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A MILLING CHATTER DETECTION METHOD

BASED ON WPD AND O-VMD
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Abstract

The relationship between dynamic characteristics and chatter

recognition of machine tool spindle system was established based

on dynamic characteristics and wavelet packet. After signal

decomposition and acquisition of dynamic characteristics, signal

recombination was carried out. The chatter was detected by wavelet

packet decomposition and variational mode decomposition based on

particle swarm optimisation algorithm, and the validity of parameter

optimisation scheme was verified by experiments. The multi-scale

permutation entropy feature is used to identify the machining state,

which can distinguish the machining state at different time scales,

so as to identify the chatter.
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1. Introduction

Chatter is a common phenomenon in mechanical pro-
cessing, which can cause a decrease in surface quality. It
is very important to detect chatter in a timely manner
during mechanical processing and take certain proactive
measures, such as changing processing parameters to avoid
the occurrence of chatter. Accurately extracting chatter
features is an important component of online monitoring.
However, due to the complex processing environment and
the time-varying characteristics of system characteristics, it
is not easy for workers to detect chatter in the early stages
of occurrence, but chatter has already had an irreversible
impact on the processing system. In recent years, research
on chatter identification has been widely carried out [1].

Time domain analysis, also known as waveform
analysis, directly analyses the original sequence of signals.
Ye et al. [2] computed the time-domain sequence’s root
mean square and identified chatter using the coefficient
of variation, which is the ratio of the standard deviation
to the mean of the root mean square sequence. While
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the time-domain analysis method is easy to understand
and straightforward, in real-world machining, the dynamic
properties of tools and workpieces can result in nonlinear
and non-stationary signals that are easily disrupted by
outside signals. Frequency domain analysis, also known
as spectral analysis, occurs when a chatter occurs, the
amplitude of the signal undergoes significant changes, and
the peak of the chatter frequency occurs near the natural
frequency. Rumusanu et al. [3] employed the fast fourier
transform (FFT) to compute the ratio of the highest
amplitude to the average value of the frequency domain
physical signal, and used this value to assess the processing
system’s stability. During cutting, Tang [4] monitored
chatter using the force signal’s power spectrum density
(PSD). However, chatter signals are frequently nonlinear
and unstable, and standard FFT based spectrum analysis
is only appropriate to stationary signal analysis, resulting
in poor robustness.

In order to address the aforementioned issues,
chatter detection employs adaptive signal decomposition
techniques like empirical mode decomposition (EMD) [5],
ensemble EMD (EEMD) [6]–[8], wavelet transform (WT)
and its improved algorithm [5], [9], [10], variational mode
decomposition (VMD) [11], [12]. Litak et al. [13] used time–
frequency analysis techniques, such as wavelet analysis
and Hilbert Huang transform (HHT) based on the milling
force that gradually changes the cutting depth during
the milling process of chromium nickel iron alloy, in an
attempt to find chatter characteristics during the changing
process. Karam and Teti [14] used a combination of force
sensor detection and wavelet decomposition signals for
feature extraction and style recognition research on the chip
morphology of turning 1045 carbon steel. The findings of
the experiment demonstrate that the wavelet-decomposed
data feature vector can increase the neural decision-making
system’s recognition chip shape’s accuracy. Fu et al. [6]
first decomposed the signal into EMD; then, select the
intrinsic mode components (IMF) with the highest energy
proportion based on the energy limit coefficient. Finally,
the HHT was used to the IMF to produce the HHT
time spectrum [30], [31]. Chatter was determined by
calculating the HHT time spectrum’s normalised energy
ratio and coefficient of variation. Although EMD has many
advantages, it is actually prone to modal confusion, so
it is rarely applied in chatter monitoring. In response to
this defect, Norden E. Huang et al. [15] proposed the
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EEMD method based on EMD. Ji et al. [7] used the two
EEMD indicators of fractal dimension and PSD to track
the milling state. Then used morphological coverage and
the Fourier transform, respectively, to derive the equations
for fractal dimension and PSD. The test results proved
that the spectrum analysis results were consistent with the
change trend of fractal dimension curve and PSD curve.
Liu et al. [8] processed the original signal using set EMD,
collecting energy entropy (EE) and sample entropy (SE)
from the intrinsic mode function to separate chatter. VMD
is a new non recursive signal processing method [15]. Once
VMD was proposed, it was widely used in the field of
fault monitoring. Reference [16] points out that the VMD
method is more accurate in extracting the features of
vibration signals. Aneesh et al. [17] compared and analysed
the methods of combining VMD and EWT with SVM,
indicating that VMD and SVM methods are more effective.
Zhang et al. [18] proposed a chatter identification method
based on the combination of VMD decomposition and EE.

