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Abstract

Because of its many benefits, including great production efficiency

and high precision machining, mechanical arms are utilised

extensively in many different sectors. However, the deployment of

compliant control faces obstacles as production activities become

more complicated. To address the aforementioned problems, the

study first models the pertinent models and the robotic arm’s

impedance models. It next suggests a radial basis function

neural network (RBFNN)-based impedance control technique for

the robotic arm to enhance the control’s transient performance.

Lastly, the challenge of determining reference trajectories under

unknown environmental information situations is addressed by an

impedance control approach for robotic arms that is based on

reference trajectory generation and environment estimating methods.

According to the study findings, the contact force effect is reduced to

7.98N under the same conditions when using the RBFNN impedance

control approach for robotic arms. The reference trajectory value

obtained when the control system is stable is 0.0502 m in the

impedance control method of a robotic arm based on reference

trajectory generation and environment estimation algorithms; the

maximum overshoot of the actual contact force at the end of the

robotic arm is 2.1 N. The contact force stays constant after 2.53

s, and the associated error also stabilises at 0. In conclusion, the

suggested approach has successfully raised robotic arms’ compliance

control performance in the face of erratic environmental information.
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1. Introduction

With the advances in intelligence technology, the industrial
scale of the robotic arm has shown explosive growth, and
people are more looking forward to the integration of
the robotic arm and the environment interaction work
scene [1]–[3]. However, in practical applications, if the
environment has a large stiffness, even a small positional
error will generate a huge contact force, leading to the
destruction of the robotic arm and even causing safety
accidents [4]. To realise the interaction in the robot arm and
the environment, it is necessary to control the position and
force of the robot arm at the same time, and this kind of
control is the flexible control, which has better application
effect under the condition of environmental information
determination [5], [6]. However, in general applications,
it is difficult to accurately obtain the environmental
information of the robotic arm, and at the same time, there
are unknown dynamics and information in the dynamics
model of the robotic arm, which brings great obstacles to
the supple control. Radial basis function neural network
(RBFNN) has advantages in approximation ability,
learning speed, etc., and can overcome the local minima
problem [7]. To address the above problems, the research
firstly proposes an impedance control method based on
RBFNN robotic arm. Additionally, research is being done
to build an impedance control approach for robotic arms
based on the environmental estimation algorithm (EEA)
(Algorithm Based on Reference Trajectory Generation and
Environment Estimation, RTGEE) in order to enhance
the control system. The research aims to realise the active
and supple control of the robotic arm under the condition
of uncertain environmental information, to obtain the
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control function of the CF at the end of the robotic
arm, and to improve the competitiveness of the equipment
manufacturing and service industries. There are two main
innovations in the research, the first one is to propose
an adaptive robotic arm impedance control method based
on RBFNN to improve the transient performance, and
the second one is to design an RTGEE robotic arm
control method for determining the reference trajectory.
The structure of the study is divided into four main parts,
the first part is a review of the relevant research results;
the second part is the design of the RBFNN robotic arm
impedance control method and the RTGEE robotic arm
impedance control method; the third part is the validation
of the validity of the proposed method of the study; and
the last part is the summary of the study.

2. Related Work

In today’s increasingly competitive equipment manufac-
turing industry and the growing demand of the service
industry, robotic arms have received extensive attention
from many scholars. Chen et al. combined the computer
vision system with tracking algorithms to propose a
3D printer-based robotic arm and design mechatronic
intelligent vehicle systems. The study assists the robotic
arm to detect the color and position of the target
through the computer vision system, and the results show
that the accuracy gap of target tracking expands from
75.2% to 89.0% [8]. Xu et al. constructed an improved
artificial potential field method for the traditional artificial
potential field for the local minima and other problems,
compared with the fast exploratory stochastic tree-based.
The algorithm shortens the planning path distance by
13%∼41%, and the planning efficiency is significantly
improved [9]. Sadiq et al. designed a new joint space
trajectory tracking controller to solve the influence of
unknown dynamic parameters and external interference of
the robotic arm, and the robotic arm control can effectively
compensate for nonlinear links including friction, friction,
etc., in the absence of precise system parameters. The
controller is robust to load variations [10]. In order to
accurately guide the robotic arm, the path planning has
been upgraded to optimise the motion of the robotic
arm, and Sharaf et al. proposed an improved ant colony
optimisation algorithm to obtain the optimal path planning
to satisfy the motion objective, and the results of the study
confirms the accuracy and efficiency to achieve the optimal
paths and trajectories [11].

