M. Ge, R. Du, and Y.S. Xu
[1] S.G. Tzafestas, Advances in manufacturing: Decision, controland information technology (London: Springer, 1999). [2] P. Chen, Punch condition monitoring in sheet metal stamping under progressive stamping environments, doctoral diss.,University of Michigan, Ann Arbor, MI, 1997. [3] C.K.H. Koh, J. Shi, W.J. Williams, & J. Ni, Multiple faultsdetection and isolation using the haar transform, Part 2:Application to the stamping process, Trans. ASME Journal ofManufacturing Science and Engineering, 121(2), 1999, 295–299. [4] J. Jin & J. Shi, Diagnostic feature extraction from stampingtonnage signals based on design of experiments, Trans. ASME,Journal of Manufacturing Science and Engineering, 122(2),2000, 360–369. doi:10.1115/1.538926 [5] T. Hastie, A. Buja, & R. Tibshirani, Penalized discriminantanalysis, Annals of Statistics, 23, 1995, 73–102. doi:10.1214/aos/1176324456 [6] O.S. Mesina & R. Langari, A neuro-fuzzy system for toolcondition monitoring in metal cutting, Trans. ASME, Journalof Manufacturing Science and Engineering, 123, 2001, 312–318. doi:10.1115/1.1363599 [7] W. Fang, P. Willett, & S. Deb, Condition monitoring forhelicopter data, 2000 IEEE Int. Conf. on Systems, Man, andCybernetics, 1, 2000, 224–229. doi:10.1109/ICSMC.2000.884993 [8] G. Nakhaeizadeh & C.C. Taylor, Machine learning and statis-tics: The interface (New York: John Wiley and Sons, 1997). [9] G.D. Riccia, H.J. Lenz, & R. Kruse, Learning, networks andstatistics (Vienna: Springer-Verlag, 1997). [10] L.R. Rabiner, A tutorial on hidden Markov models and selectedapplications in speech recognition, Proc. IEEE, 77(2), 1989,257–286. doi:10.1109/5.18626 [11] B.H. Juang, On the hidden Markov model and dynamictime warping for speech recognition: A unified view, AT&TTechnical Journal, 63(7), 1984, 1213–1243. [12] J. Ying, T. Kirubarajan, K.R. Pattipati, & A. Patterson-Hine,A hidden Markov model-based algorithm for fault diagnosiswith partial and imperfect tests, IEEE Trans. on System, Man,And Cybernetics, Part C: Applications and Reviews, 30(4),2000, 463–473. doi:10.1109/5326.897073 [13] A. Kundu, G.C. Chen, & C.E. Persons, Transient sonarclassification using hidden Markov models and neural nets,IEEE Journal of Oceanic Engineering, 19(1), 1994, 87–99. doi:10.1109/48.289454 [14] H.M. Ertunc, K.A. Loparo, & H. Ocak, Tool wear condition monitoring in drilling operations using hidden Markovmodels (HMMs), International Journal of Machine Tools &Manufacture, 41, 20001, 1363–1384. doi:10.1016/S0890-6955(00)00112-7 [15] P. Smyth, Markov monitoring with unknown states, IEEEJournal on Selected Areas in Communications, 12(9), 1994,1600–1612. doi:10.1109/49.339929 [16] G. Strang & T. Nguyen, Wavelets and filter banks (Wellesley,MA: Wellesley-Cambridge, 1996). [17] M.V. Wickerhauser, Adapted wavelet analysis: From theory tosoftware (Wellesley, MA: A.K. Peters, 1994). [18] R.R. Coifman & M.V. Wickerhauser, Entropy-based algorithmsfor best basis selection, IEEE Trans. on Information Theory,38(2), 1992, 713–718. doi:10.1109/18.119732 [19] Y. Ephraim & N. Merhav, Hidden Markov processes, IEEETrans. on Information Theory, 48(6), 2002, 1518–1569. doi:10.1109/TIT.2002.1003838 [20] J. Yang, Y. Xu, & C.S. Chen, Human action learning viahidden Markov model, IEEE Trans. on System, Man, AndCybernetics, Part A: System and Human, 27(1), 1997, 34–44. doi:10.1109/3468.553220 [21] G. Tlusty, Manufacturing processes and equipment (EnglewoodCliffs: Prentice Hall, 2000). [22] S.M. Kay, Modern spectral estimation: Theory and application(Englewood Cliffs, NJ: Prentice Hall, 1988).
Important Links:
Go Back