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AN INTERACTION-AWARE PREDICTIVE
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GROUND VEHICLES IN DYNAMIC
STREET SCENARIOS
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Abstract

An interaction-aware predictive motion planning method for un-
manned ground vehicles is presented in dynamic street scenarios.
Although trajectory prediction in motion planners is widely covered
in the past few years, most of them only consider the physical
model of the vehicles and ignore the interaction among vehicles.
Our motion planner predicts the future trajectories of surrounding
participant vehicles taking the traffic interaction and manoeuvres
into consideration. Furthermore, the motion planner exploits an
improved trajectory generation method. The kinematically feasible
trajectories are generated, which prevents a long-term collision using
the predicted results in a probabilistic manner. The results show
that our motion planner improves the safety and smoothness of

driving trajectories in interactive scenarios.
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1. Introduction

Unmanned ground vehicles (UGVs) have been seen as the
future of transportation. They are believed to have great
potential to reduce traffic accidents, improve the efficiency
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of transportation systems, and provide a preferable option
for people who are unable to drive [1], [2].

When UGVs are used in realistic road traffic, they need
to handle various complex tasks, such as vehicle following,
lane changing, merging, and interacting with other vehicles
while complying with traffic rules. Although end-to-end
learning shows great potential to be applied to UGVs [3],
the conventional framework is widely used because of its
reliability. The framework refers to a high-performance
systematic integration of the following components: per-
ception, localization, decision-making, planning, and con-
trol. The perception and localization module provides
the real-time sensing information of surroundings and the
current pose of a UGV. The behaviour reasoning module
employs a reference path and online sensing information to
generate discrete decisions (e.g., a lane change, a stopping
behind a stopping line) and estimate the maximal allowed
velocity of a UGV. The hierarchical planning framework
has been widely used for the planning systems of UGVs
[4], namely, global planning and real-time local planning.
The global planner computes an optimal global route us-
ing a digital map either online or offline based on a given
mission. The local planning is also known as the motion
planning. Using the decisions generated by the behaviour
reasoning module, the motion planner generates a kine-
matically feasible trajectory, which contains a spatial path
and a velocity profile. Then, the trajectory tracking con-
troller generates the steering and throttle/brake control
inputs to follow the planned trajectory.

1.1 Motivation

Thus far, various techniques are presented to develop
motion planners [5]-[8]. Although many traditional mo-
tion planners can ensure a UGV to drive autonomously
in simple environments without traffic interaction, the
ability to drive interactively in complex traffic scenar-
ios still needs to be improved. Normally, the UGV
on road may encounter various types of traffic partici-
pants such as cars and pedestrians. To plan safe and
smooth trajectories, it is important to predict the future



motion of surrounding participants. For simplicity, this pa-
per describes motion planning without motion prediction
for surrounding participants as non-predictive motion
planning. Correspondingly, predictive motion planning
refers to the one with motion prediction for surrounding
participants.

Briefly, the current challenges of developing a motion
planner for a UGV involve (1) understanding and accu-
rately forecasting the motion of other participant vehicles
(PVs); (2) interacting with dynamic environments based
on the predictions. The related methods of motion predic-
tion are discussed in Section 2. Traditional methods model
the motion based on either kinematic/dynamic of vehi-
cles or possible driving intention with the consideration of
the historical trajectories. The interaction between traffic
participants, especially PVs, is ignored. Interaction-aware
motion prediction has an insight into the whole traffic sit-
uation. However, the interaction is difficult to be modelled
effectively [9]. Moreover, to the best of our knowledge, the
motion prediction of PVs is mostly used to improve the
capacity of intelligent decision-making of a UGV or assess
criticality. There seems to be little research on predic-
tive motion planning. However, motion planning directly
influences the smoothness of driving trajectories. There-
fore, the research on interaction-aware predictive motion
planning is worthwhile.

1.2 Contributions

To address the challenges, this paper proposes an
interaction-aware predictive motion planner (IAPMP) for
UGYV in dynamic street scenarios. It can interactively pre-
dict the future trajectories of PVs based on their predicted
manoeuvres. Besides that, it also generates kinematically
feasible trajectories and avoids the long-term collision in
a probabilistic manner. The main contributions of this
paper include two aspects.