Given the aforementioned benefits, VMD is frequently
employed in chatter research; however, in signal processing,
the number of decomposition layers and penalty factors
must be predetermined. The accuracy of chatter signal
decomposition is directly impacted by parameter selection.
Yang et al. [19] suggested optimising variational modal
decomposition for chatter monitoring by maximising the
numeber of decomposition layers and penalty factors
through the use of a simulated annealing approach.
In order to identify chatter, the reconstructed signal’s
estimated entropy and SE are taken out, and the energy
ratio is utilised as the criterion for choosing sub signals
during the monitoring phase. The effects of manually
setting VMD parameters are avoided with this strategy.
To efficiently deconstruct the original signal and acquire
the chatter frequency range, Liu et al. [20] used the
FFT spectrum to choose the number of decomposition
layers. Despite being a popular new technique for
chatter monitoring, VMD still needs more research to
determine the best mix of decomposition layers and penalty
components.

The right feature must be chosen as the benchmark
for chatter vibration detection in order to identify
chatter in the real machining process. Based on the
Hilbert–Huang spectrum, Liu et al. [5] developed an
efficient chatter detection indicator that calculated the
instantaneous frequency’s mean and standard deviation
and set its characteristic thresholds at 710 Hz and 0.02 Hz,
respectively. Nevertheless, this method’s threshold value
will also vary depending on the cutting conditions, and
its universality is weak. Currently, the selection of chatter
features mostly concentrates on certain features that are
derived from the idea of entropy, such as, permutation
entropy (PE) [11], EE [21], SE [7], [8] , PSD [23], etc.
These characteristics are appropriate for various processing
situations and are chatter sensitive. Wavelet decomposition
before VMD is a strategy that combines two signal
processing techniques. The main purpose is to improve the
accuracy and robustness of signal analysis. This method is
effective in dealing with complex signals, especially signals
containing non-stationary and multi-scale features.

Based on the above issues, this article proposes a
milling chatter monitoring method based on wavelet packet
decomposition (WPD) and optimised VMD decomposi-
tion. The specific research approach is as follows: Firstly,
the signal to be analysed is decomposed using wavelet
packets. Sub signals with abundant chatter information
are chosen for reconstruction based on energy feature cal-
culations. Perform mutual verification between the wavelet
packet time–frequency map and the energy proportion
of each node. However, the particle swarm optimisation
(PSO) algorithm is applied to the reconstructed signal
to make the choice of VMD decomposition parameters
more scientific. The reconstructed signal is subjected to
optimised VMD decomposition, the EE features of each
order of IMF are calculated, and the Hilbert spectrum
is used to verify the effectiveness of extracting chatter
frequency bands. Finally, the multi-scale arrangement
entropy was calculated as a chatter feature, and the entropy
values of three different processing states were compared.
The research process of this article is shown in Fig. 1

2. Mathematical Model of Chatter Detection
Scheme

2.1 WPD

If x (t) is a finite energy function, i.e., f (t) ∈ L2(R), then
the WT of this function is defined as an integral transform
with the function family ψa,b(t) as the integral kernel
[22]–[24], as follows:

Wf (a, b;ψ) =

∫ ∞
−∞

f(t)ψa,b(t)dt, a > 0 (1)

