestroy (sb) ;
66 }

*HtoD, DtoH are actually cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost, respectively.

Figure 1. Sample program for CUDA.

are small and read-only from the GPU cores. Physically,
the shared memories are fast on-chip memories, whereas
the local and global memories are off-chip and have large
access latency. The constant/texture memories are also
part of the off-chip memory but have small caches which
enable better access performance.

GPUs are still in rapid evolution and their features,
such as the number of cores and sizes of memories/caches,
differ by GPU models. For example, NVIDIA’s second gen-
eration GPU architecture Fermi has additional features
compared with the first generation architecture Tesla, such
as extended shared memory size, increased number of cores
per SM, L1/L2 caches for the global memory access [5].
Therefore, a well-tuned program for a certain GPU model
may not achieve high performance on other models.

2.2 CUDA Programming

Compute unified device architecture (CUDA) [3], [6], [7] is
a GPGPU programming framework provided by NVIDIA,
using extended C/C++ and the compiler nvcc. Figure 1
is an example of a simple CUDA program. The func-
tions init_array() and output_array() perform read
and write to the argument array, respectively!. The addi-
tional code required for parallel programming in CUDA is
shown in bold font.

I This code is simplified as an example and actually cannot

expect speedup. Kernel functions should be more compute
intensive to hide the data transfer overhead.

In CUDA, the CPU and GPU are called host
and dewvice, respectively. Functions, declared with the
__device__ or __global__ qualifier, are called kernel
functions and executed on the device (Fig. 1, I. 4-11).
Other functions (called host functions in this paper) are
executed on the host. To start computation on the GPU,
any host function can call a __global__ kernel function
specifying the numbers of thread blocks and threads per
block. The called function is not executed on the host
but the kernel threads which execute it are created. The
threads are scheduled by the system and run on assigned
GPU cores. Each thread block is executed on a SM, thus
the threads in the block are executed by the cores in the
SM. Using block/thread IDs to specify the data element to
process, data parallel processing can be described easily.

Executing a set of kernel threads created in one kernel
function call is an instance of parallel execution of the
kernel function. However, due to loops and function calls,
the same call code may be executed more than once, each
time creating a set of kernel threads. So in this paper,
we call the static code of kernel function call as kernel
invocation, and the parallel execution instance as kernel
execution.

In Fig. 1, two kernel functions are invoked to compute
the sum and the scalar product of arrays. Each kernel
function computes the array element corresponding to the
ID (Fig. 1, I. 5-6, 9-10), thus creating N kernel threads
for the array size N (Fig. 1, [. 40, 44, 46) makes parallel
computation of the whole arrays.



Table 1

CUDA Data Transfer Functions

cudaMemcpy(d, h, b, cudaMemcpyHostToDevice) ;
cudaMemcpy(h, d, b, cudaMemcpyDeviceToHost) ;
cudaMemcpyAsync(d, h, b, cudaMemcpyHostToDevice, s);
cudaMemcpyAsync(h, d, b, cudaMemcpyDeviceToHost, s) ;
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Figure 2. Overlapping execution/transfer using streams: (a) non-overlapping execution and (b) overlapping execution using

streams.

The local variables in kernel functions are compiled as
registers/local memory accesses and are private for each
thread. Variables declared with the __shared__ qualifier
in kernel functions are allocated in the shared memory and
shared among threads in the block. While these memories
can be used only by the GPU, the GPU global memory,
physically on the off-chip memory (called device memory),
is used to share values between all threads and host /kernel
functions. In CUDA programming, explicit data transfers
between the host and the device memories are required.
Data transfers from host to device and device to host are
called download and readback transfers, respectively. The
memory areas on the device used as sources/destinations of
transfers are allocated/deallocated using CUDA functions
(Fig. 1, I. 21-26, 58-63).

CUDA also enables asynchronous data transfer, over-
lapping kernel executions and data transfers. Kernel ex-
ecutions which have dependencies and the related data
transfers can be bundled using a stream. On each stream,
the executions and transfers are performed sequentially in
the assignment order. While a kernel execution assigned
with a stream is underway, any data transfer assigned
with other streams can be performed in parallel. Table 1
shows CUDA data transfer functions. The parameters d,
h are pointers to the device/host memories, respectively, b
(bytes) is the transfer size, and s is the stream to assign
the transfer. To use asynchronous data transfers, streams
must be created and destroyed (Fig. 1, [. 27-29, 64-65) and
the source/destination memory areas on the host must be
allocated/deallocated using CUDA functions to page-lock
them (Fig. 1, I. 15-20, 52-57). Then, each kernel invoca-
tion and asynchronous transfer function call must specify
a stream to assign (Fig. 1, I. 35-41, 44-47). Further-
more, a stream synchronization is necessary before reading

transferred data on the host to assure asynchronous read-
back transfer is completed (Fig. 1, [. 42, 48, 50). Some
GPU models, such as Tesla C2050, have dual DMA chan-
nels and bi-directional data transfers can also be over-
lapped.

Figure 2 illustrates how kernel executions and data
transfers are overlapped. The code in Fig. 1 assigns
add_array() and prod_array() to different streams.
Therefore, the download transfer for the latter can be
overlapped with the execution of the former, and the
readback transfer for the former can be overlapped with
the execution of the latter.

CUDA provides some features to simplify data trans-
fers. CUDA 4.0 supports Unified Virtual Addressing,
which can map the host/device memories into a single
address space. Although the transfer directions can be
omitted, explicit data transfer is still necessary. Another
feature, called mapped memory, enables direct access to
the page-locked host memory from kernel functions. It
does not require explicit transfers and can be overlapped
without using streams. However, multiple accesses to the
same data will decline the performance because an implicit
transfer occurs for each access.