Nowadays, production activities increasingly require
contact between the robotic arm and the environment or
the object to be operated, and the size of the CF will
determine the quality of the operation and the success of
the operation, and it is also the main method to realise
the suppleness control, so the impedance control and
suppleness control have received widespread attention by
the researchers. Rui et al. discussed a force-based active
suppleness control method for a hydraulic quadrupedal
robot, and the joint simulation results show that the robot
has a good suppleness, which can realise stable trotting.

The robot has good suppleness and can realise stable trot-
ting [12]. Wang et al. found that the concentrated negative
sequence current can cause significant torque pulsation in
the drive train of a fixed-speed induction generator, which
may exceed the stress tolerance of the drive train, so the
research proposes a novel hybrid virtual impedance control
method, and the theoretical analysis and simulation results
validate the operation and performance of this strategy
performance [13]. Hanafusa et al. aimed to help robots
move objects quickly and accurately while maintaining
mechanical impedance control. Therefore, a collaborative
robot mechanical impedance control method based on
recurrent neural network external force estimation is
proposed, this method is proved through six degree of
freedom experiments [14]. Mokhtari et al. [15] to improve
the robustness and eliminating jitter, they design a hybrid
backpropagation based non-singular fast terminal integral
sliding mode control and impedance control scheme, and
the simulation results confirm the superiority of this control
scheme.

Synthesising the above research results, it can be
concluded that the current research focuses on the robotic
arm with impedance control under the given conditions,
and lacks the relevant research on the robotic arm under
the uncertainty of environmental information tuning. To
realise the supple control under the condition of uncertain
environmental information, the research designed the
impedance control method of RBFNN with RTGEE
robotic arm.

3. Design of Impedance Control Methods for
RBFNN and RTGEE Robotic Arms

For the impedance control problem of robotic arm, the
study firstly models the robotic arm related model and
impedance model, then designs the RBFNN robotic arm
impedance control method, and finally improves the control
system and designs the RTGEE robotic arm impedance
control method.

3.1 Construction of Robotic Arm Correlation
Model and Impedance Model

The robotic arm is a very complex control system whose
dynamics is characterised by multiple inputs, multiple
outputs, time-varying, strong coupling and nonlinearity,
and whose kinematics reveals the interrelationships
between the corresponding states of the joints and the
end-effector [16], [17]. The kinematics of the robotic arm
is modelled as follows: for a robotic arm with m joints,
the corresponding joint angle positions are a ∈ Rm and
the end-effector positions are U ∈ R3 in the Cartesian
space. If a is known, the forward kinematics represented
by the nonlinear function f can be used to determine
U . When performing the modelling, the D–H is usually
used to obtain, according to the inverse kinematics can
be converted from U to a, and then the derivation can
be performed to obtain the velocity mapping relationship
between the joint and the Cartesian space, and the
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Figure 1. Flowchart of PIC.

calculation is shown in (1).
a = f−1 (U)

u̇ = J (a) ȧ

J (a) = ∂f(a)
∂a

(1)

In (1) J (a) ∈ R3×m represents the Jacobi matrix of
the robotic arm. The utilitarian model of the robotic arm
is then modelled using the Lagrange–Euler equations, and
the expression for the robotic arm is (2).

