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AN IMPROVED SPECTRAL CLUSTERING

ALGORITHM FOR LARGE-SCALE WIND

FARM POWER PREDICTION
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Abstract

Aiming at reaching the balance between calculation efficiency and

power prediction accuracy of wind farms, two improved spectral

clustering (SC) algorithms and their application framework are pro-

posed. For classical k-way Ng–Jordan–Weiss SC, the clustering

sample space is composed of k eigenvectors, which may lose part

of structural information and may not reach accurate clustering

results. To improve the accuracy and stability, we proposed to clus-

ter with feature expansion and the Cuckoo Search (CS) algorithm.

We extended the clustering eigenspace from k eigenvectors to 2k

to improve the clustering accuracy. To avoid following into local

optimum while extending the eigenspace, the CS algorithm was

introduced to search for better initial points instead of the random

choice method. To apply the proposed algorithm for wind power

prediction, wind turbines with similar wind regime were designated

to the same group using the proposed SC algorithm. The power

prediction model was established for each wind turbine group, and

the output power of the entire wind farm was obtained by superpo-

sition. Experimental results indicated that the clustering accuracy

is improved and the results of multiple clustering hold steady, which

meets the requirement of accurate and timely prediction of wind

farm power.
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1. Introduction

Wind farm power prediction technology is one of the cru-
cial means to solve the impact of large-scale wind power
grid generation on the safety, stability and economic oper-
ation of smart grids [1]. The mainstream approach utilizes
the wind regime of typical locations to predict the output
power of an entire wind farm [2]. For large-scale wind
farms, this strategy cannot guarantee prediction accuracy.
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But if the prediction is based on an individual wind turbine,
the calculation time will be too long, which cannot meet
the real-time prediction requirements of smart grids. On
the other hand, if the similarity between different wind tur-
bines can be identified and thus the entire wind farm can be
divided into different groups of wind turbines to predict in
batches, the prediction accuracy can be improved, and the
computational efficiency can be guaranteed. Therefore, the
study of an efficient and stable clustering algorithm is the
key issue of power prediction for a large-scale wind farm.

Data clustering represents a valuable data mining tool
in the fields of computer vision [3]–[5], text mining [6], [7],
bioinformatics mining [8], [9], etc. It explores the potential
value of data by classifying samples into different groups
based on their degree of association [10]. For non-linear
separable problems, spectral clustering (SC) [11]–[13] is
among the most effective clustering methods. For exam-
ple, experiments in [14] demonstrated that the forecasting
model based on the SC algorithm shows a higher accuracy
on wind power prediction than those models combined
with other clustering algorithms. The SC algorithm was
first derived from the graph spectral partitioning theory
[15], which aims at solving the cluster partitioning problem
using the optimal partitioning theory of graphs. Accord-
ing to the partitioning criterion of graph theory, SC can
be classified as iterative SC [16], [17] and k-way SC [18],
[19]. In 1998, Perona et al. [16] proposed to cluster with
the eigenvector x1 corresponding to the largest eigenvalue
of the affinity matrix. Shi et al. [17] presented a new
solution for graph partitioning and came up with a two-
way partitioning normalized-cut objective function. The
Ng–Jordan–Weiss (NJW) method proposed by Ng et al.
[18] is a classical iterative SC algorithm, which calculates
the sample affinity matrix, converts it into a Laplacian
matrix, computes the Laplacian matrix eigenvalues, and
then clusters with the eigenvectors corresponding to the
k largest eigenvalues. The Markov chain clustering algo-
rithm proposed by Meila [19] has similar algorithmic steps
with the NJW algorithm, but its eigenspace is composed
of eigenvectors obtained by the random walk matrix.

