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Abstract

This paper introduces a novel second-order state estimation method

that is applied to linear systems dealing with modelling uncertainties.

This method produces state estimates by decreasing the innovation

sequence (measurement error) and its time difference which results in

preserving smoothness and stability against modelling uncertainties.

This filter is referred to as the second-order filter since it updates

state estimates based on values of the measurement error and its

incremental change. The corrective gain of this filter is designed

based on a time-varying manifold that is a linear combination of the

measurement error and its time difference. This manifold introduces

a cut-off frequency coefficient into the filter formulation. The optimal

version of the dynamic second-order filter is then calculated by

finding the optimal value of this coefficient at each time step such

that the state error covariance matrix is minimised. It is shown

that the corrective gain of the optimal second-order filter collapses

to the Kalman filter’s gain for a known model with white noise. In

order to verify the accuracy of the method, it is implemented on an

aerospace electro-hydrostatic actuator setup under the normal and

faulty scenarios.
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1. Introduction

Estimation is the process of extracting the value of a
quantity or state from indirect, inaccurate, and uncertain
measurements. The main goals are to minimise the
estimation error as well as achieving robustness against
modelling uncertainties, measurement noise, and bounded
disturbances. Noise and disturbances are inherently present
in the measurement process and are caused by instruments
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and environmental factors. Other uncertainties are caused
by perturbations or inherent inaccuracy in modelling,
including variations of physical parameters due to system
deteriorations or ageing. Parameter and state estimation
are increasingly used in real-time control and monitoring
applications.

Optimality in estimation has usually been obtained by
adjusting a filter’s corrective gain to minimise the state
error covariance. The Wiener–Kolmogorov filter was one
of the first major contributions in optimal estimation that
was proposed for stationary signals. It assumed estimates
with known spectral properties subject to white noise.
The Kalman filter was a generalisation of the Wiener–
Kolmogorov filter and has been applied to linear systems
with non-stationary Gaussian signals [1]. The Kalman filter
is optimal for a linear system with a perfectly known model
subject to white process noise and measurement noise.
Under these assumptions, the Kalman filter recursively
computes the optimal states using a predictor–corrector
algorithm using an optimal gain. The Kalman filter gain
is calculated such that the state error covariance matrix is
minimised as each time sample.

Another important consideration in estimation is
robustness to modelling uncertainties and bounded
disturbances. Considerable research has been performed on
the design of robust state estimation methods for dynamic
systems with bounded uncertainties, such as minimax
estimators, worst-case, or set-membership state estimators
[2]–[4]. From the statistical standpoint, the minimax
estimators deal with uncertainties that are uniformly
distributed within a given bound. In the case of ellipsoidal
bounding sets, these estimators coincide with the Kalman
filter for linear systems. Other strategies found in literature
include the robust Kalman filter [5]–[8], the H∞ filter
[9]–[11], and variable structure filtering (VSF) [12]–[14]. Xie
et al. [5] have presented a robust Kalman filter method that
is robust versus time-varying norm-bounded parametric
uncertainties in the state and measurement matrices. Their
filter applies to linear systems with modelling uncertainty
and guarantees that the variance of measurement error
remains norm-bounded [5]. The robust Kalman filter was
moreover designed for systems with bounded modelling
uncertainties such that an upper bound of the mean
square estimation error is minimised at each step [7].
Zames [15] proposed the H∞ method in 1980 that removed
the necessity of a perfect model or complete knowledge of
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the input statistics. The H∞ theory was designed based on
tracking the energy of a signal for the worst possible values
of noise and modelling uncertainties [16].

The smooth variable structure filter (SVSF) is a model-
based robust state estimation strategy [12]. It is based
on the concept of variable structure systems that achieves
stability given an upper bound for modelling uncertainties
and noise levels [12]. Gadsden developed the optimal
version of the SVSF filter and presented applications
for fault diagnosis [14], [17]. Mahalanabis et al. [18]
presented a second-order method for state estimation
of nonlinear systems. Their method was restricted to
a class of nonlinear systems subjected to a Gaussian
noise distribution. They showed that a nonlinear state
equation may be expanded using a polynomial function
of arbitrary order and developed a second-order state
estimation method based on the nonlinear state model
with first-order differential equations [18]. Afshari modeled
the dynamics of actuation systems using physical methods
[19], [20] and designed filters for robust state estimation for
actuation systems under normal and faulty cases [21]–[23].

This paper presents a dynamic second-order filter that
is applied to systems with linear state and measurement
models. Its corrective gain is formulated as a second-order
Markov process and is designed based on a manifold that
is a linear combination of the innovation sequence (mea-
surement error) and its time difference. The stability of the
dynamic second-order filter under the manifold is proven
using the Lyapunov’s second law of stability. The stability
criterion results in convergence and an iterative decrease in
the measurement error and its time difference. In addition
to its initial formulation, an optimal version of the dynamic
second-order filter is then presented that minimises the
state error covariance. It is shown that the corrective gain
of the optimal second-order filter collapses to the Kalman
filter’s gain given white noise. An experimental electro-
hydrostatic actuator (EHA) setup is used to show the
improved performance of the dynamic second-order filter
over the robust Kalman filter and the SVSF method.

2. The Dynamic Second-Order Filter for State
Estimation

Consider a dynamic system defined by linear state and
measurement models in discrete time as follows:

xk+1 = Fxk +Guk +wk (1)

zk+1 = Hxk+1 + vk+1 (2)

where x ∈ Rn×1 is the state vector, u ∈ Rp×1 is
the control vector, and z ∈ Rm×1 is the measurement
vector. F ∈ Rn×n is the state matrix, G ∈ Rn×p is the
control matrix, H ∈ Rm×n is the measurement matrix,
and w ∈ Rn×1 and v ∈ Rm×1 are the process noise
and the measurement noise, respectively. The following
assumptions are made in the derivation of the dynamic
second-order filter.

Assumption 1. Vectors w and v are mutually indepen-
dent random variables and have a truncated Gaussian
distribution with a zero mean. Their amplitudes are,

respectively, bounded by wmax and vmax such that:|wi, k| ≤ wmax; i = 1, . . . , n

|vi, k| ≤ vmax; i = 1, . . . ,m
(3)

It is moreover assumed that they are statistically
independent with respect to the state vector x ∈ Rn×1.