Assuming {µn(x) | n ∈ Z+} is an orthogonal wavelet
packet relative to filter hn, and the coefficient of f (x ) in

subspace Unj is
{
cj,nk | k ∈ Z

}
, it can be expressed as:

cj,nk =

∫ ∞
−∞

f(x)2j/2µn
(
2jx− k

)
dx (2)

Then the coefficients of f (x ) in subspaces U2n
j−1 and

U2n+1
j−1 are

{
cj−1,2np

}
and

{
cj−1,2n+1
p

}
:

cj−1,2np =
∑
l

h(l − 2k)cj,nl (3)

cj−1,2n+1
p =

∑
l

g(l − 2k)cj,nl (4)

Where, hn—Low pass filter, gn—High pass filter.

2.2 PSO

The decomposition accuracy of VMD is always constrained
by the selection of decomposition layers and penalty
factors, and improper parameter combinations may lead to
VMD decomposition failure. Therefore, this paper proposes
to use PSO algorithm, which was proposed by Dr. Eberhart
and Dr. Kennedy [25] in 1995. The fundamental idea
is derived from the regularity of bird swarm activity,
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Figure 1. Chatter detection scheme.

and a swarm intelligence method is used to construct a
mathematical model.

In the process of using the PSO to find the optimal
solution, each particle will combine other individuals and
their own information to find the optimal solution. Each
particle learns the population’s historical ideal value gbest
and the individual’s historical optimal value pbest. Each
particle will adjust its speed and position according to
these two optimal values, and the quality of each position
is determined by the optimisation function, that is, the
fitness function. In this article, the maximisation of the
EE mean of IMFs is used as the optimisation function.
The optimisation ends when the maximum value remains
constant or when the maximum number of iterations is
reached.

A population is made up of N particles in a D-
dimensional search space, each of which is a D-dimensional
vector, and its spatial position can be represented as:

xi = (xi1, xi2, . . . , xiD) , i = 1, 2, . . . , N (5)

The current fitness value can be calculated by bringing
it into the fitness function, and the current optimisation
result can be measured according to the size of the fitness
value. The global historical optimal position of all particle
swarm is as follows:

gbesti = (gbaeti 1, gbesti2 2, . . . gbestiD ) , i = 1, 2, . . . , N (6)

The velocity update expression of the particle swarm
is as follows:

vij(t+ 1) = vij(t) + c1r1 (pbestij (t)− xij(t))
+c2r2 (gbestij − xij) (7)

The position update expression is as follows:

xij(t+ 1) = xij(t) + vij(t+ 1) (8)

Where, j -the j -th dimension of particles, i -i-th particle,
t-current iterations, c1-individual learning factors, c2-
group learning factor, r1,r2-independent parameters.

The schematic diagram and algorithm flowchart of the
body steps are shown in Fig. 2.

2.3 VMD

The principle of VMD is that any signal can be composed
of a set of sub-signals with a specific centre frequency
and limited bandwidth. These sub-signals are called
IMF. The VMD algorithm realises the decomposition
of the signal through the construction and solution of
the variational problem. Based on the signal’s adaptive
properties, the non-recursive approach can automatically
calculate the necessary number of modes and the centre
frequency.

The advantage of VMD is that compared with the
traditional EMD, the VMD algorithm has better noise
robustness and stronger theoretical basis. Its modal
components are more closely around their respective centre
frequencies, avoiding the problem of modal aliasing.

Decomposing a real input signal f into a discrete
number of sub signals (modes) uk with distinct sparsity
qualities at input time is the aim of variational modal
decomposition. In order to evaluate the bandwidth of a
modality, the following scheme is proposed [15]:

The square norm of the demodulated signal’s gradient
is used to estimate the bandwidth. The constrained
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variational problem can be described as:

min
{uk},{ωk}

{∑
k

∂t

[(
δ(t) +

j

πt

)
∗ uk(t)

]
e−jωkt2

2

}
s.t.