Nowadays, researches on SC mainly focus on the
construction of the affinity matrix, selection of eigen-
vectors, determination of the cluster number, and their
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applications. In these research fields, the selection of eigen-
vectors plays a crucial role in the division of clusters. It
was proved in [20] that it is not always possible to select a
group of eigenvectors suitable for clustering all data sam-
ples. Even if such a solution set exists, it is hard to obtain
with little prior knowledge. The classical NJW algorithm
[18] performs clustering operation using the eigenvectors
corresponding to the k largest eigenvalues. Instead of using
eigenvectors, Sun et al. [21] searched the feature dimension
of the principal component by swarm intelligent algorithm
and took the vector subset reflecting the relationship be-
tween data samples as the clustering space vectors. Zhao
et al. [22] calculated the entropy of the eigenvectors and
selected the cluster space vectors based on the sorted en-
tropy values (ESBER_D). They also demonstrated that
the cluster resulting from k-dimensional eigenspace is not
necessarily the optimal clusters and that there are other
combinations of eigenvectors which can achieve better re-
sults. Rebagliati et al. [23] indicated that the number of
eigenvectors can be determined by referring to the differ-
ence between the eigenvalues. They argued that, to some
extent, the eigenvalues can reflect the corresponding eigen-
vectors’ ability to classify clusters. In the landmark-based
SC [11], the original data points are represented by the
linear combinations of those landmarks of representative
data points. Despite intense research, selecting the optimal
eigenvector for SC is still open.

According to the above discussion on the selection of
eigenvectors, it reveals that clustering using eigenvectors
corresponding to the k largest eigenvalues may lose some
feature information. We considered that using more eigen-
vectors to form the cluster eigenspace may further improve
the accuracy. Therefore, we extended the dimension of
eigenspace of the NJW algorithm from k-dimension to 2k-
dimension (i.e. cluster with the eigenvectors correspond-
ing to the first 2k largest eigenvalues). To avoid cluster
results fluctuation caused by falling into local optimum,
the Cuckoo Search (CS) algorithm [24] was introduced,
and the sum error square was employed as the fitness func-
tion to select high-quality initialization centres. Hence, an
improved NJW algorithm based on feature expansion and
CS was proposed. The clustering accuracy and stability of
the new model were validated on four groups of experimen-
tal data. Owing to the high accuracy of the SC method
in predicting wind power [14], we also set out to apply
the proposed algorithm on grouping the wind turbines of
large-scale wind farms and then predict the power of each
group. The output power of the entire farm is obtained
by the sum power of every group. The smoothing effect of
multiple groups of wind turbines can improve the accuracy
of power prediction, and the batch prediction strategy can
ensure the computational efficiency so as to provide more
timely power prediction for power system scheduling.

2. Basic Concepts

2.1 Spectral Clustering

SC is a clustering algorithm based on graph theory,
which transforms the clustering problem into the optimal

partitioning problem of graphs. The concepts involved in
SC are as follows:
1. Graph representation

G(V,E) denotes an undirected graph, where the vertex
set is represented by V = {v1, v2, . . . , vn}, the edge
set is denoted by E, the weigh between vi and vj is
expressed by wij , and for an undirected graph:

wij = wji, wii = 0, wij ≥ 0 (1)

2. Graph partition
Graph partition refers to dividing a graph into a num-
ber of completely separated subgraphs, that is,

G1 ∪ . . . ∪Gk = G (2)

G1 ∩Gk = ∅ (3)

3. Loss function
The loss function is defined as the weighted sum of the
edges which are truncated between subgraphs:

Cut(G1, G2) =
∑

i∈G1,j∈G2

wij (4)

where the criterion for a division is that there are high
similarity within subgraphs and low similarity between
subgraphs.

4. Laplacian matrix
Let G(V,E) (suppose G has n points) be divided into
two subgraphs, G1 andG2, and the n-dimension vector
q= [q1, q2, . . . , qn] represents the partition scheme.

qi =

⎧⎨
⎩c1 i ∈ G1

c2 i ∈ G2

, q = [c1, c1, c1, c2,c2, c2] (5)

The corresponding loss function is

Cut(G1, G2) =
∑

i∈G1,j∈G2

∑n
i=1

∑n
j=1wij(qi − qj)

2

2(c1 − c2)2
(6)

where

n∑
i=1

n∑
j=1

wij(qi−qj)
2 = −

n∑
i=1

n∑
j=1

2wijqiqj+
n∑

i=1

n∑
j=1

wij(q
2
i +q2j)