M (a) ä+ C (a, ȧ) ȧ+G (a) = ζ (2)

In (2), a, ȧ, ä ∈ Rm is the joint angular position, angu-
lar velocity, and angular acceleration, M (a) , C (a, ȧ) ∈
Rm×m is the positive definite inertia matrix, centrifugal
force term, and Koch’s force term, G (a) ∈ Rm represents
the positive definite gravity term, and ζ is the control
torque acting on each joint. However, in practical
applications, the robotic arm is subject to uncertainties
such as external perturbations and inaccurate nominal
data, resulting in a less effective control system. Therefore,
the study optimises the parameters of the physical
characteristics of the robotic arm and is affected by the
joint friction fn (ȧ) ∈ Rm and external perturbation ζd
during the motion process, which results in the optimised
dynamics model as (3).M0 (a) ä+ C0 (a, ȧ) ȧ+G0 (a) + ζd + fn (a) + ζ∆ = ζ

ζ∆ = ∆M (a) ä+ ∆C (a, ȧ) ȧ+ ∆G (a)

(3)

In (3), M0, C0 and G0 stand for the nominal
parameters. ∆M , ∆C and ∆G stand for the positional
deviations of the nominal values from the real values. Let
the states of the robotic arm be u1 = a and u2 = ȧ, then
substitute u1 and u2 into (3), and simplify and transfer
formulas (1) and (2) simultaneously. Finally, the obtained
u̇1 and u̇2 are placed on the left side of the equation to
obtain the state space equation. The calculation is shown
in (4). u̇1 = u2

u̇2 = M−1
0 (ζ − ζ∆ − ζd − C0u2 −G0 − fn)

(4)

After the robot arm related model is completed, the
modelling of the impedance control model is divided into
position-based impedance control (PIC) and force-based
impedance control (FIC) [21], [22]. Among them, PIC

converts the contact force error into a correction for
the reference trajectory based on the given impedance
relationship, then controls the robotic arm to move along
the corrected path, and finally achieves control of the
docking contact force. Figure 1 displays the flowchart of
PIC.

Based on the above principle, the transfer function
expression for the impedance part is (5).

uf (g) =
1

kg2 + bg + h
ef (g) (5)

In (5), k, b, and h correspond to the inertia coefficients,
damping coefficients, and stiffness coefficients of the
impedance relationship. ef stands for the contact force
error in the corresponding direction. The CF between the
end of the robotic arm and the environment is generated
by the deformation of the environment, and usually the
spring model is chosen for modelling the contact force, and
the calculation is shown in (6).

fe =

he (ue − u) , u < ue

0 , u ≥ ue
(6)

In (6), he and ue are the ambient stiffness and ambient
position, respectively. Neglecting the error of the robotic
arm position control, we can get ef in the specified
direction, see (7).

ef =

(
kg2 + bg + h

)
[he (ue − ur)− fd]

kg2 + bg + h+ he
(7)

In (7), ur represents the actual position of the robot
arm in the specified direction, and fd represents the given
desired contact force in the specified direction. The steady
state error can be calculated by classical control theory,
see (8).

efn =
h [he (ue − ur)− fd]

h+ he
(8)

In practice, it is very difficult to obtain the
environmental parameters accurately, so other methods are
used to generate the reference trajectory or the output of
the compensated impedance. The FIC works as shown in
Fig. 2.

In Fig. 2, the error between the end position and the
reference trajectory eu is firstly detected, and secondly
converted into a correction of the desired force by
impedance ∆f , and at the same time superimposed with
the reference contact force fr to obtain fd, and finally, the
difference between fd and the actual CF is used as an input
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Figure 2. Schematic diagram of the working principle of FIC.

Figure 3. Flowchart of adaptive robotic arm impedance control method based on RBFNN.

to the moment controller of the robotic arm, which enables
the trajectory error to be converted into an adjustment of
the force.