Assumption 2. It is assumed that the system with (1)
and (2) is completely observable. The measurement matrix
H is assumed to be invertible. For cases where m 6= n, the
pseudo-inverse of the H matrix, namely, H+, is calculated
using the Moore–Penrose pseudo-inverse.

Definition 1. Let ∆ be the backward difference operator
that applies to variable x such that: ∆xk+1 = xk+1−xk. It
is assumed that ∆ is a smooth differentiable operator.

The dynamic second-order filter applies to systems
with linear state and measurement models in a predictor–
corrector form. It is summarised in the following prediction
and update steps.

1. Prediction step:

• Prediction of the a priori state estimate x̂k+1|k
using the previous a posteriori state estimate x̂k|k, is
calculated as follows:

x̂k+1|k = F̂ x̂k|k + Ĝuk (4)

Prediction of the a priori measurement ẑk+1|k, is
calculated as follows:

ẑk+1|k = Ĥx̂k+1|k (5)

Note that F̂ , Ĝ, and Ĥ are, respectively, the estimated
state matrix, control matrix, and measurement matrix.

It is assumed that Ĥ 'H, F̂ ' F , and Ĝ ' G.
• Calculation of the a priori and the a posteriori

measurement error vectors, ezk+1|k ∈ Rm×1 and

ezk|k ∈ Rm×1 as:

ezk+1|k = zk+1 − Ĥx̂k+1|k (6)

ezk|k = zk − Ĥx̂k|k (7)

2. Update step:

• The corrective gain K ∈ Rn×m is obtained as a
function of the a priori ezk+1|k , the a posteriori ezk|k ,
the ezk−1|k−1

measurement errors, and the cut-off
frequency matrix as follows:

Kk+1 = f(Ĥ,Λ, ezk+1|k , ezk|k , ezk−1|k−1
) (8)

where Λ ∈ Rm×m is the cut-off frequency matrix
and represents the filter’s bandwidth. Note that in
order to calculate the corrective gain function f, the

measurement matrix H and its estimate Ĥ are non-
singular. They are initially assumed to be square
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Figure 1. Dynamic second-order filter based on a linear
manifold.

matrices indicating that all states are measuredm = n.
Section 5 presents the gain K for systems without full
state measurement m 6= n.

• The a priori state estimate is updated into the a
posteriori state estimate as follows:

x̂k+1|k+1 = x̂k+1|k +Kk+1ezk+1|k (9)

The proof of stability for the dynamic second-order
filter is obtained by defining a manifold that is a linear
combination of the measurement error and its time
difference as follows:

σk = ∆ezk|k +Cezk|k (10)

where σk : Rm×1 → Rm×1 is the linear manifold,
ezk|k ∈ Rm×1 is the measurement error (innovation

sequence), C = Diag() ∈ Rm×m is a diagonal matrix
with entries cii. In a geometrical sense, matrix C is
related to the slope of the manifold in a phase plane,
with coordinates ∆ezk|kand ezk|k . Figure 1 presents
the concept of the dynamic second-order filter in a
phase plane.

Remark 1. The linear manifold σk = ∆ezk|k + Cezk|k
presents a first-order low-pass filter, where C is referred
to as the manifold cut-off frequency matrix. Taking the
Z-transform of the manifold, the measurement error ei,z is
given by:

ei,z(z) =
1

1 + cii − z−1
σi(z) (11)

Rearranging (11) gives ei,z(z) = z
(1+cii)z−1σi(z).

Hence, the measurement error ei,z(z) may be synthesised as
the output of a first-order low-pass filter with a bandwidth
that is a function of the manifold slope cii. By proper
selection of elements cii, it is possible to apply an internal
filtering strategy with variable bandwidths for removing
unwanted high-frequency dynamics. Furthermore, the
entry cii denotes the cut-off frequency corresponding to the
ith element of the measurement error ei,z ∈ ez. Its value
adjusts the filter’s bandwidth which affects the smoothness
of state estimates. Using an internal filtering method with
its own cut-off frequency, the coefficient is one of the main

advantages of the dynamic second-order filter over other
state estimation methods.

3. Corrective Gain for the Dynamic Second-Order
Filter

A corrective gain K ∈ Rn×mfor the dynamic second-order

filter given a full measurement matrix Ĥ ∈ Rn×m(m = n)
is as follows:

Kk+1 = Ĥ
−1
[
ezk+1|k − (γ + Λ)ezk|k + γΛezk−1|k−1

] [
ezk+1|k

]+
(12)

where Λ ∈ Rm×m is the cut-off frequency matrix, and
γ = Diag(γii) ∈ Rm×mis a diagonal matrix with positive
entries such that 0 < γii < 1 represents the convergence
rate. [ezk+1|k ]+ is the pseudo-inverse of the a priori
measurement error vector and is calculated using the
Moore–Penrose pseudo-inverse.

Theorem 1. Assume a linear discrete system with the
state and measurement models of (1) and (2). The dynamic
second-order filter with the corrective gain (12) is stable
and produces convergent state estimates.

Proof. Consider a positive-definite Lyapunov function as:

Vk = σi,k
2 (13)

where σi∈ R is an element of the linear manifold and
defined as: σi,zk|k = ∆ei,zk|k + ciiei,zk|k . Furthermore,
∆ei,z∈ R denotes the difference of the measurement error
ei,zk|kand is calculated as ∆ei,zk|k = ei,zk|k − ei,zk−1|k−1

.
The dynamic second-order filter is stable if ∆Vk+1 =
Vk+1 − Vk < 0. Substituting the Lyapunov function in this
inequality yields: ∆Vk+1 = (∆ei,zk+1|k+1

+ ei,zk+1|k+1
)2 −

(∆ei,zk|k + ei,zk|k)2, where ∆ei,zk+1|k+1
= ei,zk+1|k+1

−ei,zk|k
and ∆ei,zk|k = ei,zk|k − ei,zk−1|k−1

. By substituting these
values and rearranging, ∆Vk+1 is obtained as:

∆Vk+1 =
(1 + cii)

2 ei,zk+1|k+1
2 − 2 (1 + cii) ei,zk+1|k+1

ei,zk|k

−2cii (1 + cii) ei,zk|kei,zk−1|k−1
− ei,zk−1|k−1

2

. (14)

For simplicity, let elements of the manifold’s cut-off
frequency matrix be defined as:

λii =
1

1 + cii
(15)

where Λ = Diag(λii) ∈ Rm×m is a diagonal matrix. This
definition simplifies the calculation of the derivative of
the error covariance with respect to the manifold cut-off
frequency.

