Performance of the Wavelet Decomposition on Massively Parallel Architectures

T.A. El-Ghazawi and J. Le Moigne

References

  1. [1] C.K. Chui, An introduction to wavelets, wavelet analysis andits applications, Vol. 1 (San Diego, CA: Academic Press, 1992).
  2. [2] J.P. Djamdji, A. Bijaoui, & R. Maniere, Geometrical registration of images: The multiresolution approach, Journal of Photogrammetry and Remote Sensing, 59 (5), 1993, 645–653.
  3. [3] I. Daubechies, Ten lectures on wavelets, CBMS-NSF RegionalConference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, 1992.
  4. [4] S.G. Mallat, A theory for multiresolution signal decomposition:The wavelet representation, IEEE Trans. on Pattern Analysisand Machine Intelligence, 11 (7), July 1989, 674–693. doi:10.1109/34.192463
  5. [5] G. Strang, Wavelets and dilation equations: A brief introduction, SIAM Review, 31 (4), 1989, 614–627. doi:10.1137/1031128
  6. [6] J. LeMoigne, W.J. Campbell, & R.F. Cromp, An automatedparallel image registration technique based on the correlationof wavelet features, IEEE Trans. on Geoscience and RemoteSensing, 40 (8), 2002, 1849–1864. doi:10.1109/TGRS.2002.802501
  7. [7] M.A.Cody, The fast wavelet transform, Dr. Dobb’s Journal,April, 1992, 16–28.
  8. [8] W.H. Press, Numerical recipes in C, Wavelet transforms, 2(Cambridge: Cambridge University Press 1992) 591–606.
  9. [9] A.K. Chan, C. Chui, J. Le Moigne, H.J. Lee, J.C. Liu, &T.A. El-Ghazawi, The performance impact of data placementfor wavelet decomposition of two-dimensional image data onSIMD machines, Frontiers’95, 5th Symp. on the Frontiers ofMassively Parallel Computation, McLean, VA, Feb. 6–9, 1995,246–251.
  10. [10] T. El-Ghazawi & J. Le Moigne, Multi-resolution wavelet decomposition on the MasPar massively parallel system, International Journal of Computers and Their Applications, 1(1), September 1994, 24–30.
  11. [11] T. El-Ghazawi & J. Le Moigne, Wavelet decomposition onhigh-performance computing systems, Proc. 25th Int. Conf.on Parallel Processing (ICPP’96), Bloomingdale, IL, August1996, 12–23.
  12. [12] MasPar technical summary, MasPar Corporation, Sunnyvale,CA, November 1992.
  13. [13] J. Nickolls, The design of the MasPar MP-1: A cost efficientmassively parallel computer, Proceedings of the IEEE Compcon,Los Alamitos, CA, February 1990, 25–28.
  14. [14] T. Sterling, P. Merkey, & D. Savarese, Improving applicationperformance on the HP/Convex Exemplar, IEEE Computer, 29 (12), December 1996, 50–55. doi:10.1109/MC.1996.546609
  15. [15] T. Sterling, D. Becker, D. Savarese, J.E. Dorband, U.A.Ranawake, & C.V. Packer, Beowulf: A parallel workstationfor scientific computation, Proc. 24th Int. Conf. on ParallelProcessing, Oconomowoc, WI, August 1995, 11–14.
  16. [16] Z. Fang, X. Li, & L.M. Ni, On the communication complexity ofgeneralized 2-D convolution on processor arrays, IEEE Trans.on Computers, 38, February 1989, 184–194. doi:10.1109/12.16495
  17. [17] Z. Fang, X. Li, & L.M. Ni, Parallel algorithms for 2-Dconvolution, Proc. 1986 Int. Conf. on Parallel Processing(ICPP’86), University Park, PA, USA, August 1986, 262–269.
  18. [18] S.-Y. Lee & J.K. Aggarwal, Parallel 2-D convolution on a meshconnected processor array, IEEE Trans. on Pattern Analysisand Machine Intelligence, 9 (4), July 1987, 590–594.
  19. [19] H.J. Lee, J.C. Liu, A.K. Chan, & C.K. Chui, Parallel implementation of wavelet decomposition/reconstruction algorithms, Proc. SPIE Wavelets’94, Orlando, FL, April 5–8, 1994, 248–259. doi:10.1117/12.170029
  20. [20] J. Lu, Parallelizing Mallat algorithm for 2-D wavelet transforms, Information Processing Letters, 45, 1993, 255–259. doi:10.1016/0020-0190(93)90213-S
  21. [21] M. Maresca & H. Li, Morphological operations on mesh connected architectures: A generalized convolution algorithm, Proc. 1986 IEEE Conf. on Computer Vision and Pattern Recognition, Miami Beach, FL, June 1986, 299–304.
  22. [22] Q.F. Stout, Mesh-connected computers with broadcasting, IEEE Trans. on Computers, 32< September 1983, 826-830.

Important Links:

Go Back