3.2 RBFNN-based Impedance Control Method for
Robotic Arm

To realise the end CF control of the robotic arm under
the condition of uncertain environmental information, the
variable impedance method is the mainstream method
at present, but its transient performance cannot be
guaranteed due to the parameter change, which makes
the robotic arm and the environment contact with a large
contact force impact [23]. To address the above problems,
the study proposes an adaptive robotic arm impedance
control method based on RBFNN, and the specific flow is
shown in Fig. 3.

In Fig. 3, firstly, the PD iterative method is used to
compensate for the estimation error of the environment,
in order to provide high impedance control for robustness
in uncertain environments; Secondly, the variable stiffness
impedance method is used to reduce excessive contact
force impact during contact, and the gradient descent
method is used to solve the impedance change. Then,
to address the errors caused by parameter disturbances,
external disturbances, and other factors, a position based
PI controller was designed. Finally, RBFNN was used
to approximate the uncertain part of environmental
information in the dynamics of the robotic arm. In this
case, the variable stiffness impedance algorithm is operated
as follows, according to the impedance relationship in the
specified direction in Cartesian space, the expression can
be obtained as (9).

k (ü− ür) + b (u̇− u̇r) + h (u− ur) = fe − fd = ef (9)

In (9), u, u̇, and ü stand for the actual position,
velocity, and acceleration of the end of the robot arm, while
ur, u̇r, and ür are the reference trajectory, velocity, and
acceleration. To minimise the influence of the positional
error of the robot arm on the contact force control, it is
assumed that the end of the robot arm can accurately
track the desired position. The environmental position
ûe is obtained through the sensor measurement, which
corresponds to the given reference trajectory as follows,
ur = ûe. The error in the measured value and the real
value is expressed as ψue, which leads to the impedance
model; then define ψ (t) = kψüe + bψu̇e + hψue, which
leads to (10).

k¨̂e+ b ˙̂e+ he+ ψ (t) = fe − fd = ef (10)

To compensate the effect of environmental errors on
the control system, the study introduces the PD iterative
method and designs the compensation amount as (11).

ψ (t) = ψ (t− τ) + σ [fd (t)− fe (t)]

+
ϑ

ψ

 [fd (t)− fe (t)]

− [fd (t− τ)− fe (t− τ)]

 (11)

In (11), τ represents the sampling period. σ and ϑ
represent the positive definite learning rate. To improve
the adaptability of the control system to the changing
environment, the study adds the variable impedance
mechanism, defines the stiffness variation as hv, and defines
hv ê = f0, which leads to (12). ˙̂e =

[ef−k¨̂e−hê−ψ(t)−f0]
b

üd = ¨̂u+
[ef−b ˙̂e−hê−ψ(t)−f0]

k

(12)
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Figure 4. Schematic diagram of impedance control method flow for RTGEE robotic arm.

To achieve the control objective of minimising the
position error and contact force error, the study introduces
an optimisation method, and the objective equation of the
optimisation is selected as (13).

Q (t) =
1

2

(
λ ˙̂e

2
+ ηe2

f

)
=

1

2
(f1 + f2) (13)

To minimise the value of (13), it is necessary to make
f0 follow the gradient in the opposite direction, see (14).

f0 (t) = f0 (t− τ)− β∇Q (14)

In (14) β represents the step size of the change. In
the PI controller part of the control method, the joint
angle position error is derived in time and the generalised
tracking error is defined according to the dynamics model
of the robotic arm with the state space equations, see (15).ė = ȧd − u2

r = ė+ e
(15)

In (15) denotes the positive definite diagonal matrix.
Deriving (15) with respect to time and multiplying it with
M0 at the same time leads to (16).

M0ṙ = M0 (äd + ė) + C0r + C0 (ȧd + e)

+G0 + ζ∆ − ζ + fn + ζd (16)

The control law is designed as (17).

ζ = M0 (äd + ė) + C0 (ȧd + e) +G0 + ζ∆ + fn (ȧ)

+ζd +MP r +Mi

∫
rdt (17)

In (17) MP ,Mi ∈ Rm×m all denote positive definite
diagonal matrices. Estimating the positional part of (17)
using the universal approximation property of the RBFNN
leads to (18).