= 2qT (D −W )q (7)

where D is a diagonal matrix:

Dii =
n∑

i=1

wij (8)

The Laplacian matrix is defined as

L = D −W (9)
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where W is the weight matrix (also called the adjacency
matrix), and D is the similarity degree matrix.

n∑
i=1

n∑
j=1

wij(qi − qj)
2 = 2qTLq (10)

qTLq =
1

2

n∑
i=1

n∑
j=1

wij(qi − qj)
2 ≥ 0 (11)

L is a positive semi-definite matrix. The minimum
eigenvalue is zero, and its eigenvector is the unit vector.

Based on the above definitions, the loss function is
expressed as

Cut(G1, G2) =
∑

i∈G1,j∈G2

∑n
i=1

∑n
j=1wij(qi − qj)

2

2(c1 − c2)2
(12)

Cut(G1, G2) =
qTLq

(c1 − c2)2
(13)

Thus, the graph partition problem is transformed into
the qTLq conditional minimum problem.

2.2 k-Way NJW Spectral Clustering Algorithm

The NJW algorithm [18] is the classical k-way SC al-
gorithm. It first constructs the Laplacian matrix, then
forms the eigenspace by the eigenvectors corresponding to
the k largest eigenvalues, and finally divides the sample
within eigenspace using the k-means or other clustering
algorithms. The main steps of the NJW algorithm are as
follows:

Algorithm 1. k-Way NJW SC algorithm

Step 1. Construct the affinity matrix A ∈ n× n,Aij is
calculated as

Aij = exp

(
−|dij |2
2σ2

)
, i �= j, Aii = 0 (14)

Step 2. Calculate the Laplacian matrix L as

L = D−(1/2)AD−(1/2) (15)

where D is the diagonal matrix with the diagonal
element Dij :

Dii =
n∑

j=1

Aij (16)

Step 3. Compute the eigenvectors (x1x2 . . . xk) cor-
responding to the k largest eigenvalues, forming the
matrix X = [x1x2 . . . xk] ∈ n× k

Step 4. Normalize the row vectors of matrix X to get
matrix Y , and Yij is calculated as

Yij =
Xij(∑

j X
2
ij

)1/2 (17)

Step 5. Each row in matrix Y is treated as a data
point of Rk, which divides Y into k classes by the
k-means or other clustering algorithms.

Step 6. Finally, when and only when the ith row of
matrix Y is classified to the jth cluster, the original
data point, si, is designated to the jth cluster.

The NJW algorithm works by mapping the original
data distribution to another space dimension, so as to
make the data distribution in the latter dimension tighter
than the origin to improve the clustering capacity of each
feature dimension. The mechanism lies in that each feature
dimension possesses the ability to classify clusters, that is,
the ability to represent a certain feature. But the impact
of different features on partitioning is not the same. There-
fore, clustering only with the eigenvectors corresponding to
the k largest eigenvalues will lose the feature information
of some vector dimensions, which reduces the clustering
accuracy.

2.3 The Cuckoo Search Algorithm

The CS algorithm [24] is an optimization model based on
the parasitic breeding behaviour of some cuckoo species
and Levy flight behaviour of some birds. It has the
characteristics of being insensitive to parameter changes,
being able to jump out of local optimum, and being easy
to integrate into other algorithms.

To simulate the behaviour of cuckoo nesting and
spawning, the following three states need to be assumed:

1. The cuckoo chooses the location for nesting at random
and lays one egg at a time.

2. The nest locations selected by different birds are dif-
ferent, and the optimal location is retained.

3. The number of nests is fixed, and the probability of
boarding eggs being found is Pa, Pa ∈ [0, 1].

Based on the above idealized assumption, the formula
for location updating of CS is as follows:

xt+1
i = xt

i + α⊕ Lévy(λ) (18)

