
Mechatronic Systems and Control, Vol. 52, No. 10, 2024 Special Issue
An Open Access Paper Neural Networks and Fuzzy Logic in Mechatronics and Robotics

TRAJECTORY TRACKING CONTROL FOR

FLEXIBLE-JOINT MANIPULATOR WITH

TIME-VARYING UNCERTAINTIES USING

BACKSTEPPING AND CHEBYSHEV

NEURAL NETWORK

Pengxiao Jia∗ and Wanli Qiu∗

Abstract

The tracking control for flexible-joint manipulator system with

time-varying uncertainties is investigated in this paper. The control

performance of the system is inevitably affected by the mismatched

uncertainties. To tackle this issue, a novel controller that integrates

backstepping and Chebyshev neural networks (CNN) is proposed.

Backstepping is used to deal with the mismatched problem, and CNN

are used to approximate the nonlinear functions. The adaptive law

can be derived from Lyapunov stability analysis and all the signals

in closed-loop system are bounded. The comparative simulation

experiments validate the superior performance of the proposed

method over the commonly used RBF NN.
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1. Introduction

Currently, robots are increasingly being used as collabora-
tors in various settings, such as factories, hospitals, offices,
and even homes [1]. Collaborative robots often incorporate
flexible joints, providing advantages when encountering
obstacles during operations [2]. However, several challenges
arise due to complicated nonlinear terms, under-actuated
and strongly coupled system, time-varying and mismatched
uncertainties, and so on [3].
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To address these challenges, researchers have devised
various nonlinear control strategies to effectively manage
flexible-joint manipulators, such as singular perturbation
techniques [4], [5], backstepping control [6], [7], adaptive
control [8], [9], passivity-based control [10], and intelligent
control [11], [12]. The main motivation of this study is to
develop a highly accurate tracking control scheme for the
flexible-joint manipulator system with the time-varying
uncertainties.

Backstepping is a control technique used for the design
of nonlinear control systems [13], aiming to systematically
transform a nonlinear control problem into a series of
simpler, interconnected subsystems that can be controlled
individually. However, the classic backstepping technique
has a notable limitation that hinders its wide range of
applications. It relies on accurate models of the system
dynamics, and if there are significant deviations between
the actual system behaviour and the model used for
control design, the control performance may degrade. To
address this issue, the function approximation technique
offers significant advantages. Neural networks (NNs) are
widely used to approximate any nonlinear function due
to universal approximation capability. Various types of
NNs have been employed in real systems, including
recurrent NNs [14], interval type-2 fuzzy neural networks
(IT2FNN) [15], RBF NNs (RBF) [16], and Chebyshev
neural networks (CNN) [17], etc. The greater the number
of neurons in a NN, the greater its approximation accuracy
in general, but it also significantly increases the number
of parameters to be estimated. To attain desirable results,
it is crucial to select the appropriate parameters. CNN
with the subset of Chebyshev polynomial as input has
demonstrated excellent approximation capabilities [18].
In practice, CNN generally need to determine only the
order of the Chebyshev polynomials, making it easier to
identify the right parameters for achieving good controller
performance.
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This study focuses on trajectory tracking control
for flexible-joint manipulator system with time-varying
mismatched uncertainties. A novel trajectory tracking
controller is proposed by employing a combination of
backstepping and CNN techniques. The use of Lyapunov
stability theory enables the derivation of an adaptive law,
ensuring that all signals in the closed-loop system are UUB.
The proposed controller requires fewer control parameters
while achieving superior control outcomes, compared to
the widely used RBF NN. The main contributions of this
paper are as follows:
(1) A novel trajectory tracking controller is proposed for

flexible-joint manipulator system with time-varying
mismatched uncertainties by integrating backstepping
and CNN.

(2) The proposed controller requires fewer control param-
eters while achieving superior control outcomes.
The paper is organised as follows: In Section 2, the

problem statement and preliminaries are presented. The
proposed controller is introduced in Section 3. In Section 4,
the effectiveness and superior performances of the proposed
controller are verified through simulation results. The
summary of the results obtained is given in Section 5.