ζ = M0 (äd + ė) + C0 (ȧd + e) +G0 +MP r

+Mi

∫
rdt + ŴT l (θ) +Mrsgn (r) (18)

In (18), denotes the weights of the RBFNN, θ =

(e, ė, ad, ȧd, äd)
T

and l (·) represent the inputs and outputs
of the RBFNN, and Mr is a positive definite diagonal

matrix. The adaptive law of the RBFNN is designed as (19).

˙̂w = Γ−1lrT (19)

In (19) Γ represents the positive definite diagonal
matrix.

3.3 Design of Impedance Control Method for
Robotic Arm Based on Reference Trajectory
Generation and Environment Estimation
Algorithm

The impedance control of the robotic arm needs to take the
contact force error and the reference trajectory as inputs,
but it is difficult to generate the reference trajectory under
the condition of uncertain environmental information [24]–
[26]. Aiming at the problems of impedance control of the
control system, research and design an RTGEE robotic
arm impedance control method, the specific flow is shown
in Fig. 4.

In Fig. 4, the EEA algorithm is first used to
estimate environmental information and calculate the
reference trajectory using the obtained information. If
the generated reference trajectory is outside the range of
the workspace that the robotic arm can reach, it can be
constrained to the farthest distance that can be reached.
The constrained reference trajectory can be corrected
through the impedance link to obtain the desired position,
solving the problem of the control system being unable to
accurately adjust the end position. Secondly, the desired
position is obtained by reversing the desired angular
position in the joint space with inverse motion, and at the
same time constructing a fixed-time and stable position
controller to track the desired angular position. Finally,
the algorithm for compensating unmodelled dynamics of
robotic arms (CUDRA) is designed to reduce the effect
of unknown conditions of the robotic arm model on
the unknown control. According to the EEA algorithm
proposed in the study, by defining the end contact force,
environmental parameters can be estimated, and the
derivation can be obtained as (20).

f̂e = ĥe (ûe − ud) (20)

In (20), f̂e is the estimated value of CF, and ĥe
and ûe are the estimated environmental stiffness and
environmental position. f̂e The difference in this value and
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Figure 5. Expected position and contact force generated by different methods for contact force control on a variable stiffness
plane: (a) Desired location and (b) Contact force.

the measured value fe is shown in (21).

f̂e − fe =
(
ĥeûe − heue

)
−
(
ĥe − he

)
ud (21)

According to the theory of Lyapunov stability in order
to determine the estimation of environmental parameters,
the Lyapunov function is shown in (22).

L =
1

2γ1

(
ĥe − he

)2

+
1

2γ2

(
ĥeûe − heue

)2

(22)

In (22), γ1, γ2 ∈ R is a normal number. Normally, f̂e
and fe will have some error, so the reference trajectory is
designed as (23).

ur = ûe −
fd

ĥe
(23)

The specific operation process of the CUDRA
algorithm is as follows. Firstly, a compensation term q is
designed to compensate for the unmodelled dynamics in the
dynamic model of the robotic arm. When the control input
simultaneously acts on the real and compensated robotic
arm models, it can generate two operating speeds: reference
and real. If the effect of compensating for unmodelled
dynamics is not complete, there will be significant errors
in the two sets of outputs. Therefore, the feedback control
concept is introduced to use the generated errors as
feedback and compensate in the control law to reduce the
adverse effects caused by unmodelled dynamics. Secondly,
in the position controller of the robotic arm control
system, the desired position obtained is taken as input,
and then using (4), the parameter perturbation part,
external disturbance part, and joint friction are all treated
as unmodelled parts. Finally, to improve the convergence
speed of the controller and enable the robotic arm to better
meet the requirements of contact force control, the idea
of backstepping is introduced, and an adaptive position
control algorithm that can converge in a fixed time is used.