Multiplying the gain equation (12) by Ĥ, and then by
ezk+1|k , and rearranging gives:

ezk+1|k − ĤKk+1ezk+1|k = (γ + Λ)ezk|k

− γΛezk−1|k−1
(16)

As the estimated states are updated using (9),
x̂k+1|k+1 = x̂k+1|k + Kk+1ezk+1|k , it leads to:
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Kk+1ezk+1|k = x̂k+1|k+1 − x̂k+1|k. Substituting this
relation into (16) leads to:

ezk+1|k − Ĥ(x̂k+1|k+1 − x̂k+1|k) = (γ + Λ)ezk|k

− γΛezk−1|k−1
(17)

The a priori and the a posteriori measurement errors
at time step k are obtained from (6) and (7) as: ezk+1|k =

zk+1 − Ĥx̂k+1|k, and ezk+1|k+1
= zk+1 − Ĥx̂k+1|k+1.

Subtracting the a priori error from the a posteriori error
leads to:

ezk+1|k+1
− ezk+1|k = −Ĥ(x̂k+1|k+1 − x̂k+1|k) (18)

From (19), it is possible to restate equality (17) as:

ezk+1|k+1
= (γ + Λ)ezk|k − γΛezk−1|k−1

(19)

Equality (19) can be restated in terms of its entries
ei,z, where γ and ∆ are diagonal matrices, as:

ei,zk+1|k+1
= (γii + λii)ei,zk|k − γiiλiiei,zk−1|k−1

(20)

In order to show the negative definiteness of the
Lyapunov function candidate defined by (13), equality (20)
is substituted into (14). Expanding the result:

∆Vk+1 =
(
γii

2 − 1
)

(1 + λii)
2 ei,zk|k

2 +
(
γii

2 − 1
)
ei,zk−1|k−1

2

− 2
(
γii

2 − 1
)

(1 + λii) ei,zk|kei,zk−1|k−1
(21)

Rearranging equality (21) results in:

∆Vk+1 = (γii
2 − 1)

[
(1 + λii)ei,zk|k − ei,zk−1|k−1

]2
(22)

As the convergence rate matrix γ = Diag(γii) ∈
Rm×mis defined such that 0 < γii < 1, it leads to
∆Vk+1 < 0 which proves the stability of the dynamic
second-order filter under gain (12).

Remark 2. If the Lyapunov function (13) is satisfied, then
|σk+1| < |σk|. As σk = ∆ezk|k +Cezk|k , it shows that the
summation of the measurement error and its time difference
is decreasing over time.

Remark 3. The corrective gain (12) actually represents a
second-order Markov process that is formulated in terms of
the measurement error at time steps k and k − 1. Using
a second-order corrective gain in the update step results in
updating the state estimates based on information available
from the last two steps. Having access to higher amount of
information from the past intuitively increases smoothness
of state estimates in comparison to estimates generated
from a first-order filter.

Lemma 1. The state estimation error exk|k = xk − x̂k|k
generated from the dynamic second-order filter remains
norm-bounded given norm-bounded process and measure-
ment noise.

Proof. The state estimation error exk+1|k+1
is calculated by:

exk+1|k+1
= xk+1 − x̂k+1|k+1 (23)

where x̂k+1|k+1 = x̂k+1|k + Kk+1ezk+1|k . Moreover, xk+1

and x̂k+1|k are obtained from (1) and (4), respectively.
Hence, exk+1|k+1

is given by:

exk+1|k+1
= xk+1 − x̂k+1|k+1 = Fxk|k +Guk +wk

−
(
F̂ x̂k|k + Ĝuk +Kk+1ezk+1|k

)
(24)

where the gain K is given by (12). Assuming Ĥ = H,

F̂ = F , and Ĝ = G, equality (24) may be simplified as:

exk+1|k+1
= F̂ (xk − x̂k|k) +wk −Kk+1ezk+1|k (25)

which is equal to exk+1|k+1
= F̂ exk|k +wk −Kk+1ezk+1|k .

By substituting K from equality (12) into the above
equality and simplifying the resulting terms, it becomes:

exk+1|k+1
= F̂ exk|k +wk

−
[
ezk+1|k − (γ + Λ)ezk|k + γΛezk−1|k−1

]
(26)

As zk+1 = Hxk+1 + vk+1, and ẑk+1|k = Ĥx̂k+1|k,
measurement errors ezk+1|k+1

, ezk+1|k , and ezk|k may be
restated in terms of exk|k and exk+1|k+1

, as follows:

ezk+1|k+1
= Ĥexk+1|k+1

+ vk+1

ezk+1|k = ĤF̂ exk|k + Ĥwk + vk+1

ezk|k = Ĥexk|k + vk (27)

Substituting the above equalities into (26) and
simplifying it, exk+1|k+1

is obtained as follows:

exk+1|k+1
= (γ + Λ) exk|k − γΛexk−1|k−1

− Ĥ
−1
vk+1 + (γ + Λ) Ĥ

−1
vk − γ∆Ĥ

−1
vk−1 (28)

Following Assumption 1, v is a zero-mean noise with a
truncated Gaussian distribution. Therefore, by taking the
expectation of equality (28), the terms that contain the
measurement noise v are cancelled and the state estimation
error equation is obtained as follows:

ēxk+1|k+1
− (γ + Λ)ēxk|k + γΛēxk−1|k−1

= 0 (29)

where ēxk|k is the expectation of exk|k . Taking the
z-transform of equality (29), it becomes:[

z2 − (γ + Λ)z + γΛ
]
ēx(z) = 0 (30)

A necessary and sufficient condition for stability of the
state estimation error (its expectation) is that γ and ∆
are tuned such that the poles of (30) are within the unit
circle.