(1) Our novel prediction method integrates the driving in-
tention, vehicle physics and traffic interaction (mainly
collision avoidance) into account in the trajectory pre-
diction, making long-term prediction more accurately
in complex scenarios.

(2) Our planning method generates tractable and
interaction-aware trajectories. The experimental re-
sults showed that the planned trajectories of our mo-
tion planner are smoother and more human-like than
those of integrated local trajectory planning (ILTP)
[10] in some typical street scenarios.

1.3 Layout

The paper is organized as follows. Section 2 summarizes the
state-of-the-art motion planning techniques for UGVs. In
Section 3, specific details of our predictive motion planning,
based on the interaction-aware trajectory prediction, are
introduced. Section 4 reports the experimental set-up
and results. In Section 5, conclusion and future work are
discussed.
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2. State of the Art
2.1 Non-predictive Motion Planning

As discussed in Section 1, a motion planning algorithm
plays a significant role in robotics. The history of the re-
search on motion planning can be traced over the last few
decades to DARPA (Defense Advanced Research Projects
Agency) Urban Challenge. Since then, many approaches
have been presented, which are commonly classified into
two types [11]: graph traversal-based approaches and
trajectory generation-based approaches.

The approaches based on graph traversal are only
appropriate for UGVs travelling at relatively low speed,
such as the state lattice search in [12] and [13], Hybrid
A* in [14], the path segments search in [15], the random-
sampling-based approach (such as RRT and RRT variants)
in [16]-[18]. Besides, most of these methods generate
paths connected by pre-computed path primitives without
considering motion continuity. Consequently, they are
more likely to cause unsmooth movements.

The approaches based on trajectory generation are
proposed with consideration of modelling vehicle kinody-
namics. According to [4], these approaches can be divided
into control-space approaches and state-space approaches
according to different sampling methods in the approaches.
The former can satisfy the constraints of vehicle kinemat-
ics, but not the environmental constraints like road geome-
tries. Conversely, the latter can guarantee the satisfaction
of environmental restrictions, whereas more computing
resource is required during the generation process.

The control-space generation approach refers to pa-
rameterizing the control space through arcs and clothoids,
then each sampling parameterized control (i.e., control
input) can generate a trajectory. This approach (e.g.,
in [19]-][21]) can guarantee that the generated trajec-
tories are kinematically feasible and easily tracked by
a controller.  Therefore, the control-space trajectory-
generation approach is an effective approach when there
are no road constraints. But, this approach is ineffective
when environmental constraints (e.g., road geometries) are
considered.

The state-space generation approaches obtain the
expected states according to road geometries and then gen-
erate the trajectory connecting the current state and the
expected state. An inverse generation method using poly-
nomial spirals to ensure smooth execution is developed in
[22]-[24] and applied to urban roads in [25]. However, the
complex iteration process is likely to affect the effectiveness
of the planner and causes high computing complexity. The
motion planner proposed in [26] generates a reference path
based on the road centreline in the Frenét frame, making
the lateral and longitudinal movements consistent with
the road shape. Similarly, Gu et al. [27]-[29] propose
a framework that executes a curvature reduction on the
reference path to generate a smooth trajectory. In [30],
the polynomial trajectory segment is iteratively extended
to pass through designated waypoints. Recently, a new
generation approach based on a quartic Bézier curve is
proposed [31], [32]. Our previous work in [10], [33], [34]



designs a framework (ILTPTC) for UGVs, which also
contains a state-space generation-based motion planner.

2.2 Predictive Motion Planning

Although non-predictive motion planners can enable a
UGV to drive autonomously with consideration of safety
in static environments, the ability to drive interactively
in complex traffic scenarios still needs to be improved.
An improved method is predicting the future motion of
surrounding PVs.