4. Analysis of Results of Impedance Control
Methods for RBFNN and RTGEE Robotic
Arms

To verify the effectiveness of the proposed method for
robotic arms and the RTGEE robotic arm impedance
control method, simulation verification was conducted
through plane, oscillation surface, and environmental
information uncertainty conditions.

4.1 Result Analysis of RBFNN-based Impedance
Control Method for Robotic Arm

To verify the effectiveness of the impedance control method
of the RBFNN robotic arm, the study firstly verifies the
CF control on the plane. The desired force is 50 N, the
environment position is 0.1 m, the initial position is 0.2 m,
the reference trajectory is 0.05 m, k = 1, b = 120, h (0) =
100, σ = 0.5 and ϑ = 0.4. In addition, to scientifically
validate the effectiveness of the proposed method, the study
selected variable damping adaptive impedance (VDAI),
adaptive fuzzy impedance control (AFIC), and adaptive
impedance control based on Kalman filter (AICKF) for
comparative experiments.

The results of the desired position and CF produced
by the different methods for contact force control in
the variable stiffness plane are displayed in Fig. 5. As
shown in Fig. 5, if the reference trajectory is only the
estimated environmental position, all four control methods
can respond quickly and obtain the most suitable expected
position. But a sudden change in environmental stiffness
was set in the 3rd and 6th seconds, resulting in significant
jumps at these two moments. When the robotic arm using
VDAI algorithm comes into contact with the environment
or experiences sudden changes in the environment, it will
generate the maximum contact force impact, which is 52.03
N; the maximum contact impact forces generated by AFIC
algorithm and AICKF algorithm are 51.83 N and 50.16
N, respectively. The impedance control method of RBFNN
robotic arm can reduce the contact force impact to 7.98 N
under the same conditions. The above results indicate that
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Figure 6. The expected position, actual CF, and contact force error results of the expected force generated by tracking
changes using different methods on the attenuated oscillation surface: (a) Desired location and (b) Contact force.

Figure 7. Angular position and position error results of robotic arm joints 1 and 2: (a) angular position of joint 1; (b) angular
position error of joint 1; (c) angular position of joint 2; and (d) angular position error of joint 2.

the proposed RBFNN control method can quickly change
the impedance relationship when the environment changes,
control the contact force impact within a small range, avoid
damage to objects, and ensure the stability of the robotic
arm operation. The second study verifies the effectiveness
of the different methods in controlling the varying desired
contact force on an oscillating surface, with the following
parameter settings and the environment true position is

e−
t
2 sin (t), desired force is 50 + 50sin (t), ambient stiffness

is 5000 N/m, the initial position is 0, k = 1, b = 90,
h (0) = 50, σ = 0.6 & ϑ = 0.4.

The results of tracking the desired position, actual
contact force and contact force error generated by different
methods of tracking the changing desired force on the
decaying oscillating surface are displayed in Fig. 6.
Figure 6 displays that, although the VDAI method can
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Figure 8. Angular positions and error results of two joints under the oscillating surface: (a) angular position of joint 1; (b)
angular position error of joint 1; (c) angular position of joint 2; and (d) angular position error of joint 2.

Figure 9. Control effect of the robotic arm on the Y -axis
direction under the oscillating surface.

control the steady state error of the CF within a certain
range, it still causes a large force shock and has a large
fluctuation of change in 4 s. The AFIC method and AICKF
method can control the steady-state error of contact force
within a small range, but there is still a certain degree