4. The Optimal Second-Order Filter for State
Estimation

In order to optimise the dynamic second-order filter
in terms of the mean-squared error, it is necessary
to introduce the state error covariance matrix into
the filter formulation. The error covariance matrix
provides additional information about the state estimate’s
dispersion for the filter that in turns results in more
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accurate estimates. The calculation process of the a
priori and a posteriori state error covariance for the new
derivation is similar to what was presented by Gadsden and
Habibi [12], [14], [20] for the SVSF method based on the
Kalman filter [1], [14]. The a priori state error covariance
matrix is defined as follows [14]:

P k+1|k = E
{

(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T
}

(31)

As xk+1 = Fxk+Guk+wk, and x̂k+1 = F̂ xk+Ĝuk,
it leads to:

P k+1|k = E
{
F̂ exk+1|kexk+1|k

T F̂
T

+ F̂ exk+1|kwk
T

+ wkexk+1|k
T F̂

T
+wkwk

T
}

(32)

Further to Assumption 1 :

E {wk} = E
{
wk

T
}

= 0 (33)

E
{
exk+1|kwk

T
}

= E
{
wkexk+1|k

T
}

= 0 (34)

E
{
wkwk

T
}

= Qk (35)

where Q is the process noise covariance. The a priori state
covariance matrix is given by [14]:

P k+1|k = F̂P k|kF̂
T

+Qk (36)

Similarly, the a posteriori error covariance matrix is
given by:

P k+1|k+1 = (I −Kk+1Ĥ)P k+1|k(I −Kk+1Ĥ)T

+ Kk+1Rk+1Kk+1
T (37)

where R denotes the measurement noise covariance [14].
In order to extract the optimal state estimates using

the dynamic second-order filter, the optimal value of the
cut-off frequency coefficient must be found at each time
step. The proposed strategy for finding the optimal cut-off
frequency matrix is to calculate the partial derivative of the
trace of the state error covariance matrix P with respect
to the cut-off frequency matrix ∆. It results in determining
the optimal value of the cut-off frequency at each time and
calculates the filter’s bandwidth as a function of modelling
uncertainties. In the Kalman filter, the gain is calculated to
directly minimise the trace of the error covariance matrix.
However, in the dynamic second-order filter, the filter’s
corrective gain is first derived to be within a range that
preserves the Lyapunov’s second law, where the cut-off
frequency matrix is assumed to be constant. Thereafter,
the optimal value of the cut-off frequency matrix (filter’s
bandwidth) is calculated using optimisation.

In the stability-oriented design of the dynamic second-
order filter, the cut-off frequency matrix is set to be
diagonal. Each diagonal entry λii represents the cut-off
frequency related to a measurement error which makes the
cut-off frequency coefficients independent of each other.
A direct consequence of this is that the measurement
error of each state ezk|k is directly filtered out with a pre-
determined bandwidth. Due to the diagonal consideration
of the cut-off frequency matrix, coupling effects were
neglected in the derivation of the dynamic second-order

filter. In this context, only diagonal entries of the state
error covariance matrix are minimised and the off-diagonal
entries are neglected. Limiting the filter to having a
diagonal cut-off frequency matrix precludes an optimal
solution. As such, for optimising the dynamic second-order
filter, the cut-off frequency matrix Λ ∈ Rm×m needs to be
full with diagonal and off-diagonal entries as follows:

Λk =


λ11,k λ12,k · · · λ1m,k
λ21,k λ22,k · · · λ2m,k

...
...

. . .
...

λm1,k λm2,k · · · λmm,k

 (38)

where λii is a diagonal entry and denotes the cut-off
frequency applied on ei,z. Otherwise, λij is an off-diagonal
entry and corresponds to measurement errors ei,z and ej,z.
Theorem 2 is presented to introduce the optimal value of
the cut-off frequency matrix at each time step. Thereafter,
it is shown that the corrective gain of the optimal second-
order filter collapses to the Kalman filter’s gain.

Theorem 2. Assume a linear system described by the
state and measurement models of (1) and (2). The state
error covariance matrix P (trace) is minimised for the
optimal second-order filter, if the cut-off frequency matrix
is given by:

Λk+1 =

[
Diag

(
ezk+1|k − γezk|k

)
Sk+1 − ĤP k+1|kĤ

T
]

[
Diag

(
ezk|k − γezk−1|k−1

)
Sk+1

]−1
Diag

(
ezk+1|k

) (39)

Proof. In order to minimise P with optimal selection of
the cut-off frequency Λ, its partial derivative (trace) with
respect to Λ is calculated such that:

∂
[
trace(P k+1|k+1)

]
∂Λk+1

= 0 (40)

The error covariance matrix P is presented by (37),
where it contains the gain K (12). For calculating the
partial derivative of equation (40), some relations from the
gradient matrix rules are required, including [24]:

∂ [trace(AXB)]

∂X
= ATBT (41)

∂
[
trace(AXTB)

]
∂X

= BA (42)

∂
[
trace(AXBXTC)

]
∂X

= ATCTXBT +CAXB (43)

Some matrices, such as P, are symmetric which
simplifies calculations. Substituting the corrective gain (12)
into the state error covariance (37) and expanding the
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resulting terms lead to the following four parts:

Part 1 : Pk+1|k+1, (44)

Part 2 : − Ĥ
−1[

Diag
(
ezk+1|k − γezk|k

)
− Λk+1Diag

(
ezk|k − γezk−1|k−1

) ]
[
Diag

(
ezk+1|k

)]−1
ĤPk+1|k, () (45)

Part 3 : −Pk+1|kĤ
T
[
Diag

(
ezk+1|k − γezk|k

)T
−Diag

(
ezk|k − γezk−1|k−1

)T
Λk+1

T
]

[
Diag

(
ezk+1|k

)]−1
Ĥ
−T

(46)

Part 4 : Ĥ
−1[

Diag
(
ezk+1|k − γezk|k

)T
−Λk+1Diag

(
ezk|k − γezk−1|k−1

)T ]
[
Diag

(
ezk+1|k

)]−1
Sk+1

[
Diag

(
ezk+1|k

)]−1[
Diag

(
ezk+1|k − γezk|k

)T
−Diag

(
ezk|k − γezk−1|k−1

)T
Λk+1

]
Ĥ

T
(47)

Note that Diag(ez) transforms the measurement error
vector into a diagonal matrix. The partial derivative in
(40) is calculated as a summation of the partial derivative
of the four parts presented by (44)–(47). These derivatives
are calculated as:

∂ [trace(Part 1)]

∂Λk+1

= 0, (48)

∂ [trace(Part 2)]

∂Λk+1

= Ĥ
−T

Pk+1|kĤ
T
[
Diag

(
ezk+1|k

) ]−1

Diag
(
ezk|k − γezk−1|k−1

)T
(49)