∑
k

uk = f. (9)

Where, {uk} = {u1, . . . , uk} and {ωk} = {ω1, . . . , ωk}
are the sets of modal and central frequencies, respectively.

Similarly,
∑
k

=
k=1∑
K

are the sum of all modes.

Reconstructed constraints can be treated with different
schemes. For the problem to become unrestricted, the
quadratic penalty term and Lagrange multiplier λ are used
simultaneously, which can be calculated with the following
formula:

L ({uk} , {ωk} , λ)

= α
∑
k

∂t

[(
δ(t) +

j

πt

)
∗ uk(t)

]
e−jωkt2

2

+f(t)−
∑
k

uk(t)22 + λ(t), f(t)−
∑
k

uk(t) (10)

An iterative optimisation process called the alternate
direction multiplier method (ADMM) uses the answer of
the initial minimisation problem formula (11) as a saddle
point. The steps to solve the saddle point using ADMM
are as follows:

un+1
k = argmin

uk∈X

{
α∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt2

2

+f(t)−
∑
i

ui(t) + λ(t)
2

2

2

} (11)

The solution to the quadratic optimisation problem is
easy to find, allowing the positive frequency of the first
change to disappear, resulting in modal updates:

ûn+1
k (ω) =

f̂(ω)−
∑
i 6=k

ûi(ω) + λ̂(ω)
2

1 + 2α (ω − ωk)
2 (12)

By using the above equation, the Wiener filtering of
the current residual and the initial value 1/(ω-ωk)2 of the
signal can be calculated. Then, due to Hilbert’s symmetry,
the spectrum of the modes can be completed.

The bandwidth prior knowledge is utilised to optimise
the centre frequency in order to acquire it, and further
optimisation can be carried out based on the definition of
average frequency. The specific process can be described
as: introducing the ADMM algorithm to solve the
optimisation results, combining with Fourier domain
transformation, and finally obtaining the decomposition
results of variational modal decomposition.

2.4 Multi-scale PE

Bandt and Pompe [26] introduced the concept of PE,
a technique for tracking time series’ randomness and
dynamic mutation behaviour. Its benefits include easy
computation, quick speed, robust noise resistance, and

suitability for online monitoring. In mechanical fault
monitoring as well as other domains, it has been widely
used.

The set of time series PE values at various scales is
known as MPE, and the following is how it is calculated
[27]:

The j-th reconstruction component of the time
series X reconstruction matrix is shown in (13), where
j1, j2j3, . . . , jm represents the column coordinates of each
element in the reconstruction component.

x (i+ (j1 − 1) τ) 6 x (i+ (j2 − 1) τ)

6 · · · 6 x (i+ (jm − 1) τ) (13)

In m-dimensional phase space mapping, different
symbol sequences share m!. A sequence of symbols
arranged in different ways. Calculate the probability
P1,P2,. . .Pk of the occurrence of each symbol sequence,
wherein time series X’s PE of k distinct symbol sequences
is defined as follows:

Hp(m) = −
j=1∑
m!

Pj lnPj (14)

Where, 0 6 Hp(m) 6 ln(m!), when Pj=1/m!, Hp(m)
has a maximum value ln(m!). Normally, Hp(m) is
normalised, i.e.,:

Hp = Hp(m)/ln(m!) (15)

The time series X = {x(i), i = 1, 2, . . . , N} is coarse–
grained, and each coarse–grained time series is calculated
by the following formula:

y
(τ)
j =

1

τ

i=(j−1)τ+1∑
jτ

xi, j = 1, 2, . . . N/τ (16)

Where, τ represents the scale factor, N/τ represents
the length of the coarse–grained time series.

Multiscale PE analysis is the process of calculating the
PE of the current scale factors after the original time series
has been coarse-grained by time scale factors.