The CS is a swarm intelligence algorithm, which sim-
ulates the message passing and group collaborating among
biological individuals and can effectively solve many global
optimization problems. This algorithm is simple and effec-
tive, has strong global search ability and strong robustness,
and can provide effective solutions for complex optimiza-
tion problems. Combining swarm intelligence algorithm
with clustering algorithm is not only feasible but also can
improve the clustering performance.
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3. Improved NJW Algorithm based on Feature Ex-
pansion and Cuckoo Search

3.1 The NJW Algorithm based on Feature Expan-
sion

For the eigenvectors of Laplacian matrix obtained by the
NJW algorithm, there is no standard practice for deter-
mining the dimension and combination of eigenvectors for
clusters. The eigenvectors corresponding to larger eigenval-
ues are more crucial for spectral space representation, and
eigenvectors of each dimension have some ability to divide
clusters. Therefore, using the eigenvectors corresponding
to the largest 2k eigenvalues to form the cluster eigenspace
may improve the clustering performance. On the other
hand, eigenvectors of each dimension also produce infor-
mation that interferes with clustering. Therefore, different
combinations of multidimensional vectors will have differ-
ent effects. When the dimension of eigenspace is increased
to 2k, compared with the classical NJW algorithm, the
clustering accuracy may rise or decrease. The result fluc-
tuation of multiple clustering is higher than that of the
classical NJW algorithm. Expanding the eigenspace from
k to 2k dimension may introduce some dimension eigenvec-
tors with poor ability to classify clusters, which increases
the irrelevancy between data and makes data points more
scattered than those in low-dimensional space.

At the same time, the random selection initializa-
tion strategy adopted by the NJW clustering algorithm
increases the probability of falling into a local optimum,
which leads to the fluctuation of multiple clustering. To
reduce the interference information introduced by expand-
ing eigenvectors and to maintain clustering stability, we
solve the above problems by selecting comparatively better
initialization centres.

3.2 Spectral Clustering Algorithm based on Fea-
ture Expansion and Cuckoo Search

In this paper, we introduce the CS algorithm to find
the initialization centre points, which is based on the
calculation of a fitness function to find a high-quality
location. The sum of square error is used as the fitness
function in the CS algorithm, which is defined as

F =
k∑

j=1

nj∑
i=1

∣∣∣x(j)
i − cj

∣∣∣2 (19)

where xi is the sample data point, and cj(j = 1, 2, 3, . . . , k)
represent the cluster centres.

By introducing the CS algorithm and taking those data
points with the minimum sum of square error as the ini-
tialization centre points to the improved NJW algorithm,
the accuracy instability caused by the random selection
initialization strategy is reduced. The new algorithm is
called CS_2K_NJW, and the calculation process is shown
in Algorithm 2.

Algorithm 2. Improved NJW algorithm based on feature
expansion and CS:

Input: The whole data sample

Output: The clustering results with centres

Step 1. Set the initialization parameters and the
cluster number k;

Step 2. According to formulas (14)–(17), calculate
the Laplacian matrix L and the normalized matrix
Y of the eigenvectors corresponding to the largest 2k
eigenvalues;

Step 3. According to formula (19), take those n data
points with the minimum sum of square error as the

initial nest locations Y
(0)
i = [Y

(0)
1 , Y

(0)
2 , . . . , Y

(0)
n ]T ;

Step 4. Cluster the data sample with the n initial
nest locations. As shown in formula (20), calculate the
fitness value F of each position and retain the result of
relatively small F value:

Fbest = min{F1, F2, . . . , Fn} (20)

Step 5. Calculate the new nest location according to
the Levy flight strategy in CS algorithm;

Step 6. Classify the updated nest locations, compute
the new fitness value of each nest location, compare the
two generations of nest location according to their fit-
ness values, and retain the relatively small F according
to the following formula;

F i
j = min

{
F i−1
j , F i

j

}
(21)

F i
best = min

{
F i−1
best, F

i
1, F

i
2, . . . , F

i
n

}
(22)

Step 7. Generate a random number r ∈ [0, 1] and
compare it with probability Pa. If r <Pa, retain
the results, otherwise, recalculate the location by the
update formula;

Step 8. If the maximum iteration number or the
stop condition is satisfied, keep the solution with the
minimum fitness value and proceed with the following
operation, otherwise, continue computing from Step 5;

Step 9. Carry out k-means clustering on the retained
optimal nest locations, and finally output the cluster-
ing results.