2.3 CUDA Programming Issue

As described in Section 2.2, one important issue in
CUDA programming is that the low-level description is re-
quired. Although such description enables the user device-
dependent optimization, it also increases the programming
difficulty. In addition to the cost of sequential program-
ming, CUDA programming also requires the cost of (1)
computation parallelization, (2) data allocation, (3) data
transfer and often (4) computation/transfer scheduling.



To parallelize the computation, the target computa-
tion must be appropriately divided and assigned to the
CPU core(s) and GPU cores. Although the total perfor-
mance of the GPU is higher than the CPU, it is ineffi-
cient on many code patterns such as frequent conditional
branches. Thus, SIMD algorithms are required for the
efficient execution on many GPU cores. As for the data
allocation, data accessed by the CPU/GPU must be allo-
cated in the host/device memories, because the CPU and
GPU do not share the memory. Moreover, the decision of
each data allocation on GPU also influences the program
performance, because GPU has several memory storages
whose sizes and access latencies largely differ. To share
any data between the CPU and the GPU, explicit data
transfers are required. To reduce the transfer overhead,
the number/size of transfers should be considered. Fur-
thermore, the computation/transfer scheduling may also
dominate the performance. Although CUDA streams can
overlap the computation and the transfer, the user must
determine their bundling and ordering considering inter-
kernel data dependencies. To improve the efficiency, the
time of each kernel execution and transfer should also be
considered.

CUDA programmer must write code for these features.
To obtain satisfying performance, such code should be
tuned considering the target platform’s specifications. Fur-
thermore, such hand-optimization will be required again
to run the program on another GPU of different specifica-
tions. Automatic generation of such code will be the an-
swer to this problem, because it reduces the programming
cost and porting to another GPU only requires recompiling
for the target GPU.

3. Related Work

As a major GPGPU framework, OpenCL [4] is also avail-
able. It is similar to CUDA but is based on more generic
programming model for heterogeneous multi-core plat-
forms, supporting the Cell processor, DSPs, and FPGAs.
However, like CUDA, the low-level optimization by the
user is needed for obtaining high performance.

To lower the difficulty and improve the portability of
GPGPU, many researches have proposed various schemes
providing more abstract programming models to the user
hiding the low-level optimization inside the compilers and
runtime systems. One of the simple and desirable ap-
proaches is the auto-parallelizing compiler, which auto-
matically generate CUDA code from a sequential program.
For the programs of regular control/data structures and
data access patterns, such as array processing using defi-
nite loops, satisfying result is obtained [8]. However, like
conventional auto-parallelizing compilers for generic multi-
processors, it is often not practical if the program has
irregular factors.

More pragmatic approaches give some kind of paral-
lel description to the system. Some researches propose
translators from other major parallel languages [9] or tem-
plates [10] to CUDA. Other researches are based on the
conventional frameworks like CUDA but the code for some

features is automatically generated [11], [12]. Our frame-
work adopts the latter approach, but we currently focus
on controlling multiple invocations of kernel functions,
whereas most existing works focus on inside of a single
invocation.

Thrust [13] is an another approach of the higher level
programming interface to CUDA, providing some generic
classes as a template library similar to STL. Common com-
putations, such as sort/reduce on vectors, can be easily
and efficiently executed on the GPU by calling the library
methods. Although the data transfer is hidden under
assignments and accesses to the data elements, explicit
data allocations in both host/device memories are needed.
Another disadvantage is that library approach cannot in-
troduce a global optimization. The library code can be pre-
tuned within each method, but the further optimization is
left to nvce.

MESI-CUDA provides a shared-memory model over
physically distributed memories of the CPU and GPU,
which can be regarded as a kind of virtual-shared memory
(VSM) [14], [15]. While the most of the existing VSM
systems are hardware/OS-based, our VSM should be im-
plemented in the language level, because GPUs do not have
either hardware support for VSM or OS running on the
GPU cores. CUBA [16] provides a shared-memory model
on CPU and co-processors and is similar to MESI-CUDA.
However, it is implemented as a cache of the host mem-
ory in the co-processor memory and requires the hardware
support. On the other hand, MESI-CUDA implements a
shared-memory model in the software level, by automati-
cally generating code required for its behaviour.

Similar to MESI-CUDA, Rthreads [17] and compile-
time virtualization (CTV) [18] provide VSM in the
language level without any hardware support. Rthreads
provides the shared-memory based POSIX thread
(Pthreads) model on distributed-memory environments.
For each access to a global variable in the target program,
code to emulate a shared variable is statically inserted at
compile time. Therefore, Pthreads-like programs can run
on distributed environments such as workstation clusters.
Similarly, ANVIL, an implementation of CTV, converts
concurrent C+Pthreads programs into the code for the
target architecture at compile time.  Although these
schemes are more general than MESI-CUDA, the user
needs to explicitly specify low-level synchronizations and
mutual exclusions. We adopt a model specific to GPGPU
programming, thus such specifications are eliminated.

BSGP [19] adopts fork and join parallel computation
model based on Pthreads-like long-term threads and global
barriers for GPU programming. Although the model quite
differs from CUDA, it has similarities to our approach,
such as simplifying/optimizing multiple kernel invocations
and the thread variables translated to be shared among
kernel functions. BSGP code is simple because the com-
piler generates and optimizes kernel functions, and the
GPU memory management is hidden. However, the op-
timization between the host and the device such as the
execution/transfer overlapping is not considered. Map-
ping different computation model to GPU architecture also
causes overheads such as emulating global barriers.



