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Abstract

In recent years, with the rise of Industry 4.0 and intelligent

manufacturing, the optimisation of mechanical process parameters

has become a hot issue in the industry and academia. Therefore, the

application and value of fuzzy hesitation model in the optimisation

of mechanical process parameters are discussed in this paper. First,

the relevant data are collected, preprocessed and analysed, and

then a preliminary model is constructed for prediction. Based on

the verification results of the preliminary model, several strategies

are proposed to improve and optimise the model. To improve the

efficiency and quality of machining, a series of optimisation strategies

for practical applications are also proposed. Overall, this study

provides an effective method for the optimisation of mechanical

process parameters, and lays a solid foundation for future research

and application.
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1. Introduction

In today’s society, especially in the field of machining, the
rapid development of technology makes efficient, accurate
and stable operation, and decision-making essential. Faced
with uncertain factors and challenges, fuzzy hesitation
model comes into being as a more complex, fine and
intelligent method. It combines fuzzy logic and hesitation
set to deal with uncertain or contradictory information,
and has been widely used in many fields, such as medical
treatment, finance, and energy. In the field of machining,
the model effectively deals with uncertainties in the
production process, helps decision makers optimise process
parameters and ensure product quality.
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With the improvement of global economic integration
and production automation, the optimisation and decision-
making of mechanical process have a significant impact
on the competitiveness, product quality, and production
efficiency of enterprises, which makes fuzzy hesitation
model become a hot research topic in this field. Kechagias
et al. [1] found that specific parameter settings significantly
improved the manufacturing quality of FFF-TPU. Burcea
et al. [2] explored the impact of electrical and mechanical
design on the robustness of MEMS-ics. Retolaza et al.
[3] studied the mechanical properties of PPS materials
and optimised the FDM processing parameters. Hosseini
and Sedighi [4] focused on the influence of friction-
assisted extubation on material properties. Zhang et
al. [5] studied the arc additive manufacturing process
of AlCu6Mn welding wire. Liu et al. [6] studied the
influence of process parameters on mechanical properties
of additive manufacturing SMP structures based on FDM.
Kam et al. [7] applied Taguchi method to optimise melt
deposition model parameters and improve the performance
of PLA+ filament material. Wafaie et al. [8] optimised FFF
process parameters to improve the mechanical properties
of 3D printed PLA products. Sheikh and Behdinan
[9] studied the influence of process parameters on the
mechanical properties of components manufactured by
additive layered multi-scale models. These studies highlight
the importance of the practical application of model
prediction and open up new directions for the optimisation
of mechanical process parameters. In recent years, the
application of fuzzy logic system in the optimisation of
mechanical process parameters is increasing, especially
in combination with meta-heuristic algorithm, which
brings remarkable progress to improve the accuracy and
adaptability of the optimisation process. For example,
Bacciaglia et al. [10] showed how to apply these algorithms
to complex mechanical design problems by using meta-
heuristic algorithms to optimise controllable propellers.
Similarly, the “Bedbug” meta-heuristic algorithm proposed
by Rezvani et al. [11] shows new ideas and possibilities in
solving optimisation problems. Boazzo et al. [12] proposed
a general design approach for multipole SPM machines
for direct drive applications, highlighting the need for
precise parameter tuning during the design process and
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demonstrating the direct impact of technological advances
on improving mechanical properties. This echoes the
work of Mondal and Mhanta [13] who developed an
adaptive integrated high-order sliding mode controller for
uncertain systems, highlighting an efficient way to deal with
uncertainty in mechanical system design and optimisation.
These studies show that the performance and reliability of
mechanical systems can be significantly improved through
precise and advanced control strategies.

In addition, Shyamsundar et al. [14] demonstrated the
application potential of fuzzy logic in the control of complex
systems, especially when using DC servo motors, by
adopting the LQR fuzzy logic-based steering gear control
system. This study not only supports the application of
fuzzy logic in control systems but also implies its potential
value in optimising mechanical process parameters.

The work of Nasser et al. [15] further expanded the
application scope of fuzzy logic by developing an intelligent
fault detection and identification method based on fuzzy
logic classifiers, providing evidence for the practicability
of fuzzy logic in the maintenance and optimisation of
mechanical and electronic systems.