The state-of-the-art techniques of motion prediction
can be classified into three levels according to the complex-
ity of the motion model [9]. (1) The elementary level is
physics-based approaches, which only model the motion de-
pending on kinematics and dynamics of vehicles (e.g., the
constant velocity (CV) and the constant acceleration (CA)
[35]-[38]). (2) The intermediate level is manoeuvre-based
approaches. In this layer, how the future motion depend-
ing on manoeuvres performed by drivers is also considered
in the motion model. Common approaches use classifica-
tion algorithms (e.g., Naive Bayes algorithm [39], support
vector machine [40], dynamic Bayesian network [37], [41],
[42], hidden Markov model [43], and deep neural network
[44],[45]) to classify driver manoeuvres. The manoeuvre
classification is also called as intention recognition. (3)
The most complex level is interaction-aware approaches,
which also deal with how the motion is influenced by the
traffic interaction (e.g., collision avoidance, social conven-
tions and traffic rules). Interaction-aware approaches have
an insight into the whole traffic situation. However, there
are few research based on interaction-aware approaches ac-
cording to the review [9]. Besides, most of the related ap-
proaches (e.g., Dynamic Bayesian Network [46]-[48]) only
consider the interaction in the intention recognition, not in
the trajectory prediction.

As far as we know, the motion prediction for PVs
is mostly applied in the decision-making of UGVs. One
of prediction-based decision-making approaches is based
on the partially observable Markov decision process
(POMDP) [49]-[52]. An attractive advantage of the
POMDP-based approaches is that decision results are
theoretically optimal. However, the computational com-
plexity of abstracting the interaction into a POMDP
model increases exponentially with the number of traffic
participants and decisions. Lee and Kim [53] try to use
a massively parallel algorithm to calculate POMDP. It
has an outstanding performance compared to the exist-
ing CPU-based algorithms on some chosen benchmarks.
Another example of prediction-based decision-making ap-
proaches is the game-theory-based approach. An inte-
grated framework for interactive prediction and decision
making based on Game Theory is exploited in [54]. This
framework successfully predicts the merging intention of a
most relevant car in a highway. However, the two-player
game-theory-based algorithm only deals with pairwise de-
pendence and hardly extends in complex scenarios. In [55],
a cooperative algorithm, which exploits Monte Carlo Tree
Search as a decision model, is proposed. The evaluation
with the highest scores along the tree is used to find the
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lateral and longitudinal actions for UGVs. Overall, be-
cause of high expense and difficulty in building an accurate
probabilistic state transition distribution, the extensibility
of prediction-based decision making is limited. Moreover,
the calculated discretized decision may conflict with the
planning trajectories, as the safety and feasibility of the
manoeuvre cannot be calculated in the decision making.

Oppositely, motion planning directly influences the
safety and feasibility of driving trajectories. Utilizing pre-
dicted results in motion planning is crucial for modelling
interactions. However, there seems to be little research
on interaction-capable motion planning except for the fol-
lowing. Damerow and Eggert [56] present a so-called pre-
dictive risk map, which measures the risks of different
manoeuvres. Then, the RRT* algorithm is used to find
an optimal trajectory with the lowest risk. In [57], [58],
a prediction- and cost function-based algorithm and its
intention-integrated version are proposed to enable a UGV
to implement socially compliant motion planning. Similar
to our method, the methods combine a cost-function-based
driving strategy with a prediction model. However, the
assumption for the prediction model seems too idealistic.
The prediction model assumes that the future motion of
each vehicle is keeping a pre-computed minimum safety
distance to a leading vehicle. Moreover, the weight param-
eters of the cost function far exceed the number of ours,
thus leading to complex parameter adjustment.

3. Method

The framework of our TAPMP is shown in Fig. 1. TAPMP
has four components in total: (1) an interaction-aware
trajectory predictor, (2) a path planner, (3) a performance
evaluator and (4) a velocity planner.

The entire process of our motion planner runs period-
ically in a short planning cycle. At first, the interaction-
aware trajectory predictor predicts possible future states
of other dynamic PVs. Then, the path planner samples
terminal states (i.e., positions, headings, curvatures) of
each planning cycle adaptively, based on road geometries.
Multiple kinematically feasible paths (or candidate paths)
are generated from an initial state to the terminal states.
After that, the performance evaluator, which evaluates the
long-term safety and smoothness for each candidate path,
is built to select the optimal path. Finally, based on the
length, the curvature of the optimal path and the maximal
allowed velocity from the behaviour reasoning module, the
velocity planner generates executable velocity profiles.