1 #include <stdioc.h>

8 __global__ void prod_array()}{

9 int id = blockDim.xx*blockIdx.x + threadIdx.x;
10 flid] = d[id] =» e[id];

11 }

2 #define N 3200

3 _global_ _ int a[N], b[N], c[N], d[N], e[N], £[N];
4 __global__ void add_array(int #=x){

5 int id = blockDim.x*blockIdx.x + threadIdx.x;

6 alid] = a[id] + x[id];

7}

12 int main(){

13 init_array(a);
14 init_array(b);
15 init_array(c);
16 init_array(d);
17 init_array(e);

18 add_array<<<N/128, 128>>>(b);
19 output_array(a);
20 add_array<<<N/128, 128>>>(c);
21  prod_array<<<N/128, 128>>>();
22 output_array(a);
23 output_array (£);

24 1
=2

Figure 3. Equivalent program using MESI-CUDA.

4. MESI-CUDA

4.1 Outline

While auto-parallelizing compilers hide all parallel pro-
cessing factors (1)—(4) in Section 2.3, we provide an ex-
plicit but more abstracted parallel programming model;
computation parallelization (factor (1)) is left to the user,
but other factors (2)—(4) are implicit and automatically
resolved by the system. This decision is due to the follow-
ing two reasons: First, explicitly dividing the computation
to the CPU/GPU will be practically necessary to achieve
high performance, because the advantages of CPU/GPU
cores largely differ. The specification of host/kernel func-
tions in CUDA is simple enough for the purpose and not
dependent to specific GPU models. However, scheduling
kernel executions/data transfers is device dependent and
very difficult, thus it should be hidden in the system. Sec-
ond, the data allocation/transfer are device dependent and
largely influence the performance. Hiding these factors,
leaving the optimization to the compiler, the programming
difficulty is greatly reduced and the program will be much
more portable.

Figure 3 is a MESI-CUDA program equivalent to the
CUDA program in Fig. 1. The additional code required
for parallel programming is shown in bold font. The code
is an explicitly parallel program consisting of host and
kernel functions. However, most low-level code, such as
allocations/deallocations of memory areas/streams, calls
of data transfer functions, and specifications of stream
assignments, are eliminated.

4.2 Programming Model

In MESI-CUDA, parallelizing computation is same as
CUDA; parallel processing is described as the parallel ex-
ecution of kernel threads executing same kernel function.
The CPU code sets up data, creates kernel threads, and
refers to the result after the GPU computation. On the
other hand, we provide a shared-memory model; global
variables declared with the __global__ qualifier are re-
garded as global shared variables and can be accessed from
both host/kernel functions. Explicit data transfer is not
needed. However, a method for synchronization on shared

i

data is necessary to assure semantically correct execu-
tion2. Specifying synchronization explicitly, like Pthreads,
enables the low-level optimization but increases the pro-
gramming difficulty. Therefore, we adopt an implicit syn-
chronization model.

In our programming model, a kernel invocation k,
which starts a kernel execution e of a kernel function f,
is regarded as a kind of subroutine call. Shared variables
concerning e are regarded as input/output arguments of
this call. If a shared variable s is accessed in e, the accesses
to s in host functions, preceding k, are completed before k.
Similarly, e and all accesses to s in e are completed before
any access to s in host functions, succeeding k, occurs.
To support this model, the value of s is transferred to the
device memory after the latest write on the host before
k. When e is completed, the value in the device memory
is transferred back to the host memory. Although the
execution of host functions continues in parallel with e, it
is blocked if it reads s and is suspended until e finishes and
the value of s is transferred back.

Adopting this simple model, programming is much
easier without explicitly specifying synchronization. Al-
though our model synchronizes shared variables only be-
fore/after each kernel execution, it is sufficient for GPU
programming. Kernel threads cannot synchronize with the
host during their execution, while thread creation cost is
very small. Thus, a GPU is expected to be used as a SIMD
co-processor, running simple and fine-grained kernel func-
tions. Furthermore, our model enables strong optimiza-
tion. To improve the computation/transfer overlap, our
compiler can determine synchronization points and change
the access points to the shared variables as long as the
semantics is not changed.

In CUDA programming, a kernel invocation only
means that the corresponding kernel execution will start
from now on and the actual start/finish time is not assured.
Because MESI-CUDA hides all data transfers from the
user, our compiler can optimize the scheduling of kernel
executions and data transfers by moving kernel invocations
and deciding the location of inserting transfer code.

2 Mutual exclusion is not considered because read/write direction
between the host and the device is usually deterministic in
GPU programming. Algorithms causing write conflict between
the CPU and the GPU will be avoided by the reason of
performance.



4.3 Programming Guideline and Restrictions

Although MESI-CUDA is designed to hide some parts of
GPU’s low-level architecture, the user still needs some
knowledge of GPU to achieve high performance.

Coding kernel functions is the same as CUDA, except
they can access shared variables. Hand-optimization using
GPU specific functions, such as __sinf () and __expf (),
or using the physical-shared memory is still possible. As for
coding host functions, CUDA functions for the memory al-
location/deallocation, data transfer, and synchronization,
are not needed and should not be called because they may
interfere with the code generated by our compiler. How-
ever, it is possible to store values in the constant/texture
memories before the first kernel invocation.