4. Experimental Results and Analysis

4.1 Test Dataset

In this paper, experiments are conducted on three datasets
from the University of California Irvine machine learning
databases [25] and the dataset from literature [26]. The
characteristics of the four datasets are shown in Table 1,
where the Path-based dataset is two dimensional with its
distribution shown in Fig. 1. It is observed that this dataset
has the characteristic of the non-convex distribution.
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Table 1
Basic Information about the Four Datasets

Name Instances Attributes Clusters Instances in
Each Cluster

Wine 178 13 3 59/71/48

Iris 150 4 3 50/50/50

Seeds 210 7 3 70/70/70

Path-based 300 2 3 110/93/97

Figure 1. Distribution of the Path-based dataset.

4.2 Measurement

To evaluate the effectiveness and stability of the pro-
posed algorithm, we process the above four groups of
data for 20 times using the k-means, NJW, ESBER_D
based on entropy sorting, and the proposed 2K_NJW
and CS_2K_NJW algorithms. Clustering accuracy [27] is
adopted to evaluate their performances, which is defined as

accrucy =

∑n
i=1δ(yi,map(ci))

n
(23)

where n denotes the number of samples in the dataset,
yi marks the cluster to which a data sample belongs,
ci denotes the final clustering results, and δ(yi,map(ci))
counts the number of correct clustering results. map(·)
converts the resulting to the original cluster identifier. The
clustering accuracy is measured by the maximum value of
δ(yi,map(ci)).

4.3 Parameter Setting

In the experiments, σ=1, dij denotes the sample similarity
based on the Euclidean distance. For the SC algorithm, Pa

is fixed to 0.25. In (18), α is the step factor and is set to 1,

⊕ denotes dot product. Lévy(λ) represents Lévy random
search path with the following distribution.

Lévy(λ) ∼ u = t−λ, 1 < λ ≤ 3 (24)

It is usually difficult to compute the Lévy distribution
by the probability density function. In 1994, Rosario
Mantegna proposed a numerical method which computes
the Lévy distribution by the following formulae [28]:

s =
u

|v|1/β (25)

u ∼ N(0, σ2
u), v ∼ N(0, σ2

v) (26)

σu =

{
Γ (1 + β) sin (πβ/2)

Γ[(1 + β) /2]β2(β−1)/2

}1/β

, σv = 1 (27)

Lévy(λ) is calculated from (24). All values of β in (25)
and (27) are usually constant 1.5, and the result of σu is
also constant 0.6966. From (25)–(27), it can be seen that
s depends on u and v, both of which are random numbers
obeying the normal distribution. The symbols of u and v
can be positive or negative, and their values can be large or
small, so that the step size and the direction of levy’s flight
are randomly changed, which strengthens the global search
ability of the CS algorithm and is conducive to jumping
out of local optima.

4.4 Experiment and Results

Figures 2–5 are 20 clustering results of the above five
algorithms on four datasets. Tables 2–5 are the maximum,
minimum, and average accuracy of 20 clustering on the
dataset Wine, Iris, Seeds, and Path-based, respectively.

It is clearly observed from Figs. 2–5 that the k-means
performs the worst on the stability of multiple clustering.
For the classical NJW algorithm, the accuracy of 20 clus-
tering on the wine, seeds, and Path-based datasets remains
stable. For the Seeds dataset, though there is some fluctu-
ation, most of the 20 clustering of the NJW algorithm hold
the same accuracy. Compared with the results of NJW, the
ESBER_D algorithm manifests different performances for
different datasets, indicating that the quality of eigenspace
directly influences the clustering results. For the proposed
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Figure 2. Twenty clustering results on the Wine dataset.

Figure 3. Twenty clustering results on the Iris dataset.

Figure 4. Twenty clustering results on the Seeds dataset.