∂ [trace(Part 3)]

∂Λk+1

= Ĥ
−T

Pk+1|kĤ
T
[
Diag

(
ezk+1|k

)]−T

Diag
(
ezk|k − γezk−1|k−1

)T
(50)

∂ [trace(Part 4)]

∂Λk+1

= 2Ĥ
−1



Λk+1Diag
(
ezk|k − γezk−1|k−1

)
Sk+1

T
[
Diag

(
ezk+1|k

)]−1

Diag
(
ezk|k − γezk−1|k−1

)T

−Diag
(
ezk+1|k − γezk|k

)T
Sk+1[

Diag
(
ezk+1|k

)]−1

Diag
(
ezk|k − γezk−1|k−1

)T


(51)

where S ∈ Rm×m is a symmetric matrix, called the
innovation covariance matrix (similar to the Kalman filter),
and given by:

Sk+1 = ĤP k+1|kĤ
T

+Rk (52)

Adding (48)–(51) and rearranging the resulting terms,
the partial derivative of P is obtained as:

P k+1|kĤ
T
− Ĥ

−1
[Diag(ezk+1|k − γezk|k)]Sk+1

= −Ĥ
−1

Λk+1[Diag(ezk+1|k)]−1

Diag[(ezk|k − γezk−1|k−1
)]Sk+1 = 0 (53)

Figure 2. The optimal second-order filter for state
estimation.

Solving equality (53) in terms of Λ results in
the optimal cut-off frequency matrix as: Λk+1 =

[Diag(ezk+1|k−γezk|k)Sk+1−ĤPk+1|kĤ
T ]−1[Diag(ezk|k−

γezk−1|k−1
Sk+1)]−1 that is equal to (39).

The optimal second-order filter is summarised as
follows:

1. Prediction Step:

• Prediction of the a priori state vector, measurement
vector, and state error covariance matrix are, respec-
tively, calculated as follows:

x̂k+1|k = F̂ x̂k|k + Ĝuk

ẑk+1|k = Ĥx̂k+1|k

P k+1k = F̂P k|kF̂
T

+Qk (54)

2. Update Step:

• The innovation covariance matrix, cut-off frequency
matrix, and corrective gain are, respectively, found by:

Sk+1 = Sk+1 = ĤP k+1|kĤ
T

+Rk

Λk+1 =
[
Diag

(
ezk+1|k − γezk|k

)
Sk+1 − ĤP k+1|kĤ

T
]

[
Diag

(
ezk|k − γezk−1|k−1

)
Sk+1

]−1
Diag

(
ezk+1|k

)
Kk+1 = Ĥ

−1
[
Diag

[
ezk+1|k − (γ + Λk+1) ezk|k

]
+ γΛk+1Diag

(
ezk−1|k−1

)] [
Diag

(
ezk+1|k

)]−1

(55)

• Update of the a priori state vector and state error
covariance matrix into the a posteriori estimates is
calculated as:

x̂k+1|k+1 = x̂k+1|k +Kk+1ezk+1|k

P k+1|k+1 = (I −Kk+1Ĥ)P k+1|k(I −Kk+1Ĥ)T

+ Kk+1Rk+1Kk+1
T (56)

Figure 2 presents a block diagram of the optimal
second-order filter for state estimation.
It is interesting to note that the corrective gain of

the optimal second-order filter with the cut-off frequency
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Figure 3. Main concept of the combined strategy for state estimation.

coefficient of (39) represents the Kalman filter gain in the
absence of modelling uncertainties. In order to prove this
equivalency, substitute the cut-off frequency coefficient (39)
into the corrective gain (12) such that:

Kk+1 =

Ĥ
−1



Diag
(
ezk+1|k − γezk|k

)
−[

Diag
(
ezk+1|k − γezk|k

)
Sk+1 − ĤP k+1|kĤ

T
]

[
Diag

(
ezk|k − γezk−1|k−1

)
Sk+1

]−1

Diag
(
ezk|k − γezk−1|k−1

)


Diag

(
ezk+1|k

)[
Diag

(
ezk+1|k

)]−1

(57)

Rearranging (57), it becomes:

Kk+1 = Ĥ
−1



Diag
(
ezk+1|k − γezk|k

)
−[

Diag
(
ezk+1|k − γezk|k

)
Sk+1 − ĤP k+1|kĤ

T
]

Sk+1
−1
[
Diag

(
ezk|k − γezk−1|k−1

)]−1

Diag
(
ezk|k − γezk−1|k−1

)


(58)

where equality (58) may be restated as follows:

Kk+1 = Ĥ
−1[

Diag
(
ezk+1|k − γezk|k

)
− Diag

(
ezk+1|k − γezk|k

)
+ ĤP k+1|kĤ

T
Sk+1

−1
]

(59)

Simplifying equality (59), the corrective gain of the
optimal second-order filter becomes:

Kk+1 = P k+1|kĤ
T
Sk+1

−1 (60)

which is equal to the Kalman gain.
As presented in (60), the corrective gain of the optimal

second-order filter collapses to the Kalman filter’s gain and
hence, its robustness is partially lost. In order to overcome
this issue and preserve stability as well as optimality,
a combined strategy is proposed similar to Gadsden’s
combined strategy introduced in [14], [17]. In this strategy,
the dynamic second-order filter with the corrective gain
(12) applies to systems with modelling uncertainties (e.g.,
systems under fault conditions). The optimal second-order
filter with the gain of (55) applies to systems with a
known model (e.g., systems under normal conditions). The
combined strategy automatically switches between these
two filters in order to preserve optimality for systems
with a known model and at the same time preserves
the stability for systems with uncertainties. Figure 3

presents a flow diagram of the combined strategy. The
decision on the level of modelling uncertainties is made by
comparing the statistical properties of the measurement
error with the ones obtained for the system in the
normal condition. In this context, there is a number of
statistical tests that may be applied to the measurement
error in order to evaluate modelling uncertainties. The
easiest test for evaluating the level of uncertainties
is to set a constant (or adaptive) threshold for the
measurement error. If the error’s mean value exceeds
this threshold, the dynamic second-order filter is applied
for state estimation. Meanwhile, there are more accurate
tests performed on the probability distribution of the
measurement error. Hwang et al. [25] summarised a number
of these tests, including sequential probability ratio test,
cumulative sum algorithm, and generalised likelihood ratio
test.