Using shared variables, the implementation is hidden
from the user and the optimization by the system can
be expected. Multi-dimensional arrays can be declared
as shared variables in MESI-CUDA, whereas the memory
areas for data transfer must be allocated using malloc-like
functions in CUDA. Therefore, array-based coding is en-
couraged because it is simpler than pointer-based coding in
CUDA and also make the compiler’s optimization easier.
However, the user should be aware that static-shared vari-
ables occupy the host/device memories throughout the ex-
ecution and accessing them may have large latency. Thus
unnecessary usage should be avoided.

In addition, the current MESI-CUDA implementation
has some restrictions as follows:

1. Conditional branches may cause inefficient code. Al-
though the location of transfer code is optimized con-
sidering the branches (Section 5.2.2), it cannot handle
dynamic behaviours. For example, if a pointer p points
either of arrays a and b according to the execution
path and is given as a kernel function argument, the
transfer code for a and b are both generated because
the compiler cannot statically determine which array
is needed.

2. The compiler uses only the host and global memories to
implement shared variables. Thus, other GPU mem-
ories, such as the shared/constant/texture memories,
are not automatically used.

3. Shared variables must be statically declared and the
dynamic allocation is not supported.

4. Multi-threading of the CPU code and multiple GPUs
are not supported.

Resolving these restrictions is discussed in Section 7.

5. Implementation

MESI-CUDA is implemented as a source-to-source com-
piler (Fig. 4). A MESI-CUDA program is translated
into CUDA code by the compiler, then compiled into
the executable code by the CUDA compiler nvcc. On
the translation, the MESI-CUDA compiler generates ad-
ditional CUDA code for the memory management, data
transfer, and scheduling, based on the result of static anal-
ysis. Furthermore, the scheduling/transfer optimization

MESI-CUDA framework

Source-to-source

— CUDA framework z

Executable

MESI-CUDA
code

Figure 4. MESI-CUDA compilation flow.

is also performed on the source level. The lower level
optimization is left to nvcc.

5.1 Program Analysis

Because kernel functions are explicitly defined by the user,
the MESI-CUDA compiler only needs to modify the code
accessing shared variables and generate data transfer code
for them. So we perform static analysis to extract the
locations of read/write to the shared variables.

Although non-shared variables can be basically ig-
nored, we need to detect their aliases to shared variables,
caused by pointer variables and parameter/argument as-
signments of function calls. Currently, our scheme regards
every shared variable as atomic; any access to an array
element causes transfer of the whole array. Thus tracing
parameters/arguments and pointer assignments is enough.
For example, the access to = in Fig. 3, [. 6 is actually
accesses to the shared variables b and c¢ because z is a
parameter of add_array() and assigned to these shared
variables on creating kernel threads (Fig. 3, [. 18, 20).

The conditional branches and loops (if/switch and
for/while statements) may dynamically change the occur-
rences of kernel executions and accesses to the shared vari-
ables. Therefore, the entry/exit points of each branch/loop
block are checked.

More than one kernel invocation may correspond to
the same kernel function. In such cases, access of shared
variables should be analysed not for each function but
for each invocation, because each invocation may have
different arguments. Similarly, loops and function calls
may cause more than one kernel execution corresponding
to the same kernel invocation code on the host. However,
we do not distinguish such execution instances because our
purpose is generating static code for each kernel invocation.

Because kernel functions cannot call host functions in
CUDA, we can make static analysis efficiently as follows:
First, we make analysis for each __global__ function f
(and its sub-functions) and generate a list of read /written
shared variables. We also identify the read/write to each
parameters of f. Second, we make analysis of host func-
tions starting from main, obtaining every locations of
read/write to shared variables and kernel invocations. For
each kernel invocation, the shared variables read/written
in the corresponding kernel execution are obtained from
the result of the kernel function analysis, by matching
invocation arguments with kernel function parameters.



5.2 Optimization
5.2.1 Scheduling

To overlap a kernel execution and a data transfer, they
must be assigned to different streams. However, the order
of executions/transfers is nondeterministic if they are as-
signed to different streams. Therefore, kernel executions
accessing same shared variables and related data transfers
must be assigned to the same stream to assure the exe-
cution in the programmed order. For this purpose, our
scheduler performs clustering of kernel invocations by their
accesses to shared variables and assign a stream to each
cluster.

Figure 5 shows the stream assignment for Fig. 3 pro-
gram. The two add_array () invocations share the variable
a. Thus, these invocations and the transfers of a, b, ¢
are assigned to the stream _s[0] to satisfy the ordering.
On the other hand, the prod_array () invocation does not
share any variable with these invocations. Therefore, the
invocation and transfers of d, e, f are assigned to the
stream _s[1].

As for the scheduling within a stream, the invocations
in a cluster have partial order relation; some invocations
may not have the ordering constraint each other. The
compiler can exchange locations of such invocations and
corresponding transfers to maximize the overlapping of
executions/transfers.

5.2.2 Data Transfer
Our shared variable is implemented as the corresponding

memory areas on both host and device, and the code
transferring their values mutually. For all related shared
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Figure 6. Location of transfer for conditional branches.

variables s; in each kernel invocation k;, data transfer
code should be inserted if needed. If s; is read in the
corresponding kernel execution of k; and the latest write
preceding to k; occurs on the host, a download transfer is
required. Similarly, if s; is written in the corresponding
kernel execution of k; and the earliest read succeeding to
k; occurs on the host, a readback transfer is required. In
the latter case, a synchronization is also needed before the
read on the host to assure the transfer is completed.