Figure 5. Twenty clustering results on the Path-based dataset.
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Table 2
Clustering Accuracy on the Wine Dataset

Acc_min Acc_max Acc_avg

k-Means 56.7 70.2 65.7

NJW 94.4 94.4 94.4

ESBER_D 94.4 94.4 94.4

2K_NJW 68.5 98.3 3.4

CS_2K_NJW 96.6 98.3 97.7

2K_NJW algorithm, some results are significantly better
than those of the NJW algorithm. It reveals that the
information provided by additional k-dimension eigenvec-
tors helps to accomplish an optimal partitioning to some
extent. But the stability of 20 clustering of the proposed
2K_NJW algorithm is very poor. This is because some
combinations of the additional k eigenvectors exert a posi-
tive impact, but other combinations have a negative effect
on the clustering. Higher eigenspace dimension increases
the dispersion degree of data points, making the algorithm
become more sensitive to initial centres and falling into
the local optimal solution. As for the CS_2K_NJW algo-
rithm, though the clustering results on the Seeds dataset
are not so good, it almost provides the highest accuracy
of all 20 clustering on the Wine, Iris, and Path-based
datasets. There is one thing required to be pointed out
that the proposed CS_2K_NJW algorithm has the ability
to cluster on a non-convex distribution dataset as shown
in Fig. 1.

It can be observed from Table 2–5 that the maximum
accuracy of both the 2K_NJW and the CS_2K_NJW
algorithm are higher than that of the NJW and ESBER_D
algorithm. This complies with the conclusion of [23] that
the number of eigenvectors for the highest accuracy clus-
tering results is not necessarily k. The minimum accu-
racy of the 2K_NJW algorithm is also very low. The
reason is that the information provided by each dimen-
sion is different, and too many feature dimensions also
cause interference. With the purpose of minimizing the
sum of variances of all clusters and taking full advantage
of the ability of each vector dimension to divide class
clusters, the proposed CS_2K_NJW algorithm combines
the CS algorithm with the improved NJW SC with 2k
eigenvectors. Due to initializing with high-quality clus-
ter centres and extra information provided by additional
k-dimension eigenvectors, the proposed CS_2K_NJW al-
gorithm proves high performance on clustering stability
and accuracy. As shown in Tables 2, 3, and 5, the average
accuracy of 20 clustering on the Wine, Iris, and Path-
based datasets of the proposed CS_2K_NJW algorithm
is higher than those of all other algorithms.

As shown in Table 4, the highest clustering accuracy
obtained by the CS_2K_NJW algorithm on the Seeds
dataset is no less than those of the other algorithms, but
the average accuracy is not so good. The main reason
is as follows. In this paper, the square error of every

Table 3
Clustering Accuracy on the Iris Dataset

Acc_min Acc_max Acc_avg

k-Means 50.0 89.3 81.7

NJW 64.0 94.0 87.2

ESBER_D 56.3 94.0 89.9

2K_NJW 69.3 96.7 90.7

CS_2K_NJW 90.0 96.7 96.3

Table 4
Clustering Accuracy on the Seeds Dataset

Acc_min Acc_max Acc_avg

k-Means 50.0 90.4 75.8

NJW 89.0 89.0 89.0

ESBER_D 81.4 89.0 86.0

2K_NJW 70.4 90.5 84.6

CS_2K_NJW 80.0 90.5 83.6

Table 5
Clustering Accuracy on the Path-based Dataset

Acc_min Acc_max Acc_avg

k-Means 74.3 74.7 74.5

NJW 81.0 81.0 81.0

ESBER_D 48.0 91.0 67.4

2K_NJW 49.3 96.0 86.7

CS_2K_NJW 95.0 96.0 95.2

Figure 6. Fitness versus accuracy of 10 experiments.

single cluster is not addressed in the fitness; it may occur
that the square error of some single cluster is small due
to the small sample number, resulting in a small fitness
value. The experimental results on the Seeds dataset reveal
that smaller fitness values correspond to worse clustering
results as shown in Fig. 6. Though the swarm intelligence
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Figure 7. Framework of large-scale wind farms power prediction.

algorithm SC can converge to an optimal solution, due to
the lack of evaluation of each cluster, the initial centres
determined by the SC may be a locally optimal solution
for clustering, resulting in bad final clustering results.