3. Simulation Analysis and Experimental
Verification

With the introduction of concepts, such as intelligent
machine tools and intelligent workshops, traditional
machining has shifted towards intelligence and artificial
direction, and milling plays an important role in it [28].
The machining of thin-walled components, such as aircraft
engine blades is prone to regenerative chatter due to their
low stiffness characteristics during the machining process.
At present, chatter is a key factor affecting high-precision
and high-efficiency machining, and online monitoring of
milling chatter has become increasingly important. This
article will combine WPD and O–VMD to detect the
occurrence of milling chatter. Firstly, simulation signals
will be used to verify the proposed scheme. After obtaining
feasible results, an experimental platform will be built to
demonstrate the robustness of the method.
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Figure 2. Schematic diagram of PSO steps and algorithm flow chart: (a) Schematic diagram of PSO steps; and (b) Algorithm
flow chart.

3.1 Simulation Signal Analysis

To validate the proposed method, simulation signal
analysis was conducted in this section. The physical signal
during the occurrence of chatter is simulated as:

y1 = 4× sin(86πt)

y2 = 5× sin(45πt)

y3 = 0.8× (1 + 0.5 sin(36πt))

× cos(360πt+ 2.4× sin(18πt)) (17)

Among them, y1 and y2 are the fundamental and
octave frequencies of the spindle speed frequency of the
simulation signal, as well as the fundamental and octave
frequencies of the tooth pass frequency. y3 is the chatter
signal frequency range of the simulation signal

The simulation signal y is

y = y1 + y2 + y3 (18)

The amplitude and phase modulation components are
introduced as the third component, as modulation is a
common mode found in chatter signals. The simulated
chatter signal and its three components are shown in
Fig. 3, respectively. The figure displays the simulated
chatter signal’s spectrum. It is evident that the chatter
frequency band’s amplitude is much smaller than the
periodic signal’s.

After proving that the constructed simulation signal
contains rich chatter information, WPD will be performed
on the simulation signal to extract sub signals with rich
chatter information. At the same time, signal denoising
can also be achieved. Due to the absence of noise in the
simulation signal, the physical signal in actual processing
contains noise. When chatter occurs, the energy of the
chatter frequency will increase sharply, which will lead to
signal reconstruction. Following the computation of each
node’s energy via WPD, select wavelet packet nodes with
higher energy values for signal reconstruction.
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Figure 3. Time domain waveform and Frequency domain waveform: (a) simulation signal; (b) and (c) periodic signal; (d)
simulation chatter signal.

Figure 4. Time frequency domain diagram of wavelet packet nodes and energy ratio of each node of wavelet packet.

WPD is used to extract chatter frequency bands
for signal reconstruction. For three-layer WPD,
“Demy” is employed as a wavelet basis function.
The signal frequency bands of nodes 7–14 are 0–
50 Hz, 50–100 Hz, 100–150 Hz, 150–200 Hz, 200–
250 Hz, 250–300 Hz, 300–350 Hz 350–400 Hz,
respectively.

From Fig. 4, it can be clearly seen that wavelet
packet node seven is a periodic frequency band in the
original signal, with a higher amplitude; wavelet packet
nodes nine and 10 are the chatter frequency bands in
the original signal, with relatively small amplitudes. Next,
determine each node’s energy characteristics within the
wavelet packet in order to pick the reconstructed sub
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Table 1
PSO Initialisation Parameters

Number of Initial
Population

Spatial Dimension Maximum Number
of Iterations

Decomposition Level
Optimisation Range

Penalty Factor
Optimisation Range

500 2 10 [2,10] [500,3500]

Decomposition
layer speed limit

Penalty factor
speed limit

Self-learning factor Group learning factor Inertia weight

[0,0] [−10,10] 0.5 0.5 0.8

signals. seven nodes represent the energy ratio of the
periodic signal in the original signal, while nine and 10
nodes represent the energy ratio of the chatter signal in
the original signal. Reconstruct signals from nine nodes
and 10 nodes to obtain time-domain waveforms. This
reconstruction scheme retains rich chatter information and
filters out periodic signals. The denoising characteristics of
WPD will also be presented in subsequent experiments.