To avoid redundant transfers and maximize the ex-
ecution/transfer overlapping, the locations inserting the
transfer code should be optimized. Here, we denote the
download /readback transfer and synchronization of s; for
ki as dl(k;,sj), rb(ks,s;), and sync(k;,s;), respectively.
Their locations are noted as loc(dl(k;,s;)), and so on.
Note that loc() may be a set of locations because multiple
transfer code can be required due to the branches. The
read and write on s; is denoted as rd(s;) and wr(s;),
respectively. We also denote the entry/exit points of con-
ditional branches and loops as ben;/bex; and len,, /lex,,
respectively.

The download transfer should be issued as earlier
as possible to minimize the time k; is suspended, thus
loc(dl(k;,s;)) is desirable to be right after the latest write
to s; in host functions. Similarly, loc(rb(k;,s;)) and
loc(sync(k;, s;)) are desirable to be right after k; and right
before the earliest read to s; in host functions, respectively.
However, the locations must be determined considering
branches and loops.

When k; is the reader of s, the code is parsed backward
from k; until it finds the first wr(s;). If any bex; is
found, each branch block is parsed recursively. If ben; also
appears before finding a wr(s;), such branch is closed and
can be ignored. If all branches are closed, the latest wr(s;)
is deterministic and loc(dl(k;, s;)) is right after the wr(s;)
(Fig. 6(a)). If ben; does not appear before finding a wr (s;),
the latest wr(s;) is not statically unique. In such cases,
the transfer is duplicated and loc(dl(k;,s;)) is a set of
every latest wr(s;) on each path (Fig. 6(b)). If any branch
block does not include a wr(s;), the transfer is inserted at
the beginning of the block, because the preceding wr(s;)
is determined to be the latest at the point (Fig. 6(c)). If
ben; appears without bex;, it means that a branch occurs
after the latest write and the reader (i.e., k;) is in one of
the possible path. In such cases, other branch blocks of
the conditional branch [ are parsed. If every block has the
kernel invocations reading s;, s; is deterministically read

wr(s) wr(s)
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[ ] g
fd(ISj) rd( s; ) i disj)
J
(d) (e)
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Figure 7. Location of transfer for loops.
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__global__ int d[N][N];

__global_ void f£(int al[N]){
int id = blockDim.x*blockIdx.x + threadIdx.x;
compute using a [id];

1

int main(){

int i; =
init (d);
for (1 =0; 1 <N ; i++){

f<<<N/128, 128>>>(d[i]);

}
}

int main(){
int: i
cudaStream_t s[SN];
cudaMallocHost (&hd, S=xS);
cudaMalloc (&dd,

init (hd});
for (i = 0

}

+hd, »dd;

Sx8);

i 1 <N ; i++){
cudaMemcpyAsync (dd+i+S, hd+ixS, N, HtoD, s[i%SN]);
f<<<N/128, 128, 0, s[i%SN]>>>(dd+ixS);

Figure 8. Progressive data transfer optimization: (a) MESI-CUDA code and (b) generated optimized code.

and loc(dl(k;, s;)) can be determined as described earlier
(Fig. 6(d)). If not, loc(di(ki, sj)) is a set of the beginning
of every block including the kernel invocation reading s; to
avoid unnecessary transfers (Fig. 6(e)).

Loops can be handled similarly. If no len; or lex;
is found on the backward parsing from k; to wr(s;), the
loop 1 is closed; k; and the latest wr(s;) are both outside
the loop (Fig. 7(a)) or both within the loop (Fig. 7(b)).
Thus, loc(di(k;, s;)) is right after the wr(s;). If only lex;
appears, the latest wr(s;) is within the inner loop I, thus
loc(di(k;, s;)) is right after the loop block I (Fig. 7(c)). If
only len; appears, k; is within the inner loop [. In this case,
dl(k;, s;) must be inserted right after the latest wr(s;)
preceding the loop (Fig. 7(d)). However, the existence of
wr(s;), succeeding k;, must be checked within the loop. If
such writes exist, di(k;, s;) must be also inserted right after
the latest write before lex;, because the updated value will
be read by k; on the next iteration (Fig. 7(e)).

We also introduced a progressive data transfer opti-
mization for a simple loop pattern. A computation on
n-dimensional arrays is often coded as k-nested loops,

each iteration processing m-dimensional sub-arrays, where
m=n—k (Fig. 8(a), where n=2, k=1). For such pro-
grams, we generate the code which transfers each m-
dimensional sub-array in the loop using a constant number
of streams in rotation (Fig. 8(b)). Such code can overlap
the transfer for the (¢ + 1)th kernel invocation with the
1th kernel execution (Fig. 7(d’)) and often have better per-
formance than transferring the whole n-dimensional array
before the loop (Fig. 7(d)).

As for the readback transfer, loc(rb(k;,s;)) can
be determined similarly with loc(dl(k;,s;)), whereas
loc(sync(k;,s;)) can be determined right before every
possible earliest rd(s;). The progressive data transfer
optimization can also be applied (Fig. 7(c)—(c’)).