Although the computation complexity is increased,
the above experimental results and analysis demonstrate
that, by feature expansion and initialization with the CS
algorithm, the overall performance on clustering accuracy
and stability of the proposed CS_2K_NJW algorithm
is higher than that of the k-means, classical NJW, and
ESBER_D algorithms.

4.5 Application of the CS_2K_NJWAlgorithm in
Real Data

As real wind power data are still being collected, we can
only propose to apply the proposed two algorithms on
power prediction of large-scale wind farms. First, input
the wind regime data of the initial month and the wind
farm group number k. Second, the wind turbines with
similar wind regime, and force outputs are assigned to
the same group by the CS_2K_NJW algorithm. Finally,
the power prediction model is established for each wind
turbine group, and the output power of the entire wind
farm is obtained by superposition. The wind regime
data of any follow-up month are employed to fine-tune
the previous turbine groups using the proposed 2K_NJW
algorithm. The framework for wind turbine grouping and

power prediction modelling is presented in Fig. 7. The
specific steps include the following:

1. Collect wind farm data and determine the input vari-
ables for the wind turbine grouping model.

2. Settle down the group number k.

3. Normalize and reduce the dimensionality of input vari-
ables.

4. Identify the similarity between wind turbines by the
CS_2K_NJW algorithm and group them to form k
clusters.

5. Establish power prediction model for each wind turbine
group. The predicted power of the entire wind farm is
the sum of the predicted power of each group.

5. Conclusion

For large-scale wind farms power forecasting, it is difficult
to guarantee the accuracy and efficiency of prediction si-
multaneously. To solve this problem, a SC algorithm based
on feature extension and CS and its application framework
is proposed in this paper. Through multiple SC experi-
ments of extending the eigenspace from k to 2k, it reveals
that, compared with the classical NJW algorithm, the clus-
tering accuracy can frequently fluctuate. We also find out
that the random choice initialization strategy is responsi-
ble for the fluctuation. Therefore, we introduce the SC
algorithm to the improved NJW algorithm to search for
better initial points, which can effectively avoid trapping
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in local optimal and improve the clustering stability. Ex-
perimental results on four datasets reveal that, compared
with the baseline methods, the proposed CS_2K_NJW
algorithm can achieve more accurate clustering results as
well as better stability of multi-clustering, which may meet
the requirement of accurate and real-time forecasting of
the wind power output.

As real wind power data are still being gathered, we
can only propose a framework for wind turbine grouping
and power prediction. Next, we will evaluate the prediction
performance of the proposed algorithm in power prediction
of large-scale wind farms.

Acknowledgement

This work is partially supported by Guangxi Science
and Technology Planning Project (Nos. AB17195053,
AD18281002, AB18126063, and AB18126053), the Na-
tional Marine Technology Program for Public Welfare (No.
201505002), the National Natural Science Foundation of
China under Grant Nos. 61762025 and 61662014, Guangxi
Natural Science Foundation under Grant Nos. 2017GXNS-
FAA198226 and 2018GXNSFAA294052, Guangxi Key
Laboratory of Trusted Software (kx201510 and kx201413),
Guangxi Colleges and Universities Key Laboratory of
Cloud Computing and Complex System (Nos. 14106
and 15204), the Innovation Project of GUET Gradu-
ate Education (Nos. 2017YJCX52 and 2018YJCX42),
Guangxi Cooperative Innovation Center of Cloud Com-
puting and Big Data (Nos. YD16E01, YD16E04, YD1703,
YD1712, YD1713, and YD1714), and Guangxi Colleges
and Universities Key Laboratory of Intelligent Processing
of Computer Image and Graphics (No. GIIP201603).