5. The Dynamic Second-Order Filter for Systems
with Fewer Measurements than
States (m < n)

The dynamic second-order filter method may be applied to
systems with fewer measurements than states m<n. The
process of calculating the gain for hidden states is similar
to what was presented for the SVSF method in [12]. In
this context, the corrective gain relating to hidden states
is derived using the Luenberger’s observer [12]. Following
Assumption 2, the linear system with (1) and (2) is
completely observable. The state vector is decomposed into

two parts x = [xu xl]
T , where the upper part xu ∈ Rm×1

is directly measured and the lower part xl ∈ R(n−m)×1

is not. Using the Luenberger’s transformation, a new
measurement vector is obtained by [12]:

Txk = [yuk
ylk ]T (61)

where T is a transformation matrix. In this regard, a
revised state vector is formulated in terms of measurements
such that: y = [z yl]

T , where z ∈ Rm×1 denotes the

direct measurement vector and yl ∈ R(n−m)×1 denotes an
artificial measurement vector. The problem is to calculate
values for entries of yl based on the partitioned model. The
measurement model is [12]:zk+1

ylk+1

 =

Φ11 Φ12

Φ21 Φ22

zk
ylk

+

G1

G2

uk +wk (62)
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where Φ = T−1AT , and G = T−1B. The a priori state
estimate is given by [12]:ẑk+1|k

ŷlk+1|k

 =

Φ̂11 Φ̂12

Φ̂21 Φ̂22

 zk
ŷlk|k

+

Ĝ1

Ĝ2

uk (63)

Subtracting (63) from (62), the a priori and a
posteriori measurement error vectors for the projected
measurement vector yl are calculated as:

eylk+1|k+1
= Φ̂

−1
12 ezk+1|k (64)

eylk+1|k = Φ̂22Φ̂
−1
12 ezk+1|k (65)

where eyl ∈ R(n−m)×1 is the projected measurement error
vector and ez ∈ Rm×1 is the measurement error vector
corresponding to measurable states. (64) and (65) represent
a mapping of the measurement error for calculating the
filter gain. Further to (12), the corrective gain of the
dynamic second-order filter for the lower partition of states
is derived by substituting values of eylk|k and eylk+1|k

into (12) as:

Kk+1 =
[
Φ̂22Φ̂

−1
12 ezk+1|k − (γ + Λ) Φ̂

−1
12 ezk|k−1

+ γΛΦ̂
−1
12 ezk−1|k−2

] [
Φ̂22Φ̂

−1
12 ezk+1|k

]+
(66)

By combining the gains of each partition, the filter
gain is obtained for systems with fewer measurements than
states as:

Kk+1 =


Ĥ

+ [
ezk+1|k − (γ + Λ)ezk|k + γΛezk−1|k−1

][
ezk+1|k

]+[
Φ̂22Φ̂

−1
12 ezk+1|k + Φ̂

−1
12 [−(γ + Λ)ezk|k−1

+ γΛ−1ezk−1|k−2
]
][

Φ̂22Φ̂
−1
12 ezk+1|k

]+


(67)

Lemma 2: The dynamic second-order filter under the
corrective gain (66) is stable for the lower partition of
states yl.

Proof: Consider a positive-definite Lyapunov function
as follows:

Vk = (∆ej,yl,k|k + cjjej,yl,k|k)2, j = 1, . . . , n−m (68)

where cjj ∈ R(n−m)×(n−m) is an element of the cut-off
frequency matrix for the lower state partition, and ej,yl is
an element of the measurement error vector for the lower
partition state eyl

∈ R(n−m)×1. Steps (14) through (22)
may simply be repeated for the above Lyapunov function.

Following (64) and (65), as eylk+1|k+1
= Φ̂

−1
12 ezk+1|k , and

eylk+1|k = Φ̂22Φ̂
−1
12 ezk+1|k , the corrective gain Kj,l for the

lower partition states is restated as:

Kj,lk+1
=
[
ej,ylk+1|k− (γjj + λjj)ej,ylk|k + γjjλjjej,ylk−1|k−1

]
[
ej,ylk+1|k

]+
(69)

Figure 4. The EHA setup.

Using the above relation for the corrective gain and
following steps (14) through (22) of the previous proof of
stability, the time difference of the Lyapunov function (68)
is obtained as:

∆Vk+1 = (γjj
2 − 1)

[
(1 + λjj)ej,ylk|k − ej,ylk−1|k−1

]2
(70)

As the convergence rate matrix γ = Diag(γjj) ∈
R(n−m)(n−m) is defined such that 0 < γjj < 1, it leads
to ∆Vk+1 < 0 which proves the stability of the dynamic
second-order filter under the gain (66) defined for the lower
partition states. �

6. Experiments Using an Aerospace
Electro-Hydrostatic Actuator

In order to study the performance of the combined
filtering strategy (dynamic second-order filter for uncertain
systems and optimal version for normal systems) for state
estimation, it is applied to an experimental EHA setup.
The EHA setup has been designed and built in the Center
for Mechatronics and Hybrid Technology at McMaster
University [26]. Figure 4 presents the EHA experimental
setup. Figure 5 shows the circuit diagram of the EHA
setup with numbered elements. The EHA system is used to
compare the performance of the combined strategy to other
estimation methods, including the robust Kalman filter
and the SVSF. The test is composed of three scenarios,
including the normal EHA with a known model that
contains noise and two faulty scenarios with unknown
models that include the EHA with friction or internal
leakage.

The EHA system shown in Fig. 5 uses pumping
action (10) to create pressure and move piston A (3)
and piston B (4). The EHA is composed of several
components, including a symmetric linear actuator (8);
a variable-speed electric motor (13); a bi-directional gear
pump (10); a pressure relief valve (7); an accumulator (2);
connecting tubes; and an inner circuit to prevent cavitation
as shown in Fig. 5 by the dotted red line. The EHA
setup includes complementary circuits that allow physical
simulation of friction and leakage faults as shown in Fig. 5
by dotted black lines [17]. The hydraulic circuit of the
EHA setup consists of two main parts. The first part is
the inner low-pressure circuit that filters the oil. It uses an
accumulator (2) and filters and checks valves (6) to keep
the minimum system pressure at 40 psi. The inner circuit
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Figure 5. The circuit diagram of the EHA experimental setup (Upgraded from [17]).

prevents cavitation and circulates oil for compensating
leakage. The second part of the hydraulic circuit is the
outer high-pressure circuit that produces actuation. The
variable-speed electric servomotor, which is a SIEMENS
1FK7080-5AF71-1AG2, drives the bi-directional gear
pump (10) and circulates oil into cylinder (8). This causes
a pressure differential across the actuating cylinder and
results in the motion of the load. The speed of the
gear pump (10) regulates the actuation performance by
changing the oil flow rate. An accumulator (2) is used to
prevent cavitation and to collect the case drain leakage
from the gear pump (10). The pressure relief valve (7) is
used to limit the maximum system pressure to 500 psi
during experiments. The EHA’s input is the voltage to
the electric motor (13) that regulates the direction and
the speed of the pump (10). The input voltage adjusts the
value of the flow rate that in turn results in controlling the
piston’s position, velocity, and acceleration [17].