2. Problem Statement and Preliminaries

2.1 Problem Statement

In this paper, consider the single-link flexible-joint
manipulator described in [16]. Assuming that the link is
rigid and ignoring the viscous damping is, its dynamic
equations are expressed as follows:

Dq̈l +mgl sin(ql) + k(ql − qr) = 0

Jq̈r − k(ql − qr) = τ (1)

where ql ∈ R denotes the link position, qr ∈ R denotes the
motor position. All the mentioned parameters, including
the link inertia D, motor inertia J , link mass m, stiffness
k, centre of mass l, and gravity constant g, possess
positive values. τ is the control torque. To facilitate
the design description of the problem, the state space
variables x1 = ql, x2 = q̇l, x3 = qr, and x4 = q̇r are
defined. Due to the time-varying, mismatched uncertainty
of flexible joint manipulator, we are unable to obtain a
precise model. Considering the actual connection of flexible
joint manipulator, the model can be simplified by treating
the flexible joint manipulator as a combination of two
subsystems as referred in [19]. The dynamic equations are
described as follows:

ẋ1 = x2

ẋ2 = x3 + E1(x)

ẋ3 = x4

ẋ4 = E2(x) + ατ

(2)

where x = [ x1 x2 x3 x4 ]T is the state vector, E1(x) =

−x3− mgl
D sinx1− k

D (x1−x3), E2(x) = k
J (x1−x3), α = 1

J .

Assumption 1 : Suppose that E1(x) and E2(x) are
uncertain, and the bounds on their variation are uncertain.

Assumption 2 : Suppsed α is an unknown constant, and
is its positive lower bound.

Assumption 3 : The system states are all accessible.
Our objective is to propose a trajectory tracking

controller to make that ql can track a continuous desired
trajectory qld while all signals in the closed-loop feedback
system are UUB. Since E1(x) and E2(x) are uncertain,
in the following, a novel trajectory tracking controller is
designed by using backstepping and CNN approximation.

2.2 Preliminaries

In this paper, CNN are utilised to approximate unknown
nonlinear functions. CNN with the subset of Chebyshev
polynomial as input is a function-link NN [20]. Chebyshev
orthogonal polynomials can be expressed as follows: T0(x) = 1

Ti+1(x) = 2xTi(x)− Ti−1(x)
(3)

where x ∈ R and T1(x) comes with many forms as x, 2x,
2x− 1, and 2x+ 1. Here, we choose T1(x) = x.

Consider a vector x = (x1, . . . , xm)T ∈ Rm, the
Chebyshev polynomials can be expressed as:

ϕ(x) = (1, T1(x1), . . . , Tn(x1), . . . , T1(xm), . . . , Tn(xm))T

(4)

where n is the order of Chebyshev polynomials.
Due to the excellent approximation capabilities,

F (x) ∈ Rn can be expressed as:

F (x) = WTϕ(x) +$ (5)

whereW is the optimal weight matrix and$ is the bounded
approximation error.

3. Controller Design

In this sector, a novel trajectory tracking controller is
proposed by using backstepping and CNN approximation.

3.1 Backstepping Controller

Backstepping method is a commonly used and effective
control method. In the controller design process, all
quantities with “ˆ” denote estimates and all quantities
with “∼” denote estimation errors. The steps for designing
a backstepping controller for (2) are as follows.

Step 1 : Define e1 = x1−qld, qld is the desired trajectory.
The time derivative of e1 is

ė1 = ẋ1 − q̇ld = x2 − q̇ld (6)

Define e2 = x2 − x2d, where x2d is a virtual control,
x2d is proposed as follows:

x2d = q̇ld − k1e1 (7)
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where k1 > 0. Equation (6) can be written as:

ė1 = e2 + x2d − q̇ld = −k1e1 + e2 (8)

Define the Lyapunov function:

V1 =
1

2
e2

1 (9)

Taking the time derivative of V1, produce:

V̇1 = −ke2
1 + e1e2 (10)

If e2 = 0, then V̇1 ≤ 0.
Step 2 : Taking the time derivative of e2, produce:

ė2 = ẋ2 − ẋ2d = x3 + E1(x)− ẋ2d (11)

Define e3 = x3 − x3d, where x3d can be selected to
stabilise (11) with:

x3d = −Ê1(x) + ẋ2d − k2e2 − e1 (12)

where k2 > 0, Ê1(x) is the estimate of E1(x).
Take the derivative of x2d:

ẋ2d = q̈ld − k1ė1 = q̈ld − k1(x2 − q̇ld) (13)

The time derivative of e2 along (11) and (12) is given
by:

ė2 = e3 + x3d + E1(x)− ẋ2d

= E1(x)− Ê1(x)− k2e2 + e3 − e1 (14)

Define the following Lyapunov function:

V2 =
1

2
e2

1 +
1

2
e2

2 (15)

Taking the derivative of V2, produce:

V̇2 = −k1e
2
1 − k2e

2
2 + (E1(x)− Ê1(x))e2 + e2e3 (16)

If e3 = 0 and E1(x)− Ê1(x) = 0, then V̇2 ≤ 0.
Step 3 : Taking the time derivative of e3, produce:

ė3 = ẋ3 − ẋ3d = x4 − ẋ3d (17)

ẋ3d along (11)–(14) is given by:

ẋ3d = − ˙̂
E1(x) + ẍ2d − k2ė2 − ė1

= − ˙̂
E1(x) +

...
q ld − k1(x3 + E1(x)− q̈ld)

−k2(x3 + E1(x)− ẋ2d)− x2 + q̇ld (18)

ẋ3d can be expressed asẋ3d = ∆1 − ∆2, where ∆1 =...
q ld − k1(x3 − q̈ld) − k2(x3 − ẋ2d) − x2 + q̇ld is the known

part, and ∆2 =
˙̂
E1(x) + (k1 + k2)E1(x) is the unknown

part.
Define e4 = x4 − x4d, where x4d can be selected as:

x4d = ∆1 − ∆̂2 − k3e3 − e2 (19)

Substituting (19) into (17), ė3 can be expressed as:

ė3 = x4 − ẋ3d = −k3e3 − e2 + e4 + ∆2 − ∆̂2 (20)

Define the following Lyapunov function:

V3 =
1

2

3∑
i=1

e2
i (21)

Taking the time derivative of V3, produce:

V̇3 = −k1e
2
1 − k2e

2
2 − k3e

2
3 + (E1(x)− Ê1(x))e2

+(∆2 − ∆̂2)e3 + e3e4 (22)

If e4 = 0, ∆2 − ∆̂2 = 0 and E1(x) − Ê1(x) = 0, then
V̇3 ≤ 0.

Step 4 : Taking the time derivative of e4, produce:

ė4 = ẋ4 − ẋ4d = E2(x) + ατ − ẋ4d (23)

ẋ4d along (17) and (19) is given by:

ẋ4d =
...
q ld − k1(ẋ3 −

...
q ld)− k2(ẋ3 − ẋ2d) + q̈ld − ẋ2

− ˙̂
∆2 − k3(x4 − q̈ld + k1(x3 − q̈ld) + k2(x3 − ẋ2d)

−q̇ld + x2 + ∆2)− (ẋ2 − ẋ2d) (24)

ẋ4d can be expressed as ẋ4d = ε1 + ε2, whereε1 =...
q ld − k2(x4 −

...
q ld + k1(x3 − q̈ld)) + q̈ld − x3 − k3(x4 −

∆1) − (x3 − ẋ2d) − k1(ẋ3 −
...
q ld) is the known part, and

ε2 = −(k1k2 + 2)E1(x)− ˙̂
∆2 − k3∆2 is the unknown part.