3.1 Interaction-Aware Trajectory Prediction

The object of the trajectory prediction in this section
is PVs, not a UGV. As experienced human drivers, the
prediction for PVs provides us enough time to prepare and
make suitable decisions in advance. Accurate long-term
trajectory prediction relies on the intention recognition,
but the research on intention recognition itself (discussed in
Section 2.2) is nontrivial and independent of the trajectory
prediction. Our previous research on intention recognition
of PVs can be found in [59]. Therefore, this paper mainly
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focuses on the interaction-aware trajectory prediction and
assumes the intention of PVs can be recognized accurately
in the simulation experiment. The recognized intention
contains the lane change (e.g., changing to the left lane)
and the velocity change (e.g., accelerating).

The interaction-aware trajectory prediction includes
two steps: manoeuvre prediction and trajectory predic-
tion. (1) Manoeuvre prediction predicts specific longitudi-
nal and lateral manoeuvre values (i.e., linear and angular
acceleration) which constitute the optimal manoeuvre with
consideration of the traffic interaction (i.e., collision avoid-
ance). We assume that a normal and reasonable driving
manoeuvre will follow the intention and avoid collisions.
The process of the manoeuvre prediction for one PV is
shown in Fig. 2. (2) Trajectory prediction is defined as the
prediction of the possible state distribution along the op-
timal manoeuvre. The state of a PV includes the position
coordinate, the heading, the angular velocity and the linear
velocity. Concretely, the process is introduced below.

First, based on the recognized intention (i.e., lane
changing and velocity changing), a biased manoeuvre space
will be chosen in the whole control space Us;. The whole
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control space, which is defined as (1), is a Cartesian prod-
uct of two sets. These two sets are composed of a set
of lateral manoeuvre space and a set of longitudinal ma-
noeuvre space. The elements of the set are scopes of
lateral or longitudinal acceleration, which are also called
the biased manoeuvre space. In terms of lane changing,
three intentions (left-lane changing, right-lane changing
and lane keeping) correspond to different scopes of the
angular acceleration (¢, Wre and Wky, respectively).
Similarly, velocity-changing intentions correspond to dif-
ferent scopes of the linear acceleration/deceleration (Gacc,
apee and Aconst, respectively):

U, (1)

{wL07 UDRC, QZ)KL} X {aAca aDcc; Z’fConst}

W € [Wmin, Wmax] C {Wrc, Wre, Wk}

(2)

a € [dminaamax] C {aACC7aDC67 aJC‘Onst}

Then, the manoeuvre primitives (4 = [w,a]) will be
sampled in the chosen biased manoeuvre space. The chosen
biased manoeuvre space is the corresponding subsets of two
sets, as (2). Each sampled driving manoeuvre primitive for
a PV will generate a trajectory according to the kinematic
model (3) of PVs. At time step ¢, a PV applied a manoeuvre
p}“imitiv&z Qg1 will transit from the state Xt to the state
Xty1

p* = v * cos(q)

pY = v *sin(¢)

b= v *tLan((S) 3)
0=

v =a



where Xt = [ptxypgu¢t76t7vt]/ and ’llt+1 = [1I}t+1,dt+1]’;
(p®, pY) means the position coordinate P; ¢, ¢ and v mean
the heading, angular velocity and linear velocity, respec-
tively; L,, is the estimated wheelbase parameter.

To consider the interaction with other vehicles, the
optimal manoeuvre primitive, which generates the optimal
trajectory, is chosen by a performance function. The per-
formance function (4) penalizes the possible collision with
other PVs (except itself) along trajectories. Several points
of each trajectory, corresponding to a control primitive,
are extracted for the cost calculation. After evaluating the
trajectory, the highest-score manoeuvre primitive is chosen
as the possible manoeuvre of the PV:

min
j=1..,k=1...c

(15012 - £, 21)
(@)

A % _ Un
ut_;’_l = arg m%X
’u,i—l

where 7 is the ordinal number of the manoeuvre primitive u,
U, is the number of the manoeuvre primitive, 1) represents
the total extracted number in a trajectory, ¢ represents the
number of other PVs and X (1,2) represents the position
of PVs.

The trajectories are determined by current states (X;)
and future manoeuvres (uy,;) of PVs. To predict the
distribution of the states along the trajectory accurately,
a continuous Bayes filter is used. The state equation
is written as (5), where f() is introduced in (3). The
measurement equation is written as (6). The process noise
(m) and the measurement noise (r) are assumed to be
Gaussian distribution:

% — FRu i) +m, m~N(O,M) ()
Vi =CXp +7, r ~N(0,R)
1000 0 "
c=]o 100 0
00001

Because the kinematic system is a typical continuous-
time nonlinear model, and the measurement system is a
discrete model, a continuous-discrete unscented Kalman
filter (CDUKF) [60] is used to predict future states.