of fluctuation. The impedance control method of RBFNN
robotic arm reduces the impact of contact force by 17 N
through automatic adjustment of impedance relationship
and constraint of contact force error. The above results
indicate that the proposed method can effectively avoid
significant contact force fluctuations and has good control
effects. To further verify the overall contact force control
effect of the robotic arm control system, a planar two-link
robotic arm is used for simulation. The simulation scenario
is a uniform motion in the plane X -axis direction according
to the speed of 0.0055 m/s, and the CF is controlled in
the Y -axis. The simulation parameters are set as follows,
the real position of the environment is 0.2 m, the reference
trajectory is set to 0.016 m, the environment stiffness is
5000 N/m, and the desired CF is 50 N The initial position of
the end of the robot arm is (0.3 m, 0.3 m). The parameters
in the controller are as follows, the implicit layer and the
output node of the RBFNN are set to 7 and 2, respectively,
k = 1, b = 120, h (0) = 100, σ = 0.1, ϑ = 0.4, =
diag (10, 50), Mp = diag (200, 200), Mi = diag (100, 100),
Mr = diag (3, 3) and Γ = diag (0.2, 0.2).

The results of the angular position and position error
of joints 1 and 2 are shown in Fig. 7. Figure 7 displays
the error between the two joints of the robotic arm and
the actual position is small, and the angular error of the
two joints is stabilised at 0 rad within 0.5 s. The control
system is still able to respond quickly although the robotic
arm inevitably generates errors.
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Figure 10. Expected angle position and tracking error results of two joints based on RTGEE robotic arm impedance control
method; (a) angular position of joint 1; (b) angular position error of joint 1; (c) angular position of joint 2; and (d) angular
position error of joint 2.

Table 1
Control Effect of the Robotic Arm in the Y-axis Direction

Attribute Project Time/s

0 1 2 3 4 5 6 7 8 9 10

Position Desired position/m 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

Actual position/m 0.30 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

Y -axis position error Position Error/mm 110 0 0 0 0 0 0 0 0 0 0

Contact force Expected contact force/N 50 50 50 50 50 50 50 50 50 50 50

Actual contact force/N 0 50 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5

Contact force error in
Y -axis direction

Contact force error/N 50 0 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5

Table 1 displays the control effect of the robotic arm
in the Y -axis direction. It displays that the position control
of the robotic arm can be stabilised within 1 s, and the
steady state error in Cartesian space is within 0.15 mm;
and the steady state error of the CF is within 0.5 N. To
validate the robustness in the dynamic environment, the
study sets the simulation environment as an oscillating
surface, and the robotic arm is moving at a speed of
0.005 m/s. The simulation parameters are as follows: The
environment stiffness is 200 N/m, the reference trajectory
is 0.7 × exp

(
− t

2

)
× sin (t), the initial position is (0.3 m,

0.2 m), and the desired CF is 50 N, b = 90, h (0) = 50,
σ = 0.6, ϑ = 0.4. The position controller parameters are
= diag (80, 80), Mp = diag (60, 60), Mi = diag (30, 30),
Mr = diag (3, 3) and Γ = diag (3, 3). The results of the
angular position and error of the two joints under the
oscillating surface are displayed in Fig. 8. From Fig. 8, the
angular position error of joint 1 is very small, fluctuating
in the range of 0.02 rad and stabilising to 0 after 2.5 s.
The angular position error of joint 2 has a larger band,
fluctuating around 0.03 rad and stabilising to 0 after 4
s. The angular position error of joint 2 is also larger,
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Figure 11. The reference trajectory obtained through estimated environmental information calculation and the actual CF
and contact force error curve at the end of the robotic arm: (a) Reference trajectory obtained by calculating estimated
environmental information; (b) actual contact force at the end of the robotic arm; (c) Contact force error at the end of the
robotic arm.

fluctuating near 0.03 rad and stabilising to 0 after 4 s. The
angular position of joint 2 is also larger than that of joint 2.

The control effect of the robotic arm in the Y -axis
under the oscillating surface is shown in Fig. 9. Figure 9
shows that the contact between the robotic arm and the
environment can be generated within 0.2 s, and at the
same time, the generated desired position can be tracked
quickly. The whole control system can reach a smooth state
within 3 s, and only generates oscillation and overshoot
in the range of 3 mm, and the position error and contact
force error are 0.18 mm and 0.25 N, respectively, after
reaching a stable state. The above results validate the
effectiveness of the proposed algorithm. Under uncertain
conditions, the algorithm can effectively reduce the force
impact when the robotic arm contacts the environment,
improve the transient performance of impedance control,
and ensure the performance and stability of robotic arm
operation.