The accuracy of variational modal decomposition is
always constrained by the setting of the decomposition
layers and penalty factors. Improper selection of decom-
position parameters can easily lead to the failure of
VMD decomposition, resulting in endpoint effects and
modal aliasing, which affects subsequent feature extraction.
Therefore, this paper will use PSO to globally optimise
the decomposition levels and penalty factors. The PSO
algorithm’s initialisation parameter settings are displayed
in Table 1.

This article uses the maximum average energy of
IMFs as the optimisation function. Figure 5 shows the
three-dimensional scatter plot of PSO. It can be seen
from Fig. 5(b) that the marked optimisation results have
significantly higher average energy of IMFs than other
results. To prove the effectiveness of this optimisation
result, it is decomposed as an input parameter for VMD
decomposition, and the distribution of its time domain
and frequency spectrum is analysed. From Fig. 6, it can be
seen that the frequency distribution is clear. There was no
modal aliasing, and the peak frequency was consistent with
the simulation signal setting. Therefore, this parameter
optimisation scheme is effective.

To calculate chatter characteristics more accurately,
identify machining states, and reconstruct signals, VMD
is performed. The modes and spectra of each order are
shown in Fig. 6. The amplitude of the IMF1 waveform
in Fig. 6 is small and there are peaks at low frequencies.
This part is a frequency band independent of the chatter
frequency, therefore, to fully select the chatter frequency
band, the signal will be reconstructed for the second time.
Fault monitoring makes extensive use of EE, which is an
extension of energy in the entropy domain. The EE of each
order of IMFs will be calculated.

The EE properties of each order of IMFs are displayed
in Table 2. Similar to the previous analysis, there is no rich
chatter information in IMF1. Therefore, IMF2 and IMF3
will be subjected to a second signal reconstruction. At the
same time, Table 3 calculated the numerical characteristics
of the two sets of signals before and after reconstruction,

Table 2
EE Characteristics

Components of
each order of IMFs

1 2 3

Energy entropy 0.0001 0.3662 0.3662

Table 3
Numerical Characteristics of Two Groups of Signals

Raw Signal Second
Reconstruction Signal

Average value −1.9593e-4 −1.8348e-4

Variance 0.3590 0.3406

Standard deviation 0.5992 0.5836

verifying the feasibility of the second reconstruction
scheme.

Based on the above analysis, the sub signals rich in
chatter information have been reconstructed. Zhixue [29]
extracted chatter features based on the reconstructed signal
MPE. In this section, multi-scale arrangement entropy
features will be used to identify the processing state. We
compared the entropy values of the stable part, slight
chatter, and severe chatter parts in the simulation signal
at different scales.

From Fig. 7, it can be seen that under the time scale
of the dashed line in the figure, the milling processing
state, stable, slight vibration, and severe vibration can be
clearly distinguished with distinct boundaries. However, at
other scales, there has been confusion in the processing
status, making it difficult to identify the processing
status. Starting from the concept of multi-scale, it can
be found that when the time series is small, coarsening
will cause the original time series to shorten, thereby
affecting the characteristics of the time series, resulting in
little difference in calculated PE values, and thus affecting
state recognition.

3.2 Experimental Analysis

The robustness of the chatter monitoring scheme will
be demonstrated by milling experiments. The milling
experiment is carried out in a CNC machining centre,
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Figure 5. PSO.

Figure 6. VMD decomposition: (a) Time domain diagram of each order of IMFs; and (b) corresponding frequency domain
diagram.
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Figure 7. Chatter characteristics.

Figure 8. Experimental setup.

and the specific experimental setup is shown in Fig. 8.
The experimental equipment was a four axis VMC850E
machining centre, and experiments were conducted under
dry milling conditions. The workpiece material is made
of aluminium alloy Al6061, with a size of 150 mm ×
150 mm × 5 mm. The processing parameters are shown in
Table 4.

The experimental sequence number (4) will be used
for flutter monitoring analysis, and Fig. 9 shows the time-
domain and frequency-domain waveforms of this signal
segment.