An optical linear encoder (12) attached to piston
A is used to obtain position measurements. Two types
of fault conditions may be physically induced, including
internal leakage and friction. To simulate a friction fault
condition in the EHA setup, piston A is used as the driving
mechanism while piston B acts as a load. By changing
the orifice size of the friction control throttling valve (9),
the load may be varied allowing the physical simulation of
friction faults. The orifice opening determines the level of
severity of the fault condition. Similarly, internal leakage
fault conditions can be physically simulated by using the
leakage control throttling valve (5). Opening throttling
valve (5) simulates cross-port leakage between the two
chambers of cylinder (A). These simulated fault conditions
change dynamics of the EHA system and inject modelling
uncertainties in its state model.

The EHA dynamics may be described by using three
state variables that are the actuator position x1 = x,
velocity x2 = ẋ, and acceleration x3 = ẍ. A nonlinear

state-space model of the EHA is given by [17]:

x1,k+1 = x1,k + Tx2,k (71)

x2,k+1 = x2,k + Tx3,k (72)

x3,k+1 =

[
1− T

a2V0 +MβeL

MV0

]
x3,k − T

(
AE

2 + a2L
)
βe

MV0

x2,k

+ T
AEβe

MV0

− T
a1V0x2,kx3,k + βeL

(
a2x2,k

2 + a3
)

MV0

sgn (x2,k)

(73)

where AE is the piston cross-sectional area, βe is the
effective bulk modulus, L is the leakage coefficient, M is the
load mass, and V0 is the initial cylinder volume. T denotes
the sample time and is set at T = 1 ms. Table 1 presents
the numerical values of these parameters. The input to the
EHA system relates to flow and in a simplified form is
given by [17]:

u = Dpωp − sgn(−P2)QL0 (74)

where Dp is the pump displacement, Ql is the leakage
flow rate, and Ql0 is the parameter used to adjust offsets.
∆P = P1 − P2 is the differential pressure and is measured
by a pressure sensor. A detailed procedure for physical
modelling, linearisation, and parameter identification of
the EHA is presented in [17].

In order to compare the performance of the dynamic
second-order filter with the SVSF and the robust Kalman
filter, the EHA normal model is used in the filters for state
estimation under all conditions including the normal and
faulty conditions. The duration of the experiment is 11 s.
It starts with the EHA under the normal condition for
the first three seconds, followed by the EHA under friction
for the next four seconds, and ends with the EHA under
leakage for the last four seconds. Figure 6 presents profiles
of the input voltage and the measured actuator position
under these three normal and faulty scenarios.
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Table 1
Numeric Values of the EHA Parameters [17]

Parameter Physical Meaning Parameter Values

a1 Friction coefficients 6.589 × 104

a2 2.144 × 103

a3 436

AE Piston area 1.52 × 10−3 m2

Dp Pump displacement 5.57 × 10−7 m3/rad

L Leakage coefficient 4.78 × 10−12 m3/(sec × Pa)

M Load mass 7.376 kg

QL0 Flow rate offset 2.41 × 10−6 m3/sec

V0 Initial cylinder volume 1.08 × 10−3 m3

βe Effective bulk modulus 2.07 × 108 Pa

Figure 6. Profiles of the input voltage and output position
under three scenarios.

Initial values of states are assumed zero and the sample
time for discretisation is set to T = 1 ms. The nonlinear
model of the EHA, described by (71) through (74), may
simply be linearised by calculating its partial derivatives at
its equilibrium point: x(0) = [0 0 0]T . The linearised EHA
model is hence given by:

xk+1 = Axk +Buk (75)

where,

A =


1 T 0

0 1 T

0 −60.303 0.708

 , B =


0

0

39497

 (76)

Accuracy and smoothness of state estimates provided
by the combined strategy (dynamic/optimal second-order
filter) are compared with those obtained by the robust
Kalman filter and the SVSF methods. Note that the
EHA model is third order, and position is the only

measured state. In order to estimate other states, the
SVSF and the dynamic/optimal second-order filter need
to use the strategy outlined in Section 5. All the
inputs and initial conditions are the same for the three
estimators. The initial state estimates x̂0|0 and error
covariance matrix P 0|0 for the robust Kalman filter and
the optimal second-order filter are the same and are equal
to x̂0|0 = [0 0 0]T ,P 0|0 = 10 × eye(3). The convergence
rate factors for the SVSF, and the combined strategy are
set to γ = 0.5 and γ = 0.1, respectively. The cut-off
frequency matrix for the dynamic second-order filter is
set to: Λ = 0.2 × eye(3). For the SVSF, the smoothing
boundary layer is set to ϕ = [10−11 10−7 10−4]T . The
measurement noise covariance matrix R for the robust
Kalman filter, and the optimal second-order filter is equal
to R = [10−13]. The process noise covariance matrix Q for
these methods is moreover equal to:

Qrobust KF = Qoptimal 2nd−filter =


103 0 0

0 10 0

0 0 102

 (77)

The combined strategy automatically switches between
the dynamic and the optimal second-order filters to make
more accurate state estimates. In the EHA case, the
switching index is defined as the squared value of the
measurement error, as follows:

Ξk = ezk+1|k
2 (78)

Based on the prior knowledge about the EHA, a
threshold is defined for the position error measurements. In
this test, the threshold is set to 0.3×10-10 m. If the position
measurement error is smaller than 0.3×10-10 m, this means
that the uncertainty level is small and, hence, the combined
strategy selects the optimal second-order filter. Otherwise,
if it is larger than the threshold, the uncertainty level is
high, and the dynamic second-order filter is automatically
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Figure 7. State estimate profiles for the EHA under the
leakage fault condition.

selected. Figure 7 presents the switching index profile for
the EHA under the described test scenario.