These studies are significantly different from the appli-
cation of the fuzzy hesitation model in the optimisation
of mechanical process parameters proposed in this paper.
The above research focuses on specific types of meta-
heuristic algorithms, while this study focuses on the
application of fuzzy logic to deal with uncertainty and
fuzziness in process parameter optimisation. In addition,
the fuzzy hesitation model combined with meta-heuristic
algorithms (such as genetic algorithm and particle swarm
optimisation) can deal with fuzzy data and fuzzy rules more
effectively, and improve the flexibility and adaptability
of decision-making process. The advantage of the fuzzy
hesitation model proposed in this study is that it can
deal with the uncertainty and hesitation in the mechanical
process parameters more accurately. This method not only
improves the precision of parameter optimisation but also
enhances the adaptability of the algorithm to the change of
complex process conditions. This is an important advance
in the field of mechanical process parameter optimisation,
as it provides a more efficient way to deal with complex
decision problems under real process conditions.

The purpose of this study is to discuss the application
and optimisation of fuzzy hesitation model in the field
of mechanical technology, and to provide accurate and
practical decision support in the field of mechanical
processing. This study combines the fuzzy hesitation model
with the optimisation of mechanical process parameters
to improve the efficiency and accuracy of decision making
and overcome the limitations of traditional methods
in dealing with complex uncertainties. In addition, the
innovation of this study is to promote the in-depth research
and application of fuzzy logic and decision optimisation
methods in machining and other fields, providing a
powerful decision-making tool for machining practitioners.

The model of this study is not only innovative in theory
but also has important value in practical application. The
application of fuzzy hesitation model in the optimisation
of mechanical process parameters can effectively deal with

various uncertain factors in the production process, such as
the change of material characteristics and the fluctuation of
equipment conditions. This method makes the machining
process more flexible and precise, thereby improving
product quality, reducing waste, and optimising production
efficiency. Especially in high-precision machining and
complex parts production, the application of this model
can bring significant economic benefits.

The research document is organised as follows: In
the first part, the introduction introduces the research
background and the importance of fuzzy hesitation model
in the optimisation of mechanical process parameters. In
the second part, the theoretical basis of fuzzy hesitation
model and its application in different fields are deeply
discussed, which lays a foundation for understanding the
working principle and application scope of the model.
The third part describes the specific application of the
model in the optimisation of mechanical process param-
eters, including the selection of data source, collection,
preprocessing, model construction, and parameter setting.
In the fourth part, the model is tested and the results
are analysed by appropriate verification methods, and the
advantages and limitations of the model are discussed. In
the fifth part, based on the analysis results, improvement
strategies and future research directions are proposed to
enhance the practicability and accuracy of the model.
On the whole, this paper systematically demonstrates
the application of fuzzy hesitation model in the optimi-
sation of mechanical process parameters from theory to
practice.

2. Theory and Application of Fuzzy Hesitation
Model

2.1 Basic Concept of Fuzzy Hesitation Model

Fuzzy hesitation model combines fuzzy logic and hesitation
set to effectively deal with problems containing uncertain,
fuzzy or contradictory information [16]. This model
transcends traditional binary logic and allows objects
to exist in multiple states, providing theoretical basis
and new perspective for complex decision making. Fuzzy
logic deals with fuzzy phenomena, while hesitancy sets
focus on uncertainty in decision making, jointly promoting
comprehensive analysis and solution of complex problems
[17], [18].

The application of fuzzy hesitation model in many
fields proves its practicability and benefit. Assisting in
diagnosis and treatment in the medical field, helping
doctors process complex medical data. The financial sector
deals with risk assessment and investment decisions, while
the energy sector optimises energy distribution, especially
in terms of efficiency and reliability in renewable energy
sources.

2.2 Overview of the Application of Fuzzy
Hesitation Model in Other Fields

Because of its unique ability to deal with uncertainty and
fuzzy information, fuzzy hesitation model has been widely
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used in many fields, and its practicality and adaptability
have been verified [19]–[22].

