IVDA: Intelligent Real-Time Video Detection Agent for Virtual Classroom Presentation

R.Y.D. Xu, J.S. Jin, and J.G. Allen

References

  1. [1] L.A. Rowe, D. Harley, P. Pletcher, & S. Lawrence, BIBS:A lecture webcasting system, Berkeley Multimedia ResearchCenter, TR 2001-160, Berkeley, CA, June 2001.
  2. [2] M. Ozeki, M. Itoh, H. Izuno, Y. Nakamura, & Y. Ohta,Object tracking and task recognition for producing interactive video content: Semi-automatic indexing for QUEVICO, Proc. Knowledge-Based Intelligent Information & Engineering System, Oxford, UK, 2003, 1044–1053.
  3. [3] M. Gleicher, R. Heck, & M. Wallick, A framework for virtual videography, Proc. 2nd Int. Symp. on Smart Graphics, Hawthorne, NY, 2002, 9–16. doi:10.1145/569005.569007
  4. [4] S. Deshpande & J.N. Hwang, A real time interactive virtualclassroom multimedia distance learning system, IEEE Trans.on Multimedia, 3 (4), 2001, 432–444. doi:10.1109/6046.966115
  5. [5] M. Bianchi, AutoAuditorium: A fully automatic, multi-camera system to televise auditorium presentations, Proc. JointDARPA/NIST Smart Spaces Technology Workshop, Gathersburg, MD, July 1998.
  6. [6] M.N. Wallick, Y. Rui, & L.W. He, A portable solution forautomatic lecture room camera management, Proc. ICME, 2,Taipei, 2004, 987–990.
  7. [7] Y. Rui, A. Gupta, & J. Grudin, Videography for tele-presentations, Proc. Conf. on Human Factors in ComputingSystems, Fort Lauderdale, Florida, 2003, 457–464. doi:10.1145/642611.642691
  8. [8] Y. Shi, W. Xie, & G. Xu, Smart remote classroom: Creatinga revolutionary real-time interactive distance learning system,Proc. Int. Conf. on Web-Based Learning, Hong Kong, August 2002, 130–141.
  9. [9] D. Franklin & K. Hammond, The intelligent classroom: Providing competent assistance, Proc. Int. Conf. on Autonomous Agents (Agents-2001), Montreal, Quebec, 2001, 161–168. doi:10.1145/375735.376037
  10. [10] C.H. Lin, T. Lv, W. Wolf, & I.B. Ozer, A peer-to-peerarchitecture for distributed real-time gesture recognition, Proc.Int. Conf. on Multimedia and Exhibition, 1, Taipei, 2004, 57–60.
  11. [11] C. Wren, A. Azarbayejani, T. Darrell, & A.P. Pentland, Pfnder: Real-time tracking of the human body, IEEE Trans.on Pattern Analysis and Machine Intelligence, 19 (7), 1997, 780–785. doi:10.1109/34.598236
  12. [12] C. Stauffer & W.E.L. Grimson, Adaptive background mixture models for real-time tracking, Proc. IEEE CVPR, Fort Collins, Colorado, 1999, 246–252. doi:10.1109/CVPR.1999.784637
  13. [13] D. Comaniciu & V. Ramesh, Mean shift and optimal predictionfor efficient object tracking, IEEE Int. Conf. Image Processing(ICIP’00), Vol. 3, Vancouver, 2000, 70–73. doi:10.1109/ICIP.2000.899297
  14. [14] D. Comaniciu, V. Ramesh, & P. Meer, Kernel-based objecttracking, IEEE Trans. Pattern Analysis and Machine Intelligence, 25 (5), 2003, 564–575. doi:10.1109/TPAMI.2003.1195991
  15. [15] R.Y.D. Xu, J.G. Allen, & J.S. Jin, Robust mean-shift trackingwith extended fast colour thresholding, Proc. 2004 Int. Symp.on Intelligent Multimedia, Video & Speech Processing, HongKong, October 2004, 542–545. doi:10.1109/ISIMP.2004.1434121
  16. [16] J. Bruce, T. Balch, & M. Veloso, Fast and cheap color imagesegmentation for interactive robots, Proc. IEEE/RSJ Int. Conf.on Intelligent Robots and Systems (IROS ’00), Vol. 3, October2000, 2061–2066. doi:10.1109/IROS.2000.895274
  17. [17] F.M. Porikli & O. Tuzel, Human body tracking by adaptivebackground models and mean-shift analysis, Int. Conf. onComputer Vision Systems (ICVS2003), Graz, Austria, April 2003.
  18. [18] B. Han & L. Davis, Object tracking by adaptive feature extraction, Proc. ICIP, December 2004, 1501–1504. doi:10.1109/ICIP.2004.1421349
  19. [19] Q. Zhu, K.T. Cheng, C.T. Wu , & Y.L, Wu, Adaptive learningof an accurate skin-color model, Proc. 6th IEEE Int. Conf. onAutomatic Face and Gesture Recognition, Seoul, Korea, May 2004, 37–42. doi:10.1109/AFGR.2004.1301506
  20. [20] R. Fergus, P. Perona, & A. Zisserman, Object class recognitionby unsupervised scale-invariant learning, Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2, Madison, Wisconsin, 2003, 264–271. doi:10.1109/CVPR.2003.1211479
  21. [21] D. Lowe, Distinctive image features from scale invariant keypoints, International Journal of Computer Vision, 60(2), 2004, 91–110. doi:10.1023/B:VISI.0000029664.99615.94
  22. [22] Y. Ke & R. Sukthankar, PCA-SIFT: A more distinctive representation for local image descriptors, Proc. Computer Vision and Pattern Recognition, Washington, DC, 2004, 506–513. doi:10.1109/CVPR.2004.183
  23. [23] G. Bradski & J. Davis, Motion segmentation and pose recognition with motion history gradients, Machine Vision and Applications, 13, 2002, 174–184. doi:10.1007/s001380100064
  24. [24] R.Y.D. Xu, J.G. Allen, & J.S. Jin, Constant video frame controlunder multiple periodic content dependant video processing,Proc. Pan-Sydney Workshop on Visual Information Processing(VIP2004), Sydney, Australia, December 2004.
  25. [25] R.Y.D. Xu, J.S. Jin, & J.G. Allen, Framework for script-basedvirtual directing and multimedia authoring in live video stream-ing, Proc. 11th Int. Multi-Media Modelling Conf. (MMM2005),Melbourne, Australia, 2005, 427–432. doi:10.1109/MMMC.2005.41
  26. [26] J.S. Jin, Z. Zhu, & G. Xu, Digital video sequence stabilizationbased on 2.5d motion estimation and inertial motion filtering,Real-Time Imaging, 7 (4), 2001, 357–365. doi:10.1006/rtim.2000.0243
  27. [27] C. Buehler, M. Bosse, & L. McMillan, Non-metric image-basedrendering for video stabilization, Proc. CVPR, Kauai Marriott,Hawaii, 2001, 609–614.
  28. [28] A. Litvin, J. Konrad, & W.C. Karl, Probabilistic video stabilization using Kalman filtering and masaicking, Proc. SPIE Conf. on Electronic Imaging, Santa Clara, CA, 2003, 663-674. doi:10.1117/12.476436

Important Links:

Go Back