Define E2(x) = E2(x)−ε2, and (23) can be written as:

ė4 = E2(x) + ε2 + ατ − ẋ4d

= E2(x)− ẋ4d + (α− α̂)τ + α̂τ (25)

where α̂ is the estimated value of α.
The control torque τ is proposed as:

τ =
1

α̂
(−Ê2(x) + ε1 − k4e4 − e3) (26)

where k4 > 0 and Ê2(x) is the estimated value of E2(x).
Substituting (26) into (25), ė4 can be expressed as:

ė4 = (E2(x)− Ê2(x)) + (α− α̂)τ − k4e4 − e3 (27)

Define the following Lyapunov function:

V4 =
1

2

4∑
i=1

e2
i (28)

Taking the time derivative of V4, produce:

V̇4 = −k1e
2
1 − k2e

2
2 − k3e

2
3 − k4e

2
4 + (α− α̂)τe4

+(E1(x)− Ê1(x))e2 + (∆2 − ∆̂2)e3

+(E2(x)− Ê2(x))e4 (29)

If α = α̂, E2(x) = Ê2(x), ∆2 = ∆̂2 and E1(x) =

Ê1(x), then V̇4 ≤ 0.
Here, the CNN are utilised to approximate unknown

E1(x), ∆2, and E2(x). Then, the following expressions
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exist:

E1(x) = WT
1 ϕ1(x) +$1

∆2 = WT
2 ϕ2(x) +$2

E2(x) = WT
3 ϕ3(x) +$3 (30)

The estimated quantities of E1(x), ∆2, and E2(x) can
be expressed as:

Ê1(x) = ŴT
1 ϕ1(x)

∆̂2 = ŴT
2 ϕ2(x)

Ê2(x) = ŴT
3 ϕ3(x) (31)

where Ŵ1, Ŵ2, and Ŵ3 are the estimates of the optimal
weights.

3.2 Adaptive Law Design

We design adaptive laws forα̂, Ŵ1, Ŵ2, and Ŵ3 through
stability analysis. Define the Lyapunov function as:

V =
1

2

4∑
i=1

e2
i +

1

2
tr(Ω̃T Ξ−1Ω̃) +

1

2
ηα̃2 (32)

where Ω̃ = Ω − Ω̂, Ω =


0

W1

W2

W3

, ‖Ω‖F ≤ ΩM ,

Ω̂ =


0

Ŵ1

Ŵ2

Ŵ3

, Ξ =


0

Γ1

Γ2

Γ3

, η > 0.

We design the adaptive law as follows:

˙̂
Ω = ΞΦξT − nΞ ‖ξ‖ Ω̂ (33)

where, Φ =
[
0 ϕ1(x) ϕ2(x) ϕ3(x)

]
, n > 0, α̂(0) ≥> 0,

ξ = [ e1 e2 e3 e4 ]T .

Using (29) and (32), the derivative of V is:

V̇ = −k1e
2
1 − k2e

2
2 − k3e

2
3 − k4e

2
4 + (W̃T

1 ϕ1(x) +$1)e2

+(W̃T
2 ϕ2(x) +$2)e3 + (W̃T

3 ϕ3(x) +$3)e4

+tr(Ω̃T Ξ−1 ˙̃
Ω) + α̃e4τ + ηα̃ ˙̃α (36)

Consider K = [ k1 k2 k3 k4 ]T , $ = [ 0 $1 $2 $3 ],

V̇ can be expressed as:

V̇ = −ξTKξ + ξT$ + tr(Ω̃T Ξ−1 ˙̃
Ω + Ω̃T ΦξT )

+α̃e4τ + ηα̃ ˙̃α (37)

Since
˙̃
Ω = − ˙̂

Ω, ˙̃α = − ˙̂α, using (33), produce

V̇ = −ξTKξ + ξT$ + n ‖ξ‖ tr(Ω̃T (Ω− Ω̃)) + β (38)

where β = α̃e4τ − ηα̃ ˙̂α.

We design the adaptive law of α as:

˙̂α =


η−1e4τ e4τ > 0

η−1e4τ e4τ ≤ 0 α̂ >

η−1 e4τ ≤ 0 α̂ ≤

(39)

where the initial value α̂(0) ≥.
Substituting (39) into β, it can be found that:
when e4τ > 0, β = 0; when e4τ ≤ 0, α̂ >, β = 0; when

e4τ ≤ 0, α̂ ≤, β < 0.
According to the Schwarz inequality, tr(Ω̃T (Ω− Ω̃)) ≤∥∥∥Ω̃
∥∥∥
F
‖Ω‖F −

∥∥∥Ω̃
∥∥∥2

F
.