In the field of medical applications, fuzzy hesitation
models are used in the medical field to aid diagnosis and
disease prediction. For example, one study used a fuzzy
hesitation model to integrate different medical images and
patient data to improve the accuracy of early diagnosis
of lung cancer. This method can better deal with the
uncertainty and fuzzy information in the diagnosis process
and assist doctors to make more accurate decisions.

In the financial field, fuzzy hesitation model is used
in risk assessment and investment decision. For example,
one study applied fuzzy hesitation models to analyse
and predict stock market dynamics to help investors
assess potential stock risks and returns. Through the
comprehensive analysis of fuzzy information, investors can
better understand the uncertainty of market trends and
corporate performance.

In the field of energy applications, especially in
the planning and management of renewable energy,
fuzzy hesitation models evaluate site selection, power
generation, cost-effectiveness, and environmental impact.
For example, one study used a fuzzy hesitation model to
evaluate different wind power generation sites, taking into
account geographic location, wind resources, costs, and
environmental impacts to provide comprehensive analysis
and recommendations for decision makers.

To sum up, the fuzzy hesitation model has shown
its practicality and effectiveness in many fields, such as
medicine, finance, and energy. These specific application
cases not only verify the wide applicability of fuzzy
hesitation model but also provide valuable experience and
enlightenment for its application in the field of mechanical
process parameter optimisation.

2.3 Parameter Challenges and Optimisation
Requirements in Mechanical Processes

Mechanical process is a key link in modern manufacturing
industry, involving numerous parameters and variables,
and its subtle changes have a significant impact on product
quality [23]. In the context of global competition, the
decision-making and optimisation of mechanical processes
are crucial to improving production efficiency and product
performance [24], [25].

In machining, the interaction of process parameters,
such as cutting speed, feed speed, and tool Angle makes the
determination of optimal conditions complicated. Global
supply chains and unquantifiable factors, such as operator
experience and machine aging add to the difficulty of
decision making [26], [27].

Studies have shown that the adoption of advanced
technologies, such as fuzzy logic, artificial intelligence, and
machine learning can significantly improve the accuracy
and efficiency of the optimisation of mechanical process
parameters, and help to better deal with fuzzy and
uncertain information and predict and optimise process
parameters [28], [29]. Fuzzy hesitation model comes into
being, which provides a decision support tool integrating

quantified and non-quantified information for multi-
objective optimisation.

3. Data Collection and Preliminary Processing

3.1 Data Sources and Collection Methods

The study collected data from the following main sources:
Machining centre: Processing equipment, includ-

ing cutting parameters, machine tool state, processing
time, etc.

Operator feedback: Collect feedback through inter-
views, questionnaires, etc.

Quality inspection department: Product quality data,
dimensional tolerances, surface roughness, etc.

Supply chain information: Suppliers, material nature,
origin, etc.

Table 1 shows the data collection situation.

3.2 Data Preprocessing and Preliminary Analysis

Data preprocessing is a key step in data analysis to ensure
that the data used in this study is accurate, complete, and
unbiased.

(1) Data preprocessing process: Data cleaning, data
conversion, data normalisation.
The data preprocessing situation is shown in Table 2.

(2) Preliminary analysis: Descriptive statistics, correlation
analysis, trend analysis.
Through the above preprocessing and preliminary

analysis, a clear and standardised data set is obtained.

3.3 Data Characteristics and Impact Factors

To better understand the data and provide appropriate
inputs to the model, research needs to dig deeper into the
characteristics of the data and the factors that influence it.

(1) Data characteristics:
Time dependent: Certain parameters, such as the

temperature of the machine, may fluctuate or trend over
time.

Nonlinear relationship: The relationship between some
parameters may be nonlinear, such as cutting speed and
tool wear.

High-dimensional interaction: Multiple parameters
may interact, and they may have different effects on the
output when combined than when used separately.

Table 3 shows the data characteristics.
(2) Analysis of influencing factors:

Cutting speed: Mainly affected by material hardness
and tool material.

Machine temperature: Related to cutting speed and
machine load.

Operator feedback: May be affected by human error
and machine condition.

Dimensional tolerance: Affected by tool accuracy and
material uniformity.