5.3 Code Generation
5.3.1 Memory Allocation/Deallocation

For each shared variable s;, the declaration is replaced with
the declaration of two pointers: _host_s; and _dev_s;,



__global

_dev_alid] =

}

4
5
6 _dev_alid] + x[id];
7

10 _dev_£f[id] =
11 }

12 int main(){
( 1) int *_host_a, *_dev_a;

) int *_host_£f, x_dev_£f;

(12)
(13)

(18)

13 init_array(_host_a);
17 init_array(_host_e);

19 output_array (_host_a);
20 add_array<<<N/128,
21 prod_array<<<N/128,
22 output_array (_host_a);
23 output_array (_host_£f);

cudaFreeHost (_host_a);

6) cudaFreeHost (_host_f£);
cudaFree (_dev_a);

(12) cudaFree (_dev_f);

24 }

void add_array(int =*x, int *_dev_a) {
int id = blockDim.x+blockIdx.x + threadIdx.x;

8 __global__ void prod_array(int *_dev d, int *_dev_ e, int x_dev_f){
9 int id = blockDim.x*blockIdx.x + threadIdx.x;
_dev_d[id] * _dev_e[id];

) cudaMallocHost (&_host_a, N*sizeof (int));

cudaMallocHost (& _host_f£, N*xsizeof (int));
cudaMalloc (&_dev_a, N#sizeof(int));

cudaMalloc (& _dev_£, Nxsizeof(int));

18 add_array<<<N/128, 128>>>(_dev_b, _dev_a);

128>>> (_dev_c,
128>>>(_dev_d, _dev_ e, _dev f);

_dev_a);

Figure 9. Memory allocation/deallocation code.

which point memory areas corresponding to s; in the
host and device memories, respectively. Memory allo-
cation/deallocation code calling CUDA functions is also
generated for the pointers.

Figure 9 is the result of generating the memory al-
location/deallocation code for Fig. 3 program. The gen-
erated code is shown in bold font. For each declaration
of the shared variables a—f (Fig. 3, I. 3), pointer vari-
ables _host_a—_host_f and _dev_a—_dev_f are declared
(Fig. 9, 1. 12(1)-12(6)). Memory allocations/deallocations
using CUDA functions are also inserted (Fig. 9, . 12(7)—
12(18), 23(1)-23(12)).

All accesses to the shared variables are replaced with
the accesses to the corresponding areas in the host/device
memories (Fig. 9, I. 6, 10, 13-17, 19, 22-23). For each
shared variable accessed in kernel executions, the ker-
nel function needs the pointer to the corresponding area
on the device memory. The kernel function parame-
ters/invocation arguments are modified to pass such point-
ers (Fig. 9, 1. 4, 8, 18, 20-21).

5.3.2 Data Transfer

For each loc(dl(k;, s;)), loc(rb(k;, s;)), and loc(sync(ki, s;7)),
determined in the transfer optimization phase (Sec-
tion 5.2.2), the code calling CUDA transfer/synchronization
functions is inserted. To overlap kernel executions and
data transfers, CUDA asynchronous functions are used.
Therefore, the code to create and destroy streams is also
inserted. The number of streams is determined in the
scheduling phase described in Section 5.2.1. According
to the scheduling result, the assigned stream is specified
for each transfer/synchronization function and also each
kernel invocation.

Figure 10 is the result of generating data transfer code
for Fig. 3 program. The generated code is shown in bold
font. First, the creation/destruction code for two streams,
assigned in the scheduling phase, is inserted (Fig. 10, .
12(19)-12(22), 23(13)-23(14)). Then, the transfer and
synchronization code is inserted for each related shared
variable of every kernel invocations. For example, b is



12 int main() {

(19) cudaStream t _s[2];

(20) int _i;

(21) for (Li =0 ; _i < 2 ; _i++)

(22) cudaStreamCreate(&_s[_4i]);

13 init_array(_host_a);

( 1) cudaMemcpyAsync(_dev_a, _host_a, Nxsizeof (int), HtoD, _s[0]);
14 init_array (_host_b);

( 1) cudaMemcpyAsync(_dev_b, _host_b, Nxsizeof(int), HtoD, _s[0]);
15 init_array(_host_c);

( 1) cudaMemcpyAsync(_dev_c, _host_c, Nxsizeof(int), HtoD, _s[0]);
16 init_array(_host_d);

( 1) cudaMemcpyAsync(_dev_d, _host_d, N+sizeof(int), HtoD, _s[1]);
17 init_array(_host_e);

{ 1) cudaMemcpyAsync (_dev_e, _host_e, Nxsizeof(int), HtoD, _s[1]);
18 add_array<<<N/128, 128, 0, _s[0]>>>(_dev_b, _dev_a);

( 1) cudaMemcpyAsync(_host_a, _dev_a, Nxsizeof(int), DtoH, _s[0]);
( 2) cudaStreamSynchronize(_s[0]);

19 output_array (_host_a);

20 add_array<<<N/128, 128, 0, _s[0]>>>(_dev_c, _dev_a);

( 1) cudaMemcpyAsync(_host_a, _dev_a, N+sizeof(int), DtoH, _s[0]);
21 prod_array<<<N/128, 128, 0, _s[l]>>>(_dev_d, _dev_e, _dev_f);
( 1) cudaMemcpyAsync(_host_£f, _dev_£f, Nxsizeof(int), DtoH,_s[1]);
( 2) cudaStreamSynchronize(_s[0]);

22 output_array (_host_a);

( 1) cudaStreamSynchronize(_s[1]);

23 output_array (_host_£f);

(13) for (_Li =0 ; _i< 2 ; _i++)

(14) cudaStreamDestroy(_s[_i]);

24 }

Figure 10. Data transfer code.