3.2 Path Planning

Path planning aims to generate smooth and feasible paths
for the low-level controller of a UGV complying with the
environmental constraints. It contains adaptive sampling
and model-predictive generation. To make the iteration
process of generation faster, a pre-computed lookup table
is designed to store the initial parameters.

First, the adaptive sampling algorithm [4] is exploited
to sample the expected terminal states. The road geom-
etry information, such as global route state (X,.r) and
lane width (w;), is extracted from the perception system.
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In addition, the vehicle width (w,) is also taken into con-
sideration. During each sampling process, the terminal
states are sampled at a distance from the position of the
UGV along the global route (i.e., reference line). Note
that the distance, which is called preview distance, can
be tuned according to the current velocity. The terminal
position coordinates are sampled along the reference line
with multiple lateral offsets (dofs). The headings of the
sampling points are set to be the same as those of the
reference line. The curvatures of the sampling points are
set as follows:

k= (Ko = dops) ™ (7)

where K¢y is the curvature of the reference line.

Then, the model-predictive generation method [61] is
exploited for generating kinematically feasible paths. The
curvature of the path (k) is modelled as a polynomial
function as its continuity can avoid jerky turnings. To
solve the parameters in k, the curvature is modelled as a
cubic polynomial. The state equation is derived as (8)

Kl bs?  cs®  ds?
x(sf) = ; cos as—i—?—i—?—i—f ds

(s)—/stin (zs—i—@—i—g—l—d—s4 ds
e = 2 T3 g

bs? cs?  dst
¢(5f):a5f+7f ?f‘*‘jf (8)

k(sf) = a+bsy + csf + ds}3

|k(s)] < Fmax

To solve these nonlinear equations, the parameters
{b,c,d,s;} are iteratively calculated through Newton’s
method. Initial values for the parameters influence the
convergence of iteration. Besides, a good initial value
can prevent solution falling into a local minimum. There-
fore, inspired by the work of [62]-[64], a pre-computed
lookup table is presented to store initial values. As illus-
trated in Fig. 3, the initial values are determined by the
parameters of pre-computed paths. The storing sequence

Figure 3. Visualized lookup table storing initial values.



is anti-clockwise, based on the position of final sampling
points from inside to outside. At each position, the storing
sequence for different headings is also anti-clockwise.

3.3 Performance Evaluation

In this section, the final planned path is chosen by per-
formance evaluation after a collision test. The evaluation
exploits the predicted trajectories of PVs.

For the sake of safety, the collision test for static obsta-
cles (e.g., road boundaries and traffic cones) is performed
before the evaluation. The same number of points is ex-
tracted from each candidate path. Inspired by [10],[33],[65],
each vehicle is approximated by a set of circles with the
same radius. If the distance from the extracted point to
the static obstacle is shorter than the threshold value, the
path will be trimmed to the last eligible point.

Then, function (9) is designed to evaluate the perfor-
mance of the remaining path. The optimal path will be
chosen for minimizing the total cost. Note that each cost
term is normalized to be within [0,1]

N N
" = arg mj?(W x* CT) = arg nli?(woco + wqCyq + wsCy)
(9)

where C = [C,, Cy, Cy] is the cost vector; W = [w,, wa, w]
is the tunable weight vector; ¢ and ¥ are the index and the
total number of candidate paths, respectively.

The cost C, evaluates the safety of the candidate path
and reflects the proximity of the candidate path to the PVs.
As the trajectories of the PVs are predicted in Section 3.1,
a probabilistic penalty can be exploited. Note that the
predicted position of the UGV is deterministic and can be
obtained through the planned state at the corresponding
time, which is Pygy = X¢(1,2), X! = 0. But the predicted
position of the PVs is uncertain and fits the Gaussian dis-
tribution, Ppy ~ N(Xy41(1,2), Piy1), 2! = Pry1. Then,
the collision probability of the two vehicles (i represents
UGV and j represents PV), which complies with a bivariate
Gaussian distribution, is

eap—3(p=V,") (Ci+%) " (0-V"))
27 |Si + X1 [1/2

Pt(i®j):

llpll<2r

dp

(10)

where V;7 = X,(1,2) — X;(1,2), which is the relative posi-
tion from the predicted position of the UGV to that of jth
PV. The parameter r is the approximate radius threshold
of the collision. The result can be integrated numerically.
For all PVs, the collision probability is modelled as the
penalty:

m T 1T
¢ =1-11 (Hu — py(i ®j>>> (1)

where m is the number of PVs, 7 is the number of time
samples.
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The cost C; penalizes the path deviation from the
global route