From the time-domain image in Fig. 9, it can be
clearly seen that the difference between the chattering part
and the stable part is that the cutting force increases
significantly when chattering occurs, while the cutting force

is relatively small when stable machining occurs. Although
time-domain features can distinguish processing states,
due to the instantaneous and nonlinear characteristics
of chatter occurrence, time-domain methods are difficult
to capture chatter occurrence in real-time. The chatter
frequency peak in the frequency domain will be close to
the system’s inherent frequency; nevertheless, variations in
noise and the dynamic properties of the system may cause
errors. Therefore, this article proposes a time-frequency
domain monitoring chatter scheme. Firstly, to denoise
and obtain subsignals containing rich chatter information,
the original signal is subjected to WPD. Then, VMD
decomposition is performed on the reconstructed signal,
and finally, chatter frequency bands are extracted to
calculate chatter characteristics. Similar to the analysis of
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Table 4
Milling Parameters

Experiment
Number

Axial Cutting
depth/mm

Radial Cutting
depth/mm

Spindle
speed/rpm

Feed
speed/mm/min

1 3 0.6 1200 150

2 3 0.9 1200 150

3 5 0.6 1200 150

4 5 0.9 1200 150

Figure 9. Processing signal.

Figure 10. Energy of each node of WPD.

simulated signals, the “Demy” wavelet was selected as the
wavelet basis function for three-layer WPD. The signal
frequency bands of nodes 7–14 are 0–437.5 Hz, 437.5–
875 Hz, 875–1312.5 Hz, 1312.5–1750 Hz, 1750–2187.5 Hz,
2187.5–2625 Hz, 2625–3062.5 Hz, and 3062.5–3500 Hz,
respectively. The energy of each node in WPD is shown in
Fig. 10.

In Fig. 10, energy is gathered in nodes eight, nin,
and 10, and it is preliminarily determined as a chatter
frequency band. To verify this judgement, the energy
proportion of each wavelet packet node is calculated, and
based on this, the chatter frequency band is extracted for
signal reconstruction. Calculating chatter characteristics,
distinguishing processing status, and reconstructing the
time-domain and frequency-domain waveforms of the
signal as shown in Fig. 11.

In Fig. 11, it is evident that the reconstructed signal
accomplishes the goals of noise reduction and periodic
component removal while retaining the information of
the chatter frequency band in the frequency domain.
In the simulation signal analysis, the same results were
obtained, so the signal reconstruction scheme is feasible.
The spectrum distribution shows a total of four frequency
bands A, B, C, and D. According to the description in
the references [20], the number of decomposition layers
of VMD can be determined by the number of frequency
bands. However, the physical signal actually collected may
contain some interference information, so this paper uses
it as a reference to verify with PSO algorithm. Same
as the analysis of simulation signal, VMD parameter
optimisation is carried out for the reconstructed signal to
find the optimal combination of decomposition parameters.
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Figure 11. Time domain and frequency domain diagram of reconstructed signal.

Table 5
PSO Initialisation Parameters

Number of Initial
Population

Spatial
Dimension

Maximum Number
of Iterations

Decomposition Level
Optimisation Range

Penalty Factor
Optimisation Range

500 2 10 [2,10] [500,3500]

Decomposition
layer speed limit

Penalty factor
speed limit

Self-learning factor Group learning factor Inertia weight

[0,0] [−10,10] 0.5 0.5 0.8

The initialisation parameters of PSO are shown in
Table 5.

Figure 12 shows the PSO for the above reconstructed
signal. The optimisation result of the final state is
consistent with the above judgement. To further verify,
compare the spectrum distribution of the IMF in the final
state with the initial state, as shown in Fig. 13.

In Fig. 13(a), the spectrum distribution of the
reconstructed signal is the same, with peak distributions
of four frequency bands present, without modal aliasing.
However, in Fig. 13(b), multiple frequency bands are mixed
together in both the first-order IMF and the second IMF,
resulting in VMD decomposition failure. This will result in
incomplete chatter information in the reconstructed signal
and affect the extraction of chatter features.