Since kmin ‖ξ‖2 ≤ ξTKξ, kmin is the minimum
eigenvalue of K, (38) can be expressed as:

V̇ ≤ −kmin ‖ξ‖2 +$N ‖ξ‖

+n ‖ξ‖ (
∥∥∥Ω̃
∥∥∥
F
‖Ω‖F −

∥∥∥Ω̃
∥∥∥2

F
) + β

≤ −‖ξ‖ (kmin ‖ξ‖ −$N + n
∥∥∥Ω̃
∥∥∥
F

(
∥∥∥Ω̃
∥∥∥
F
− ΩM )) + β

(40)

If kmin ‖ξ‖−$N +n
∥∥∥Ω̃
∥∥∥
F

(
∥∥∥Ω̃
∥∥∥
F
−ΩM ) = kmin ‖ξ‖−

$N + n(
∥∥∥Ω̃
∥∥∥
F
− 1

2ΩM )2 − n
4 Ω2

M ≥ 0, then V̇ ≤ 0.

Therefore, ‖ξ‖ ≥ $N+ n
4 Ω2

M

kmin
, or

∥∥∥Ω̃
∥∥∥
F
≥ 1

2ΩM +√
Ω2

M

4 + $N

n must be satisfied.

From the convergence of ‖ξ‖, we find that proper
adjustment of n and kmin improves the tracking accuracy.

4. Simulation Results

Some simulations for the flexible-joint manipulator (1) are
conducted in this section to verify the effectiveness of the
proposed controller by selecting k1 = 1.75, k2 = 1.75,
k3 = 1.75, k4 = 1.75, n = 0.1, η = 150, Γ1 = 250,
Γ2 = 250, Γ3 = 250, the order of Chebyshev polynomials
is 3. Other parameters are consistent with those in [16].

The initial state x = [ 0 0 0 0 ]T . The desired trajectory is

set as qld = 0.2 sin(t).
Figures 1–4 show the simulation results. The responses

of the system states ql, q̇l, qr, q̇r are displayed in Figs. 1
and 2. The proposed controller achieves satisfactory control
results and all the variables in the closed-loop system are
bounded from Figs.1 and 2.

To demonstrate the superior performance of our
proposed control method, we conducted a comparative
analysis with a popular existing approach [21], which
utilises RBF NNs for approximating unknown functions.
Fig. 3 displays the trajectories [ql (CNN) and ql (RBF)]
of the proposed and wildly used method (RBF), and the
desired signal qld. From Fig. 4, we can find the excellent
performance of the proposed controller. To quantitatively
characterise performance, we calculated the maximum
tracking errors at steady state separately when two
different controllers were used, and the maximum tracking
errors at steady state are, respectively, 0.0043 and 0.010.
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Figure 1. Responses of ql and q̇l.

Figure 2. Responses of qr and q̇r.

It can be seen that the controller proposed in this paper is
easier to find the right parameters to make the control more
accurate. We also calculated ITAE values separately for
both controllers. The ITAE value of the proposed controller
is 1.2748, and the ITAE value of the RBF controller is
1.8028, which validate the superior performance achieved
by utilising the proposed controller.

5. Conclusion

In this paper, a novel trajectory tracking controller is
proposed for flexible-joint manipulator, which is subject to
time-varying and mismatched uncertainties, by integrating
backstepping and CNN. The CNN are used to approximate
the unknown functions. The adaptive law for CNN is
derived from Lyapunov stability analysis. The proposed

Figure 3. Trajectory tracking performance of the two
controllers.

Figure 4. Trajectory tracking error for two controllers.

controller ensures that all the signals in the closed-
loop systems are bounded. The comparative simulation
experiments validate the superior performance of the
proposed method over the commonly used RBF NN.
However, it is challenging to use the same strategy
directly for the tracking control of an n-link flexible-joint
manipulator with mismatched uncertainties. Therefore,
the next step in our research is to design trajectory
tracking controller for n-link flexible-joint manipulator
with mismatched uncertainties.
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