2
N YL g if Dinax #0
0 if Dypax = 0

Cy= (12)

where N is the number of the extracted points from each
path, D is the deviation distance of the discrete point from
the global route, Dpax is the maximal deviation distance
among all D; in each planning cycle.

The cost C reflects the path smoothness, which affects
the riding comfort:

max max

1 N 2 K2 . .
C. — sz':l (,4271+ 5 ) lf’fmax#()/\’fmax?éo
0 else

(13)

where x is the curvature of the extracted points in the
candidate path; £ is the derivative of the curvature; Kmax
is the maximal curvature among all x; in each planning
cycle and similarly, £yax is the maximal derivative of the
curvature.

3.4 Velocity Planning

The velocity planning algorithm is introduced as follows.
First, a maximal velocity limit is calculated according to
driving constraints. Second, the desired velocity, related
to the maximal velocity limit, is calculated. Third, a
tractable velocity profile is designed.

For the sake of safety, a UGV needs to have a max-
imal velocity limit (Viyax) to avoid a sudden brake in a
realistic environment. V.« is restricted to be minimum
of the following factors [34]: (1) maximal allowed veloc-
ity (Vinat), (2) maximal lateral velocity (Vi) and (3)
maximal longitudinal velocity (Vinion)-

As we know, the desired velocity meets the basic con-
dition of Viesire € [0, Vinax). Then, a univariate function
(14) of Vyesire is designed. The function complies with
the condition that the desired velocity has a positive cor-
relation to the path length when the length is longer than
the safe braking distance (Dgqpe). With the path length
approaching infinity, the desired velocity approaches Vi ax:

W :
1+exp(Dsafe—S) Vinax if s > Dsafe

Vdesire = (14)
0 if s < Dsafe

As Fig. 4 shows, the velocity profile which consists
of two segments is designed. To ensure the continuous
acceleration/deceleration, the cubic polynomials function
(15) is exploited as the first segment. Note that the
acceleration/deceleration needs to follow the constraints of
maximal acceleration/deceleration. Then, a stable period
which maintains the desired velocity follows

v(t) = ko + kit + kot® + kat? (15)



Acceleration/
1, lerati
v decpz:it)adlon Stable period
P i Gk Yy
/ (Va, as)
(vo,[ag) /
—
AN
N (v, az)
0 t

Figure 4. An example of velocity profile.

The current velocity vy can be acquired from the
sensing information. The final velocity v of the planned
path, which is equal to the desired velocity, can be obtained
by (14). Assuming that both initial acceleration ag and
final acceleration a; are zero. The planned path length
sf is in Section 3.2. Therefore, the unknown parameters
{ko, k1, k2, k3} in (15) and the planned timespan ¢; can be
solved via the following equations:

U(O = ko = Vo
’U(tf = ko + kity + k‘gt? + kigt? = vy
=k =0 (16)

kgt?—i—fk;;t}l—i—s(O) = s — Uf * s

where t; is the duration time of the velocity maintaining
period.

4. Experimental Results and Discussion

In this section, two experiments are conducted. One
experiment is to justify the accuracy of our interaction-
aware trajectory prediction. The other experiment is
to verify the performance of predictive motion planning.
The results of the second experiment are only presented
through simulation as simulation is the best way to com-
pare the approaches without the interference caused by the
instability of other systems (e.g., control and perception
system). The experiments are simulated in Prescan 8.0
and Matlab R2015b. Prescan is a high-fidelity simulation
environment for the development of autonomous driving.
The default path follower in Prescan is used to translate
a planned trajectory into wheel steering angle input and
velocity input for the controller. The planning cycle is
0.05 s. The main parameters are listed in Table 1. Note
that the parameter selection of the performance function
can be tuned on a real UGV.