References

[1] L. Dong, L. Wang, S.F. Khahro, et al., Wind power day-
ahead prediction with cluster analysis of NWP, Renewable &
Sustainable Energy Reviews, 60, 2016, 1206–1212.

[2] Y. Lu, T. Zhang, Z. Zeng, et al., An improved RBF neural
network for short-term load forecast in smart grids, Interna-
tional Conf. on Conceptual Structures, Annecy, France, 2016,
1–6.

[3] R. Peng, H. Sun, L. Zanetti, et al., Partitioning well-clustered
graphs: Spectral clustering works!, Conference on Learning
Theory, 46(2), 2017, 1423–1455.

[4] Y. Yang, Y. Wang, X. Xue, et al., A novel spectral clustering
method with superpixels for image segmentation,Optik, 127(1),
2016, 161–167.

[5] H. Zbib, S. Mouysset, S. Stute, et al., Unsupervised spectral
clustering for segmentation of dynamic PET images, IEEE
Transactions on Nuclear Science, 62(3), 2015, 840–850.

[6] I.S. Dhillon, Co-clustering documents and words using bipartite
spectral graph partitioning, Knowledge Discovery and Data
Mining, San Francisco, America, 2001, 269–274.

[7] V. Mijangos, G. Sierra, A. Montes, et al., Sentence level
matrix representation for document spectral clustering, Pattern
Recognition Letters, 85, 2017, 29–34.

[8] C.H. Ding, Unsupervised feature selection via two-way ordering
in gene expression analysis, Bioinformatics, 19(10), 2003,
1259–1266.

[9] W. Zang, Z. Jiang, L. Ren, et al., Improved spectral clus-
tering based on density combining DNA genetic algorithm,
International Journal of Pattern Recognition and Artificial
Intelligence, 31(04), 2017, 1750010-1–1750010-23.

[10] F. Ding, J. Wang, J. Ge, et al., Anomaly detection in large-scale
trajectories using hybrid grid-based hierarchical clustering,

International Conference on Robotics and Automation, 33(5),
2018, 474–480.

[11] R. Langone and J.A. Suykens, Fast kernel spectral clustering,
Neurocomputing, 268, 2017, 27–33.

[12] A. Vora and S. Raman, Iterative spectral clustering for unsu-
pervised object localization, Pattern Recognition Letters, 106,
2018, 27–32.

[13] Y. Xu, Z. Zhuang, W. Li, et al., Effective community division
based on improved spectral clustering, Neurocomputing, 279,
2017, 54–62.

[14] R. Yu, J. Gao, M. Yu, et al., LSTM-EFG for wind power
forecasting based on sequential correlation features, Future
Generation Computer Systems, 93, 2019, 33–42.

[15] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak
Mathematical Journal, 23(23), 1973, 298–305.

[16] P. Perona and W.T. Freeman, A factorization approach to
grouping, European Conference on Computer Vision, Freiburg,
German, 1998, 655–670.

[17] J. Shi and J. Malik, Normalized cuts and image segmenta-
tion, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8), 2000, 888–905.

[18] A.Y. Ng, M.I. Jordan, Y. Weiss, et al., On spectral clustering:
Analysis and an algorithm, Neural Information Processing
Systems, Vancouver, Canada, 2001, 849–856.

[19] M. Meila and J. Shi, Learning segmentation by random walks,
Neural Information Processing Systems, Denver, America,
2000, 873–879.

[20] T.G. Dietterich, Machine learning research: Four current
directions, AI Magazine, 18(4), 1997, 97–136.

[21] Z. Sun, G. Bebis, R. Miller, et al., Object detection using
feature subset selection, Pattern Recognition, 37(11), 2004,
2165–2176.

[22] F. Zhao, L. Jiao, H. Liu, et al., Spectral clustering with eigen-
vector selection based on entropy ranking, Neurocomputing,
73(10), 2010, 1704–1717.

[23] N. Rebagliati and A. Verri, Spectral clustering with more than
K eigenvectors, Neurocomputing, 74(9), 2011, 1391–1401.

[24] X. Yang and S. Deb, Cuckoo Search via Lévy flights, Nature
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