written in init_array() (Fig. 10, I. 14) and read in
the first add_array() invocation (Fig. 10, I. 18). Thus,
the download transfer from _host_b to _dev_b is inserted
right after the init_array() call (Fig. 10, I. 14(1)), but
the readback transfer of b is not inserted because it is not
read on the host after the kernel execution. Similarly, the
download transfer of a is inserted right after it is written
on the host (Fig. 10, I. 13(1)). Two readback transfers
are also required for a because it is read on the host twice
(Fig. 10, 1. 19, 22). Therefore, the transfer code is inserted
right after add_array() invocations (Fig. 10, I. 18(1),
20(1)), and the synchronization of the assigned stream is
inserted right before the output_array() calls (Fig. 10, [.
18(2), 21(2)). A download transfer before the second
add_array() invocation is not needed because a is not
changed on the host after the first add_array () invocation.
Specifications of assigned streams are also inserted as the
arguments of kernel invocations and transfer functions;
add_array () and related transfers use _s[0] (Fig. 10, I.
13(1), 14(1), 15(1), 18, 18(1-2), 20, 20(1), 21(2)), while
prod_array() and related transfers use _s[1] (Fig. 10 [.
16(1), 17(1), 21, 21(1), 22(1)).

6. Evaluation

We evaluated MESI-CUDA using four programs in
Table 2: two simple benchmarks (bsearch, matmul) and
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two application cores (raytrace, poisson). We executed
sequential /hand-optimized CUDA/MESI-CUDA versions
of each program on a PC (core i7 930 2.8 GHz, 6 GB
Memory) with Tesla C2050/C1060 (Fermi/Tesla architec-
tures, respectively). Each GPU program uses only the
global memory. However, we also tried the following faster
versions of matmul, bsearch, and raytrace, which will be
noted with a postfix -m.

matmul-m Computes a sub-matrix of size 162 using threads
in the same block, copying required values into the shared
memory to reduce the global memory accesses [6], [7].

bsearch-m Copies data of index i x N/2048 (i=0,1,...,
2048) into the shared memory, thus the first 11 (=log,2048)
steps of every search can avoid the global memory access.

raytrace-m Stores constant data, such as the properties
of primitive objects, in the constant memory.

6.1 Code Size

To estimate the coding cost using each programming frame-
work, we compared the lines and file sizes (bytes) of each
source code, excluding indents, blank lines and comments.
The results are shown in Figs. 11 and 12.

The values in Figs. 11 and 12 are not a strict estimation
of the coding cost, because they may vary by the coding



Table 2

Evaluation Programs

matmul | Computes matrix multiplication of size N x N. (N =1024)
bsearch |finds locations of M random keys in N sorted values using binary search. (N =256 M, M =128 K)
raytrace | Renders an image of size X x Y using ray tracing algorithm. (X =3200, Y =2400)
poisson |Poisson equation solver kernel using a point-Jacobi method [20]. The size of the grid is 1283.
400
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Figure 11. Source code lines.
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Figure 12. Source code file size.

style and each code line/byte does not require the same cod-
ing effort. However, the results show that CUDA program-
ming requires much more additional code for parallelizing
sequential computation into kernel functions and invoking
them, allocating/deallocating memory areas/streams, and
inserting data transfers/synchronizations. Using MESI-
CUDA, such additional code is largely reduced because
only computation parallelization is needed®. For poisson,

3 For raytrace, the sequential version requires more code lines
than the MESI-CUDA version because it includes the code
implementing some CUDA-provided data types such as float3.
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which has 3 kernel functions and 14 multi-dimensional
arrays accessed on the GPU, the code size of the MESI-
CUDA version is approximately 50% of the CUDA version.
And even for raytrace, which has only 1 kernel function
accessing a single two-dimensional array, the code size is
reduced to approximately 90%.

The kernel functions in matmul-m and bsearch-m have
the additional code for the optimization: copying data
between the global memory and the shared memory, and
accessing the latter. The same optimization is possible in
MESI-CUDA by copying data between our shared variables
and the shared memory. For raytrace-m, const variables
accessed only on the GPU are allocated on the constant
constant__ qualifier. This descrip-
tion simplifies CUDA code because dynamic memory allo-
cations/data transfers are not needed. The same descrip-
tion is also possible in MESI-CUDA because it does not
interfere our implicit memory allocation and data transfer.

6.2 Execution Speedup

Figure 13 shows the speedup of GPU versions, which
is the inverse of execution time ratio to the sequential
version. Note that the vertical axis is log-scaled, because
the speedup largely varies by the programs.

The results show that in most cases, MESI-CUDA
can automatically generate optimized data transfer code
whose performance is close to the hand-optimized CUDA
code. For matmul and raytrace, MESI-CUDA achieved
the same speedup with CUDA versions. These programs
compute each row of a two-dimensional array on each ker-
nel execution, thus MESI-CUDA can generated equivalent
code with CUDA using the progressive transfer optimiza-
tion described in Section 5.2.2. For poisson, 2 of 3 kernel
functions are independent each other and a corresponding
data transfer can be overlapped with the execution. Al-
though our compiler currently cannot detect such paral-
lelism and generates non-overlapped code, the slowdown is
smaller than 0.5% because the overlapped transfer is not a
dominant factor.

For bsearch and bsearch-m on C2050, MESI-CUDA
caused approximately 20% and 45% slowdown, respec-
tively. The CUDA version overlaps the computation and
the transfer by equally dividing one-dimensional arrays of
M keys/locations into multiple regions. The MESI-CUDA
compiler regards the access to each region as the access to
the same array and cannot generate overlapping code.