4.1 Accuracy of Prediction

As the predictor in a motion planner is critical for smooth
and safe planning, two experiments on the accuracy of
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Table 1
Main Parameters of Experiments

Meaning Value
Parameter r in C, 2.5

Lane width (m) 3.5

Vehicle width (m) 1.86
Vehicle length (m) 4.45
Parameter (W) in performance function | [0.8,0.1,0.1]

trajectory prediction are performed. One experiment is
verified on real traffic data, while the other is verified in
the simulation platform.

(1) Verification on Real Traffic Data: The qualitative
accuracy of the proposed prediction method has been
studied on real traffic data in a massive public dataset
NGSIM I-80. It was collected from the traffic on
Interstate highway 80. The detailed descriptions of
the dataset can be found in [59]. The trajectories in
the dataset are collected by a visual detecting system.
Thus, there is noise in the recorded trajectory.

For simplicity, we only consider the vehicles within
the distance less than a fixed threshold from the pre-
dicting PV as interacting obstacles. The threshold
is set to be 20 ft. Then, as the intention has been
predicted in the previous research [59], our method of
trajectory prediction can be directly exploited to each
vehicle with the assumption of known intentions.

Predicting results are shown in Fig. 5. As shown in
the figures, the predicted trajectory of our method can
coincide better with the actual lane-change historical
trajectory compared to the method using CV. This is
particularly apparent in high-speed and smooth lane
changing with an uncertain heading.

(2) Qualitative Evaluation on Simulation: We compare
the following predictors: (1) a constant velocity predic-
tor (CVP), (2) a trajectory-generation-based Kalman
predictor (TKP) in KPMP [34] and (3) the proposed
interaction-aware predictor (IAP) in TAPMP. The sim-
ulated street scenario is shown in Fig. 6. In this sce-
nario, the UGV only predicts the trajectory of the tar-
get participant vehicle (TPV), which changes the lane
to avoid the slower participant vehicle (FPV) in front.
The presetting trajectories are shown in the figure.
The recorded cycle is 0.05s for predicted trajectories,
and 0.1s for presetting trajectories. Fach predictor
predicts the future trajectory of the TPV in 3s ahead.

Figure 7 compares the predicted results of position
at three time points (the 1st second, the 2nd second
and the 3rd second, respectively). During the lane
change (Fig. 7(a) and (b)), IAP predicts a larger
angular acceleration w for TPV. As can be seen in
Fig. 7(a), there is an obvious gap, which is marked in
the box. Similarly, in Fig. 8(a) and (b), IAP predicts
velocity changes. The results suggest that IAP intends
to avoid the possible collision with the slower FPV in
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Figure 5. The predicted trajectory and actual trajectory of Vehicle #121 in Dataset I-80: (a) frame =640; (b) frame = 650;
(c) frame = 660; (d) frame =670; (e) frame =680; and (f) frame = 690.

Figure 6. Scenario setup for accuracy comparison of prediction.

the prediction. In contrast, the predicted results of
CVP and TKP seem to have no apparent consideration
to avoid the collision. Moreover, we can find that the
velocity profile predicted by IAP is most similar to the
actual velocity profile at three time points.

Quantitative Fvaluation on Simulation: To compare
the precision of three predictors within two different
time spans (i.e., [0,2] s and [0,3] s), the errors of the
predicted position Pp,.. and the actual position P
at three time points are calculated. The calculation
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equation is written as (17). 7 is the time length of the
time span (i.e., 2 and 3):

%10

Errory = Z ||
k=0

t+k*0.1 t+k*0.1
]Ppre - I[Dact

l,, t=1,2,3 (17)

The mean and variance of errors are shown in Table 2.
It can be seen that IAP has the least average mean of
error among three predictors. The average prediction
error of IAP within [0,2] s is 69.37%, 29.18% of that
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Figure 7. Comparison of trajectory prediction at three
time points: (a) trajectory prediction at 1st second; (b)
trajectory prediction at 2nd second; and (c¢) trajectory
prediction at 3rd second.

of CVP and TKP. The average prediction error of AP
within [0,3] s is 66.96%, 26.72% of that of CVP and
TKP. All predictors perform the best at the beginning
of the lane change. As time goes on, the errors grow
larger. However, all errors of prediction within [0,2] s
are less than those within [0,3] s, except the prediction
by IAP at the 1st second.