These data characteristics and impact factors provide
insights into the relationship between various variables
in mechanical processes and help research to make more
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Table 1
Data Collection Information

Data type Data source Acquisition method

Cutting parameter Machining centre Download directly from the machine monitoring system

Machine state Machining centre Real-time monitoring using sensors

Operator feedback operator Interviews and questionnaires

Product quality Quality inspection department Use measuring tools and equipment for inspection

Material information Supply chain information, suppliers Obtained from the data and certificates provided by the
supplier

Table 2
Data Preprocessing

Data type Raw data range Missing value
processing

Data conversion Post-normalised
range

Cutting speed 50–200 m/min Fill mean No conversion required 0–1

Machine temperature 20–60◦C Fill median No conversion required 0–1

Operator feedback Text description NA Text analysis score conversion 0–1

Dimensional tolerance ±0.05 mm Zero padding Convert to absolute deviation 0–1

Material type Such as: Aluminum, steel NA One-hot coding NA

Table 3
Data Characteristics

Data type Main characteristics Key impact factor

Cutting speed High frequency fluctuation Material hardness, tool material

Machine temperature Time series upward trend Cutting speed, machine load

Operator feedback Unstructured text Human error, machine state

Dimensional tolerance Highly sensitive, small range fluctuation Tool accuracy, material uniformity

Material type Discrete classification NA

reasonable assumptions and choices in the model building
phase.

4. Construction of Fuzzy Hesitation Model

4.1 Define Parameters and Variables of the Model

The main goal of this study is to optimise various
parameters to obtain the best machining results.

(1) Input parameters:
Cutting speed (v): Indicates the speed of processing,

selected because it directly affects the processing time
and the quality of the finished product, usually expressed
in m/min.

Machine temperature (T ): The real-time temperature
of the machine during processing, important because
the temperature change will affect the machine per-
formance and processing accuracy, usually expressed
in ◦C.

Operator feedback score (F ): A score based on text
analysis that reflects operator satisfaction and feedback
with the process, on a scale of 0 to 1.

Dimensional tolerance deviation (D): Indicates the
difference between the actual size and the expected size of
the machined part, which is directly related to the product
quality and is usually expressed in mm.

(2) Output variables:
Processing effect score (S): The processing effect

score obtained by synthesising the above parameters
ranges from 0 to 1, indicating the overall effect of
processing.

Table 4 shows the information of parameters and
variables.

Based on the above parameters and variables,
a model can be constructed, as shown in the
following (1):

S = f(v, T, F,D) (1)
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Table 4
Parameters and Variables of the Model

Symbol Description Unit/range

v Cutting speed m/min

T Machine temperature ◦C

F Operator feedback score 0–1

D Dimensional tolerance deviation mm

S Machining effect score 0–1

Where, f is a function representing the influence of
the above input parameters on the processing effect score
S. This function requires further definition, usually based
on historical data and expert knowledge to determine its
specific form. Fuzzy hesitation model will help research
to define and optimise this function to ensure the best
machining results.

4.2 Constraint Setting of the Model

In the actual operation of mechanical processes, various
parameters cannot be arbitrarily changed, but are limited
by a series of physical, economic or safety constraints.

According to the defined parameters and variables, the
constraints are as follows:

(1) Cutting speed (v): Due to the physical limitations of
the machine and the durability of the tool, the cutting
speed cannot be too low or too high: vmin ≤ v ≤ vmax.

Where vmin and vmax are the minimum and maximum
allowable values of the cutting speed, respectively.

(2) Machine temperature (T ): To ensure the normal
operation of the machine and the quality of the product,
the temperature of the machine cannot exceed a certain
threshold: T ≤ Tmax.

Where Tmax is the maximum allowable temperature
of the machine.

(3) Operator feedback score (F ): Although this is a
subjective assessment, if the score is below a certain
threshold, it may indicate that there is a serious
processing problem. As the following is shown:
F ≥ Fmin .

Where Fmin is the minimum acceptable value for the
operator feedback score.

(4) Dimensional tolerance deviation (D): To ensure the
quality of the product, the dimensional tolerance
deviation can not exceed the specified range: |D| ≤
Dmax.

Where Dmax is the maximum allowable deviation of
the dimensional tolerance.
Based on constraints, the model should not only

optimise the machining effect score S but also ensure that
all parameters are within the allowable range. This brings
additional challenges to the construction and optimisation
of the model, but also guarantees its feasibility and
effectiveness in practical applications.