In order to compare state estimation methods, the
root mean square (RMS), and standard deviation of
the state estimation error ex = x − x̂ are used. For
comparing state estimation results against actual values
pertaining to the velocity x2 and acceleration x3, these are
obtained by taking the first and the second time derivatives
of the position measurement signal, respectively. As
differentiation results in added noise, a Butterworth filter is
used to filter out the differentiation noise from the obtained
velocity and acceleration signals. Tables 2 and 3 present
the RMS and the STD indicators generated by the robust
Kalman filter [5], SVSF [12], and the combined strategy.

As observed in Table 2, the RMS value of the
error by the combined strategy is smaller than the
ones obtained by the SVSF, and robust Kalman filters.
This shows that the combined strategy (dynamic/optimal
second-order filter) produces the most accurate estimates,
followed by the SVSF and the robust Kalman filter.
Under normal conditions, the combine strategy selects the
optimal second-order filter with a gain that is optimal in
terms of the mean-squared error. Moreover, for the EHA
under friction or leakage fault conditions, the combined
strategy selects the dynamic second-order filter that
produces a robust corrective gain. This gain pushes the
measurement error and its time difference to zero and
this characteristic results in higher degrees of accuracy
for state estimation. Following Table 3, the combined
strategy produces the smallest STD, followed by the SVSF,
and the robust Kalman filter. This confirms that the
combined strategy can achieve smoother state estimates
compared to other estimation methods. This is due to
the second-order formulation of its corrective gain that
provides further information for updating state estimates.
Fig. 8 compares the state estimation profiles generated
by the robust Kalman filter, and the combined strategy
(optimal/dynamic second-order filter) with the actual state
trajectories under the test scenario. Figure 8 presents that
until t = 3 s (under normal conditions) the estimated state
profiles follow the actual ones and thus the linearised EHA
model precisely describes the EHA dynamics. Figure 9

Figure 8. Profiles of the actual and the estimated states
by different estimators.

Figure 9. Profiles of the state estimation errors generated
by different estimators.

presents profiles of the state estimation error generated
by the robust Kalman filter and the combined strategy.
Following Figs. 8 and 9, it is deduced that the combined
strategy produces more accurate state estimates under
fault conditions in which the EHA model contains huge
but unknown modelling and parametric uncertainties.

Figure 10 presents the phase portraits of the measure-
ment error (innovation sequence) and its time difference
generated by the dynamic/optimal second-order filter for
the EHA under normal and fault conditions. According to
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Table 2
RMS Values of the State Estimation Error by Different Estimators

RMS Robust Kalman Filter SVSF Dynamic/Optimal 2nd-order Filter

Position (m) 3.35 × 10−19 5.78 × 10−21 1.24 × 10-23

Velocity (m/s) 9.23 × 10−3 7.55 × 10−3 3.87 × 10-3

Acceleration (m/s2) 0.87 0.64 0.39

Table 3
Standard Deviations Values of the State Estimation Error by Estimators

STD Robust Kalman Filter SVSF Dynamic/Optimal 2nd-order Filter

Position (m) 4.11 × 10−19 7.09 × 10−21 1.23 × 10-23

Velocity (m/s) 9.92 × 10−3 7.81 × 10−2 2.23 × 10-2

Acceleration (m/s2) 0.93 0.72 0.38

Figure 10. Phase portraits of the measurement error and its difference by the dynamic/optimal second-order filter under
three scenarios.

these phase portraits, both the measurement error and its
difference are decreasing over time below an upper bound
(e.g., εs). However, due to the measurement noise and
uncertainties, the measurement error cannot be cancelled
completely and remains norm-bounded. An advantage
presented by the dynamic second-order filter is that it
causes the measurement error and its difference to remain
norm-bounded, even under uncertain faulty conditions.
Note that following Lemma 1 and equality (30), where
∆ = 0.2 and γ = 0.1, the state estimation error equation
is obtained by: [z2 − 0.3z + 0.04]ēx(z) = 0. In this context,
as the poles of this equation are within the unit circle, the
state estimation error is stable given norm-bounded noise
and uncertainties.

7. Conclusions

In this paper, the dynamic second-order filter is firstly
introduced for state estimation of systems with linear
state and measurement models. Its corrective gain is
obtained using a linear manifold defined in terms of the
measurement error (innovation sequence) and its time
difference. The stability and convergence of this method is

then proven using the Lyapunov’s second law of stability.
The linear manifold introduces a cut-off frequency matrix
into the filter formulation that filters out high-frequency
dynamics. It operates like a first-order low-pass filter with
an adjustable cut-off frequency that is related to the slope
of the linear manifold. The gain of the dynamic second-
order filter updates the a priori state estimates based on
available information of the measurement error from the
last two steps. This yields smoother state estimates with
smaller dispersions over the robust Kalman filter.

In order to optimise the dynamic second-order filter, an
optimal value of the cut-off frequency matrix is calculated
such that the error’s covariance matrix is minimised.
It is shown that the gain of the optimal second-order
filter is equivalent to the Kalman filter gain under ideal
conditions at the expense of robustness. To achieve
robustness and optimality, a combined strategy is presented
that includes both the dynamic and optimal second-order
filtering methods. The switching criterion is designed based
on the statistical properties of the measurement error.
The combined strategy automatically selects the optimal
second-order filter for systems with a known model and
the dynamic second-order filter for systems with modelling
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uncertainties. The combined strategy is applied to an
experimental EHA setup for estimation under normal
and faulty conditions. Its performance is then compared
with the robust Kalman filter and the SVSF methods.
Experimental results confirm the main advantages of the
combined strategy over the other two in terms of its
greater accuracy and smoothness. Experiments moreover
verify that the combined strategy pushes the measurement
error and its difference towards zero. It was shown that
they remain norm-bounded under normal and uncertain
faulty conditions. Future research involves application of
the proposed second-order filter for other systems with
unknown uncertainties. They include maneuvering target
tracking, battery management systems, and fault-tolerant
control systems.

Data Sharing and Data Availability: Data sharing
not applicable to this article as no datasets were generated
or analysed during the current study.
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