4.2 Performance of Predictive Motion Planning

We choose two typical scenarios (i.e., crowded street and
cut-in manoeuvre) to compare the performance of proposed
motion planner IAPMP with previous ILTP, which is a
non-predictive motion planner. The predicted time span
of the TAPMP is 2 s. The main performance metrics
chosen are planned steering angle, planned velocity and the
curvature of the executed trajectory. Note that the steering
angle is denoted as negative when it is on the right-hand
side from its centre and positive for the left-hand side.

Table 2
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Figure 8. Comparison of velocity prediction at three time
points: (a) velocity prediction at 1st second; (b) velocity
prediction at 2nd second; and (c) velocity prediction at 3rd
second.

The first scenario is where our UGV drives on a one-
way, double-lane road with two preceding PVs of different
velocities. PV#1 has a higher velocity and overtakes
PV+#2 during the simulation. The scenario and velocity
profiles of two PVs are shown in Fig. 9(a)—(c).

The comparative experimental results between IAPMP
and ILTP in a crowded street scenario are shown in the
left column of Fig. 10. The planned trajectories, which
are executed by the path follower, are shown in Fig. 10(a).
For simplicity, the trajectories of PVs are not presented
in the figure. Screenshots of driving in human view at
specific time are shown in Fig. 10(b)—(g), which can be used
to understand the situation intuitively. The trajectory
planned by TAPMP is more human like than the one of
ILTP, which changes lane to avoid PV#1 in a short-sighted
manner. The planned results of performance metrics are
shown in Fig. 10(h)—(j). The planned steering angle of
TAPMP is smoother than that of ILTP, and the curvature
of the trajectory planned by TAPMP is also smoother.
Meanwhile, TAPMP maintains a relatively less volatile
planned velocity than that of ILTP.

Accuracy of Trajectory Prediction

Predicted Error (m) in [0,2] Error (m) in [0,3]

Time Point CVP TKP IAP CVP TKP IAP

Ist second |2.22340.647 | 6.171 +3.404 | 1.774 £ 0.624 | 3.284 4 1.763 | 10.051 £ 6.611 | 1.579 = 0.695
2nd second | 3.001 +1.257 | 7.167 £ 4.144 | 1.914 +-0.216 | 4.817 + 3.034 | 11.896 - 8.046 | 2.281 4 0.692
3rd second |3.914+1.869 | 8.388 4 4.924 | 2.650 +0.719 | 6.321 +4.041 | 13.810 £ 9.276 | 3.610 + 1.614
Average  |3.04641.258 | 7.242 4 4.157 | 2.113 +0.520 | 4.807 £ 2.946 | 11.919 4 7.978 | 2.490 + 1.000
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Figure 9. Left column: scenario 1 crowded street; right column:
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The second scenario also occurs on a unidirectional
double-lane road. PV#1 overtakes PV#2 and cuts into
the lane occupied by the UGV. The scenario and velocity
profiles of two PVs are shown in Fig. 9(d)—(f).

The results of two planners in a cut-in street scenario
are shown in the right column of Fig. 10. The figures show
that although the trajectory planned by ILTP is the same
as TAPMP before 2, the cut-in behaviour performed by
PV#1 will influence ILTP. As we can see in Fig. 10(r)
and (s), when the desired steering angle changes, the de-
sired velocity also slows down correspondingly. In the cut-
in street scenario, the curvature of the trajectory planned
by TAPMP is still smoother than that of ILTP.

As these two experiments demonstrate, when the UGV
interacts with PVs in crowded and cut-in street scenarios,
the smoothness of trajectories generated by IAPMP is
improved compared to ILTP.

5. Conclusion

The presented motion planner IAPMP can interact with
other moving PVs in some typical dynamic environments.
The planned trajectories are collision-free, smooth and
environmental adaptive. The performance of TAPMP in a
dynamic environment has been greatly improved compared
with the motion planner ILTP. The results also show that
the proposed IAPMP is good at predicting the complex
patterns in the long-term prediction.

A major challenge here is to meet the requirement of
more complex manoeuvre predictions in real environment.
This will be considered in future work. Besides, our motion
planner will also be verified in an actual road test.
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