5. Model Verification and Result Analysis

5.1 Selection of Verification Method

Validation is a key step to ensure the reliability and
practicality of the model.

Verification method:
(1) Cross-validation: This is a commonly used method for

model validation, especially when the amount of data is
limited. Cross-validation improves the generalisation of
the model by constantly re-segmenting the data set to
ensure that every data point has a chance to be used as
validation. The following (2) is shown:

Spredicted = f(v, T, F,D)train (2)

Where ftrain is the model trained on the training data
set.

(2) Bootstrapping: This is a method that generates multiple
samples by randomly sampling from the original data
set, and then uses these samples for model validation.
The bootstrapping method is particularly useful for
estimating model accuracy and stability because it
allows for repeated sampling, which can provide a more
complete understanding of model performance.

(3) Sensitivity analysis: This is a method to examine the
response of the model output to changes in the input
parameters. Sensitivity analysis helps to identify which
input parameters have a significant impact on the
model output, thereby guiding further adjustment and
optimisation of the model. For example, the study can
change the cutting speed v and then observe the change
in the machining effect score S, δSδv .

(4) Compare actual and predicted data: The results are
predicted by the model and compared with the actual
data collected. This is a direct way to check the accuracy
of the model and visually show how the model will
perform in real-world applications. The following (3) is
shown:

∆S = Sactual − Spredicted (3)

Where, Sactual is the actual processing effect score,
and Spredicted is the predicted value of the model.
To ensure the robustness and wide applicability of the

model, multiple validation methods may be selected and
used in combination. In addition, based on the results
of validation, the model can be further adjusted and
optimised to make it more accurate and reliable.

5.2 Comparison Between Model Predictions and
Actual Data

To verify the accuracy of the model, the research needs
to compare the prediction results of the model with the
actual processing effect score. As shown in Fig. 1.

From the figure above, you can see the difference
between the model’s predicted score Spredicted and the
actual score Sactual. For example, for data number 1, the
model predicted a score of 0.85, but the actual score was
0.87, indicating that the model slightly underestimated the

5



Figure 1. Model prediction and sample data.

processing effect. On the contrary, for data number 2, the
predicted score of the model is 0.82, while the actual score is
0.79, which indicates that the model slightly overestimates
the processing effect.

To evaluate the overall accuracy of the model, the
mean squared error (MSE) between the predicted and
actual values can be calculated, as shown in (4) below:

MSE =
1

n

n∑
i=1

(Spredicted ,i − Sactual ,i)
2

(4)

Where n is the amount of data. The smaller the MSE
value, the more accurate the prediction of the model.

5.3 In-Depth Analysis of the Results and
Advantages and Disadvantages of the Model

The model’s predictions were found to be very close to the
actual data in some cases and biased in others. For example,
consider the relationship between machine temperature
T and cutting speed v and the prediction error.

Through in-depth analysis, the model results are
obtained, as shown in Fig. 2.

The model shows strong adaptability, flexibility, and
interpretability in mechanical processes, but the prediction
error increases under high temperature and high speed
conditions, and the calculation is complicated and the data
volume is large.

6. Model Improvement and Optimisation Strategy

6.1 Model Adjustment Based on Verification
Results

It is essential to ensure the accuracy and robustness of the
model.

Adjust the strategy:
(1) Introduction of interaction terms: Considering that

both cutting speed v and machine temperature T have
significant effects on the model’s prediction, the study

can introduce an interaction term v × T to better
capture the interaction between them. The following (5)
is shown:

Snew = f(v, T, F,D, v × T ) (5)

(2) Parameter reweighting: Adjust the weights of each
parameter in the model to reduce the dependence on
some sensitive parameters. For example, reduce the
weight of cutting speed v and increase the weight of
machine temperature T .

(3) The introduction of nonlinear transformations: In
some parameter ranges may have nonlinear behaviour,
can introduce nonlinear transformations, such as
logarithmic, exponential or polynomial transformations.
As shown in Fig. 3, the adjustment of parameter

weights is presented.
By adjusting the strategy, the prediction performance

of the research model at high temperature and high cutting
speed is improved.