Because the accesses to the global memory is the
dominant factor, the performance is largely improved in
matmul-m and bsearch-m by copying multiple-accessed
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Figure 14. Speedup for different size of matmul.

data into the shared memory. The improvement compared
with matmul /bsearch is larger on C1060, because it does
not have the L1/L2 caches and every global memory access
causes large latency. For raytrace-m, 88% speedup was
achieved on C1060, but only 3% on C2050. This is because
C2050 has both constant and global memory caches, but
C1060 has only the former.

6.3 Scalability

We also executed matmul and bsearch on different data
size. The results are shown in Figs. 14 and 15.

As explained in Section 6.2, the MESI-CUDA com-
piler generated equivalent code with the CUDA version
for matmul, thus using MESI-CUDA has no disadvan-
tage on any data size. The results show that utilizing
the shared memory has a large benefit achieving notable
speedup regardless of data size or GPU architecture. As
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Figure 15. Speedup for different size of bsearch.

for bsearch/bsearch-m, the slowdown ratio of the MESI-
CUDA versions to the CUDA versions are approximately
constant regardless of data size. Therefore, using MESI-
CUDA has the same scalability as using CUDA, although
the improvement of code generation is desirable to prevent
the slowdown.

7. Future Works

The current MESI-CUDA implementation makes only sim-
ple static analysis and the optimization is limited. There-
fore, introducing stronger static analysis and enforcing
the optimization is our future work. For example, esti-
mating computation/transfer cost will largely improve the
scheduling. Lifetime analysis on shared variables will en-
able recycling the memory areas. Introducing range and
pattern analysis on the array accesses will narrow down the



necessary elements and improve data transfer efficiency.
A range analysis of array indices can generalize the pro-
gressive transfer optimization (Section 5.2.2) to cover the
cases like bsearch in Section 6.

As for the restrictions shown in Section 4.3, we have
future plans as follows:

1. Although MESI-CUDA needs to generate all additional
code statically, we can handle the dynamic behaviours
of user’s code inserting conditional branches in the
additional code. For the example in Section 4.3,
only the required one of a and b can be transferred
by comparing the pointer p with addresses of a and
b. The overhead of executing such test code for
each transfer is ignorable compared with the transfer
overhead.

2. CUDA-like hand optimization using the shared/ con-
stant /texture memories is possible in MESI-CUDA.
However, our goal is hiding the whole GPU memory
architecture. Many schemes utilizing such memories
have been proposed [8], [9], [11], [12] and possibly
adopted to MESI-CUDA. Narrowing down the vital
data using static analysis will also help utilizing such
small memories.

3. The shared variables are statically declared, but they
are compiled into the code dynamically allocating
memory areas. Thus their sizes do not need to be
constant at compile time. We are planning to pro-
vide cudaMallocGlobal () for dynamic allocation of a
memory area working as a shared variable, and also
variable-length arrays like C99 to encourage array-
based coding.

4. Static analysis on multi-threaded program is possi-
ble by handling concurrent threads like conditional
branch blocks. However, mutual exclusions will be
required to make the accesses to shared variables
MT-safe, which may cause considerable overhead.
Nondeterministic scheduling of CPU threads will also
disturb our scheduling. Minimizing mutual exclusions
using static analysis and generating code which con-
trols CPU thread scheduling may resolve such issues.
On the other hand, supporting multiple GPUs on a
host is essentially not difficult. The scheduler can be
extended to overlap kernel executions on the differ-
ent devices. For the direct dependencies on shared
variables between kernel invocations on the different
devices, device-to-device transfer code should be gen-
erated using cudaMemcpyPeer () [6].

Because the current MESI-CUDA implementation
assumes Tesla/Fermi architectures, supporting the new
features of NVIDIA’s third generation GPU architecture
Kepler [21] is also our future work.

Kepler supports kernel invocations on the device to en-
able dynamic creation of parallel threads, and the hardware
scheduling on the device is enforced. While it may reduce
the impact of optimizing host-device transfers and their
scheduling, hiding and auto-optimizing the memory man-
agement will be more important because dynamic schedul-
ing of kernel threads will make the hand-optimization of
memory usage more difficult. Expecting kernel invocations
in kernel functions and direct dependencies between them,
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introducing optimization inside kernel functions will be
required for the high performance.

Kepler also enforces handling multiple CPUs and
GPUs. Hyper-@Q allows parallel usage from multiple CPU
cores to the same GPU. GPUDirect supports direct data
transfers between GPUs on the different host. Using the
latter, GPU clusters will be easily supported in MESI-
CUDA. However, supporting multiple CPU will cause the
issue similar to supporting multi-threads on a CPU.

To design the detail of these improvements and also
verify their effect, we are planning more evaluations of
MESI-CUDA using various GPU applications.

8. Conclusion

The hardware potential of GPU is very attractive as a
high-performance computing platform. However, cur-
rent programming frameworks are still difficult and
hand-optimization tends to spoil the portability. Hence,
we proposed a new framework MESI-CUDA based on a
shared-memory model for easier GPGPU programming.

MESI-CUDA provides shared variables accessible from
both CPU and GPU with implicit synchronization. The
compiler translates user’s program into a CUDA program,
generating the memory allocation and data transfer code.
Its scheduler also maximizes overlapping of kernel execu-
tions and data transfers. Thus, the low-level and device-
dependent factors are hidden from the user and optimized
automatically.

As the results of evaluation, the programs using
MESI-CUDA achieved the performance close to the hand-
optimized CUDA programs, and the size of source code
was much smaller. Although our approach seems promis-
ing, we need to introduce many improvements discussed
in Section 7 and evaluate their impact for further high
performance.
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