To calculate chatter characteristics more accurately,
the reconstructed signal will be subjected to optimised
VMD decomposition, and the EE feature will be applied
to the second signal reconstruction, extracting frequency
bands with high energy chaos as sub signals for the chatter
characteristics to be analysed. In Fig. 14, the reconstructed
signal was subjected to VMD decomposition, obtaining
the time-domain and spectral distribution of various levels
of IMFs. However, the accuracy of VMD decomposition
is limited by the setting of the decomposition layers and
penalty factors. Therefore, the current decomposed sub
signals cannot be subjected to chatter feature analysis. In
this article, the EE properties of each order of IMFs are
calculated, the chatter frequency band is identified based
on the EE value, and signal reconstruction is carried out.

Table 6
EE Characteristics

Components of
each order of IMFs

1 2 3 4

Energy entropy 0.0015 0.2804 0.1628 0.3298

From Table 6, it can be seen that IMF2, IMF3,
and IMF4 have a high degree of energy chaos and high
EE values, indicating complex frequencies within their
frequency bands. Therefore, signal reconstruction was
performed on this third-order IMF. In order to verify the
accuracy of the reconstructed signal, Hilbert spectrum was
used to analyse the reconstructed signal.

Figure. 15 shows the Hilbert transform of the
reconstructed signal. The graphic illustrates that the recon-
structed signal contains a wealth of chatter information
in addition to retaining a large amount of the original
signal’s content. In the figure, each signal segment in the
time domain can correspond to the time–frequency image.
This further proves the feasibility of the proposed signal
reconstruction scheme. In order to compare the entropy
values under various processing states, the multi-scale
arrangement entropy features of the reconstructed signal
are computed.

In Fig. 16, the processing state is divided into three
states: stable processing, slight vibration, and severe
vibration. The higher the entropy value, the more unstable
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Figure 12. PSO of experimental signal.

Figure 13. Effect of the spectral distribution of decomposition layers.

the processing state is. The introduction of the multi-scale
concept enables a single entropy feature to exhibit different
entropy values at different time scales, thereby increasing
the robustness of discriminating processing states. The
dashed box in the figure indicates that the machining status
can be accurately identified at this scale. In simulation
signal analysis, due to the short time series, coarse-grained
calculations can lead to inaccurate entropy values, resulting
in fewer effective scales. In the experimental signal, the

sampling frequency is 7000 Hz and the sampling time is 4
s. Therefore, the sample points of the original time series to
be analysed are 28000. The effective scale rises in tandem
with multi-scale PE. This also proves the conjecture that
there are fewer effective scales when analysing simulated
signals. Multi scale arrangement entropy can effectively
distinguish processing states, with high computational
efficiency, strong adaptability of entropy features in time
and frequency domains, and is not affected by processing
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Figure 14. VMD decomposition of reconstructed signal.

Figure 15. Hilbert transform.

parameters. The histogram and line chart in Fig. 16 fully
demonstrate the effectiveness of the proposed chatter
monitoring scheme.

4. Conclusion

WPD and variational modal decomposition based on PSO
algorithm are proposed in this paper. The feasibility of
this scheme has been confirmed by simulation signals and

experimental signals. WPD exhibits good performance
in extracting target frequency bands and denoising, and
compares the effects of different decomposition levels on
VMD decomposition results. Choosing the appropriate
K value cannot easily lead to modal aliasing. Then
the reconstructed signal is implemented with PSO,
and the results of optimised parameters are mutually
verified with the spectrum and wavelet packet energy
distribution of the reconstructed signal. The results prove
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Figure 16. Chatter characteristics.

the effectiveness of the parameter optimisation scheme.
Finally, the chatter characteristics, namely, the multi-scale
arrangement entropy, are calculated. The simulation and
experimental results indicate that multi-scale arrangement
entropy can distinguish processing states and identify
chatter at different time scales.
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