In short, model adjustment based on verification
results is an iterative and continuous process.

6.2 Optimisation Strategy Proposal

The optimisation strategy of the model and mechanical
process is proposed to improve the efficiency, reduce
errors, and increase the stability of the model in practical
application.

(1) Dynamic adjustment of cutting speed (v): Considering
that the model is very sensitive to cutting speed, the
research can monitor the machining effect score S in
real time and dynamically adjust the cutting speed. The
following (6) is shown:

vadjusted = vcurrent + k × (Sdesired − Sactual ) (6)

Where, k is an adjustment factor, Sdesired is the
desired processing effect score, and Sactual is the actual
predicted value of the model.
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Figure 2. In-depth analysis of the results.

Figure 3. Parameter weight adjustment.

(2) Real-time cooling of the machine: If the temperature
of the machine is detected to be close to or exceed its
safety threshold, immediately start the cooling system
or reduce the speed of the machine.

(3) Adaptive learning: The use of online learning or
incremental learning methods allows the model to
automatically adjust its parameters and structure based
on newly collected data.

(4) Multi-source data fusion: Consider integrating other
relevant data (such as the vibration frequency of the

machine tool, the wear degree of the tool, etc.) to
improve the accuracy of the model.
The optimisation strategy is shown in Table 5.

6.3 Verification and Comparison of the Improved
Model

After improving the model, it is crucial to verify its
performance.

As shown in Fig. 4, the comparison between the
predicted results based on the improved model and the
actual data is presented.

As can be seen from the above figure, the prediction
of the improved model is closer to the actual data at some
data points.

Further, according to (4), the MSE of the two
models can be calculated for comparison: MSEold =
1
n

∑n
i=1 (Spredicted, old ,i − Sactual,i)

2
; MSEnew =

1
n

∑n
i=1 (Spredicted, new,i − Sactual,i)

2
.

By comparing MSEold and MSEnew, you can intu-
itively see the effect of the model improvement.

7. Conclusion

In this paper, the application of fuzzy hesitation model
in the optimisation of mechanical process parameters is
discussed. By analysing the available data, we successfully
built a preliminary model that can effectively predict
the machining effect. However, preliminary verification
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Table 5
Optimisation Strategy

Optimisation strategy Description

Dynamic adjustment of cutting speed Real-time monitoring and adjustment according to machining results

Real-time machine cooling Start the cooling system when the machine temperature approaches the threshold

Adaptive learning Allows the model to be automatically updated based on new data

Multi-source data fusion Integrate more data sources to enhance the predictive power of the model

Figure 4. Verification and comparison of the improved model.

shows that the model has prediction errors under certain
conditions.

Although the model performs well under standard
conditions, it has limited predictive power under extreme
conditions and a typical data cases. To improve the
prediction accuracy and robustness of the model, we
propose a series of improvement strategies, including
introducing new interaction terms, reweighting parameters,
and applying nonlinear transformations. These improve-
ments significantly improve the adaptability of the model,
enabling it to handle complex processing situations more
accurately.

The main advantage of the model is that it can combine
quantised and non-quantised information to effectively
deal with fuzzy and uncertain information in machining.
In addition, by introducing advanced algorithms and
technologies, the model shows significant potential in
improving production efficiency and optimising product
quality. However, the limitations of the model are mainly
reflected in the need to improve the processing ability of
extreme conditions and a typical data, and the current

application is mainly concentrated in specific conditions,
and the adaptability to a wider range of process parameter
changes needs to be further verified.

Given these limitations of the model, the focus of
future research should include: further improvement of the
model, especially improving its performance under extreme
conditions. Explore more efficient algorithms to improve
the computational speed and accuracy of the model
when processing large-scale data; Test the applicability
of the model in different processing environments and
expand its application range. These research directions
will help to solve the limitations of existing models and
further improve their application value and adaptability in
practical production.

In summary, this study provides a new set of
technical solutions for the optimisation of mechanical
process parameters, and provides a valuable reference for
technological innovation in the machining industry. Future
research will continue to focus on improving the model to
make it more accurate, reliable, and applicable to different
processing environments.
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