4.2 Analysis of Results of RTGEE Robotic Arm
Impedance Control Methods

To verify the performance of the RTGEE robotic arm
impedance control method, the study is simulated using
a planar two-link robotic arm, and the simulation
environment is consistent with the above. The unknown
external perturbation is 0.1sin(t), the true environmental
position is 0.3 m, the desired force is 5 N, the environmental
stiffness is 20 N/m, and the initial position in Cartesian

space is (0.3 m, 0.3 m). k = 1, b = 10, h (0) = 1, and the
initial values of the environmental stiffness and position
are 0.1 m.

The results of the desired angular position and tracking
error of the two joints against the desired angle based on
the RTGEE robotic arm impedance control method are
displayed in Fig. 10. From Fig. 10, in the primary stage
of applying the control action, there is a small amplitude
of oscillation and overshooting at the two joints, and the
position error of the two joints stabilises at 0 rad after
adjustment.

The reference trajectory obtained by calculating
the estimated environmental information and the actual
contact force at the end of the robotic arm are displayed in
Fig. 11. From Fig. 11, at the beginning of the simulation,
the reference trajectory obtained is larger because the
initial values of the environmental stiffness and the
environmental position are smaller, but the contact force
obtained by measurement can be adjusted quickly to
the estimated value by the EEA algorithm. When it is
stabilised, the value of the obtained reference trajectory
is 0.0502 m. At the initial stage, the actual contact force is
0, and then it produces slight oscillations and overshooting
with the maximum overshooting amount of 2.1 N. The
contact force is in a smooth state after 2.53 s, and
the corresponding error is stabilised at the 0 value. The
above results demonstrate the effectiveness and stability
of the proposed RTGEE impedance control method for
robotic arms, which can effectively solve the problems of

10



contact force control and reference trajectory formulation
of robotic arms under uncertain environmental information
conditions.

5. Conclusion

With the increasing automation of robotic arms, they
are widely used in various fields due to their advantages
such as high productivity and the ability to operate in
harsh environments. However, in practical applications, the
difficulty of obtaining accurate environmental information
hinders the flexible control of robotic arms. To address
the above problems, the study first models the robotic
arm related model and impedance model, then proposes a
robotic arm impedance control method based on RBFNN,
and finally designs an RTGEE robotic arm impedance
control method. In the contact force comparison of different
methods, the VDAI algorithm produces the largest contact
force impact of 52.03 N. The impedance control method of
the robotic arm based on RBFNN reduces the contact force
impact to 7.98 N. In the attenuated oscillating surface, the
two joints of the robotic arm have a small error from the
actual position, and the angular error of the two joints
stabilises at 0 rad within 0.5 s. The whole control system
under the oscillating surface has the following advantages:
In the oscillation surface, the whole control system can
reach a smooth state within 3 s, and only produces 3 mm
range of oscillation and overshooting, and after reaching
the stable state, the position error and contact force error
are 0.18 mm and 0.25 N, respectively. In the RTGEE
robotic arm impedance control method, when the control
system is stabilised, the reference trajectory value obtained
is 0.0502 m, and the actual CF is 2.1 mm, the maximum
overshooting amount is 2.1 mm. The maximum overshoot
is 2.1 N, and the contact force is in a smooth state after
2.53 s, and the corresponding error is stabilised at 0 value.
In summary, the proposed method has good performance
and can effectively improve the adverse effects on the
flexible control of the robotic arm under the condition of
uncertain environmental information. However, there are
still shortcomings in the study, and the method proposed
in the study is only tested in the simulation environment,
and an experimental platform can be constructed to verify
its effectiveness in practical applications in further studies
in the future.
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